最大流问题

合集下载

最大流问题的求解方法及应用

最大流问题的求解方法及应用

最大流问题的求解方法及应用
最大流问题,是指在一个有向图中,从源点 s 到汇点 t 的最大
流量。

在实际应用中,最大流问题往往用于描述网络传输、油管输送等流量分配问题。

求解最大流问题的方法包括以下几种:
1. 网络流算法:这是一种基于图论和线性规划的算法。

通过构建网络流图,将最大流问题转化为最小割问题,再利用线性规划求解最小割问题的对偶问题来求解最大流问题。

2. 增广路算法:这是一种经典的最大流算法,其基本思想是不断找到增广路径,即从源点 s 到汇点 t 的一条路径,沿途边权
均有剩余容量,使得该路径上的边的剩余容量中的最小值最大化,最终得到最大流。

3. 矩阵树定理:这是一种基于图论和矩阵运算的算法,适用于有向图和无向图。

通过计算图的拉普拉斯矩阵的行列式等方法,求得图的生成树个数,从而计算最大流。

4. Dinic算法:是对增广路算法的改进。

在增广路算法中,每
次查找增广路径的过程需要遍历整个图,为了提高效率,
Dinic算法引入了分层图的概念,将图分层之后只在图的一层
中查找增广路径,最终求得最大流。

这些方法在实际应用中常常被用来解决路由选择、网络流量优化、模拟电路分析等问题。

例如,最大流可以被用来优化数据传输、流水线设计、流量管道的运营和管理,提高资源利用率和数据传输速度。

最大流问题解题步骤

最大流问题解题步骤

最大流问题解题步骤一、什么是最大流问题?最大流问题是指在一个有向图中,给定源点和汇点,每条边都有一个容量限制,求从源点到汇点的最大流量。

该问题可以用于网络传输、电力调度等实际应用中。

二、最大流问题的解法1. 增广路算法增广路算法是最基本的解决最大流问题的方法。

其基本思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

2. Dinic算法Dinic算法是一种改进型的增广路算法,其核心思想是通过层次分析和分层图来减少搜索次数,进而提高效率。

具体步骤如下:(1)构建分层图;(2)在分层图上进行BFS搜索寻找增广路径;(3)计算路径上可行流量并更新残留网络;(4)重复步骤2和步骤3,直到不存在增广路。

3. Ford-Fulkerson算法Ford-Fulkerson算法是一种基于增广路的算法,其核心思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

三、最大流问题解题步骤1. 确定源点和汇点首先需要确定问题中的源点和汇点,这是解决最大流问题的前提条件。

2. 构建残留网络在有向图中,每条边都有一个容量限制。

我们可以将这些边看作管道,容量看作管道的宽度。

在实际传输过程中,某些管道可能已经被占用了一部分宽度。

因此,在求解最大流问题时,需要构建一个残留网络来表示哪些管道还能够继续传输数据。

具体方法是:对于每条边(u,v),分别构造两条边(u,v)和(v,u),容量分别为c(u,v)-f(u,v)和f(u,v),其中c(u,v)表示边的容量,f(u,v)表示当前流量。

最大流常见算法

最大流常见算法

最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。

一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。

网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。

源点是流量的起点,汇点是流量的终点。

在网络中,还可能存在其他节点和边。

二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。

该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。

三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。

该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。

但是在某些特殊情况下仍然可能需要指数级时间复杂度。

5-4 最 大 流 问题

5-4 最 大 流 问题

(2)标号过程 标号过程
给起点v 标上标号( , 1给起点 s标上标号(-,+∞); ); (表示 s是源点(起点),能够得到任意多的量。 表示v 是源点(起点),能够得到任意多的量。 ),能够得到任意多的量 表示 vs称为已标记的点。让S表示已标记点的集合 S 表示 称为已标记的点。 表示已标记点的集合, 表示已标记点的集合 未标记点的集合, 未标记点的集合 VS ∈ S ) 2考察起点的所有相邻未标号点: 考察起点的所有相邻未标号 所有相邻未标号点 若存在以S中的点为起点, 若存在以 中的点为起点,以 S 中的点为终点的非饱 中的点为起点 [vi+ , ε j ] ,否则不加标记。 和弧( 否则不加标记。 和弧(vi,vj)则vj可标记为
从S出发到 S 终止的所有边的集合即割集。 终止的所有边的集合即割集。
v2
e1
e3 e6
v4
e8
v1
e2
e4 e7
v6
e5
v3
v5
e9
不包括从 S 出发到S终 止的边!
4、弧的分类
(1)在可行流X={xij}中,按流量的特征 在可行流X 分有: 分有: ①饱和弧——xij=bij 饱和弧 ②非饱和弧——xij<bij 非饱和弧 ③零流弧——xij=0 零流弧 ④非零流弧——xij>0 非零流弧
顶点3的标记化 顶点 的标记化: 的标记化 ∵ x s 3 = bs 3 , 但
正向饱和 弧 ∴不能从v 不能从
得到标记; 标记 s得到标记;
x
32
得到标记 标记。 > 0,故可从v2得到标记。
反向非零流
于是
ε ε3 = min { 2 , x 32 } = min {6 , 4 } = 4

8.4 网络最大流问题

8.4 网络最大流问题

所有指向为vs→vt的弧,称为前向弧,记作μ +;
所有指向为vt →vs的弧,称为后向弧,记做μ
-,
增广链:设 f 是一个可行流,μ是从vs 到 vt 的一条链,若μ满 足下列条件,称之为(关于可行流 f 的)增广链。
1)在(vi , vj)∈μ+上,0≤fij<cij,即μ+中的弧都是非饱和弧。
2)在(vi,vj)∈μ-上,0<fij≤cij,即μ-中的弧都是非零流弧。
§8.4 网络最大流问题
Page 22
(3) 检查与v3点相邻的未标号的点,因f3t<c3t,故对vt 标 l(vt)=min{l(v3), c3t-f3t } =min{1, 1}= 1 找到一条增广链 vs→v1→v2 →v3 →vt ( v , 1) 2 (-v v12, 1) (4,3) v4 (3,3) (5,3) (1,1) (1,1) (3,0)
v ( f ) f s1 f s 2 f 4 t f 3 t 5
§8.4 网络最大流问题
Page 25
例8.10 用标号算法求下图中vs→vt的最大流量,并找出最小 截。 v1 9(3) v3 8(7)
5(4) 5(4)
2(0)
vs
7(5)
6(1)

vt
10(8) v2 9(9) v4
§8.4 网络最大流问题
基本方法: (1)找出第一个可行流(例如所有弧的流量fij =0);
Page 14
(2)用标号的方法找一条增广链:
首先给发点vs标号(0,+∞),第一个数字表示标号从哪一点得到;
第二个数字表示允许的最大调整量。
选择一个点 vi 已标号且另一端未标号的弧沿着某条链向收

运筹学最大流问题例题

运筹学最大流问题例题

运筹学最大流问题例题摘要:一、运筹学最大流问题的基本概念二、最大流问题的求解方法三、最大流问题例题详解四、总结与展望正文:一、运筹学最大流问题的基本概念运筹学最大流问题是一种在网络中寻找最大流量的问题。

给定一个有向图G(V,E),其中仅有一个点的入次为零称为发点(源),记为vs;仅有一个点的出次为零称为收点(汇),记为vt;其余点称为中间点。

对于G 中的每一条边(vi,vj),相应地给一个数cji(cji 0),称为边(vi,vj) 的容量。

最大流问题的目标是找到从源点到汇点的最大流量。

二、最大流问题的求解方法求解最大流问题的方法主要有两种:一种是基于图论的方法,如Ford-Fulkerson 算法;另一种是基于线性规划的方法,如Maximum Flow Problem with Linear Programming。

1.Ford-Fulkerson 算法Ford-Fulkerson 算法是一种基于图论的贪心算法,用于求解最大流问题。

它通过不断寻找增广链并扩充流量来逐步改进解,直至找不到增广链为止。

算法步骤如下:(1) 初始化流量为零;(2) 对于所有中间点i,找到所有出边(i,j) 中容量最大的边,将流量沿该边增加到最大容量;(3) 重复步骤(2),直至找不到增广链;(4) 得到的流量即为最大流量。

2.Maximum Flow Problem with Linear ProgrammingMaximum Flow Problem with Linear Programming 是一种基于线性规划的方法,用于求解最大流问题。

它将最大流问题转化为线性规划问题,并采用线性规划求解器求解。

具体步骤如下:(1) 将有向图G 转换为网络;(2) 设定变量:设置容量变量cji 和流量变量fij;(3) 建立目标函数:目标是求解最大流量,即求max {∑fij};(4) 建立约束条件:流量平衡约束、容量约束和流量非负约束;(5) 采用线性规划求解器求解线性规划问题,得到最大流量。

运筹学第7章 最大流问题(精简)

运筹学第7章 最大流问题(精简)

对最大流问题有下列定理:
定理1 容量网络中任一可行流的流量 不超过其任一割集的容量。
定理2(最大流-最小割定理)任一容 量网络中,最大流的流量等于最小割集 的割量。
推论1 可行流f*={fij*}是最大流,当且 仅当G中不存在关于f.*的增广链。
求最大流的标号法
标号法思想是:先找一个可行流。 对于一个可行流,经过标号过程得到 从发点vs到收点vt的增广链;经过调整 过程沿增广链增加可行流的流量,得 新的可行流。重复这一过程,直到可 行流无增广链,得到最大流。
.
标号过程:
(1)给vs标号(,+∞),vs成为已标号未检查的点,其 余都是未标号点。
(2)取一个已标号未检查的点vi,对一切未标号点vj: 若有非饱和边(vi,vj),则vj标号(vi,l(vj)),其中l(vj)= min[l(vi),cij – fij],vj成为已标号未检查的点;若有非 零边(vj,vi),则vj标号(-vi,l(vj)),其中l(vj)=min[l(vi), fji], vj成为已标号未检查的点。vi成为已标号已检查的点 。
最大流问题
.
基本概念
v2 3
4
v4
5
vs
1
1
3
vt
5
2
v1
2
v3
给定一个有向图G=(V,E),其中仅有一个点的入次
为零称为发点(源),记为vs,仅有一个点的出次为零 称为收点(汇),记为vt,其余点称为中间点。
对于G中的每一条边(vi,vj),相应地给一个数cij (cij≥0),称为边(vi,vj)的容量。我们把这样的网络 G称为容量网络 ,记为G=(V,E,C)。
但利用它与图的密切关系,可以利用图直观简便地求 解。

运筹学最大流问题例题

运筹学最大流问题例题

运筹学最大流问题例题摘要:1.运筹学最大流问题简介2.最大流问题的基本概念和方法3.最大流问题的求解步骤4.最大流问题在实际应用中的案例分享5.总结与展望正文:【提纲1:运筹学最大流问题简介】运筹学最大流问题是一种求解网络中最大流量的问题。

在有向图中,有一个发点(源)和一个收点(汇),其他点称为中间点。

给定每条边的容量,我们需要找到一条从发点到收点的路径,使得这条路径上的流量最大。

最大流问题在物流、交通、通信等领域具有广泛的应用。

【提纲2:最大流问题的基本概念和方法】在最大流问题中,我们需要了解以下几个基本概念:1.流量:表示在一条边上流动的单位数量。

2.容量:表示一条边能承受的最大流量。

3.增广链:从发点到收点的路径,路径上的每条边都有剩余容量。

求解最大流问题的基本方法是:1.初始化:将所有边的流量设为0。

2.寻找增广链:在图中寻找一条从发点到收点的路径,使得路径上的每条边都有剩余容量。

3.更新流量:将找到的增广链上的流量增加,同时更新路径上其他边的剩余容量。

4.重复步骤2和3,直到无法再找到增广链。

【提纲3:最大流问题的求解步骤】以下是求解最大流问题的具体步骤:1.构建网络图:根据题目给出的条件,构建有向图。

2.初始化:将所有边的流量设为0,记录发点和收点。

3.寻找增广链:使用深度优先搜索或广度优先搜索等算法,在图中寻找一条从发点到收点的路径。

4.更新流量:找到增广链后,将路径上的流量增加,同时更新路径上其他边的剩余容量。

5.重复步骤3和4,直到无法再找到增广链。

6.输出结果:最大流即为所有增广链上的流量之和。

【提纲4:最大流问题在实际应用中的案例分享】最大流问题在实际应用中具有广泛的价值,例如:1.物流配送:通过最大流问题优化配送路线,降低物流成本。

2.交通规划:通过最大流问题优化交通网络,提高出行效率。

3.通信网络:通过最大流问题优化网络资源分配,提高通信质量。

【提纲5:总结与展望】运筹学最大流问题是一种重要的优化问题,其在实际应用中具有广泛的价值。

运筹学最大流问题

运筹学最大流问题
最小割是这些路中的咽喉部分, 其容量最小,
它决定了整个网络的最大通过能力。
四、最大匹配问题
|M |表示集合M中M的边数。
一个图的最大匹配中所含边数是确定的, 但匹配方案可以不同。
定义23 二部图G=(X,Y,E), M是边集E的子集, 若M中的任意
若不存在另一匹配M1, 使得|M1|>|M|, 则称M为最大匹配.
x5
y1x3y2x2y3x1
y4
x4
y5
x5
y1
x3
y2
x2
y3
x1
y4
x4
y5
vs
vt
1
1
1
1
1
1
1
1
1
1
1
1
如图,要求设计一个方案,使量多的人能就业。
(1,3)
(2,4)
(4,3)
(1,2)
(3,2)
(3,t)
(2,4)
(3,t)
(4,3)
(4,t)
(1,3)
(3,t)
15
(4,t)
21
17
18
19
24
14
25
15

容量
4-3、最大流-最小割定理
定理
定理2 (最大流-最小割定理) 任一网络G中, 从vs 到 vt 的
定义
设 f 为网络G=(V, E, C)的任一可行流, 流量为W ,
未标号点集合为 S = {v1, v2, v4, v5, v6, v7}
割集(S, S )= {(vs, v1), (vs, v2), (v3, v6)}
割集容量
可得到一个最小割. 见图中虚线.

最大流与最小费用流

最大流与最小费用流

c67 = 7 − P = 7 - 6 = 1
通过第1次修改,得到图3。
图3 返回步骤①,进行第2次修改。
次修改: 第2次修改 次修改 选定①—②—⑤—⑦,在这条路中,由 于 P = c25 = 3 ,所以,将 c12 改为2 , 25 改 c 为0,c57 改为5,c 21 、 52 、 75 改为3。修改后 c c 的图变为图4。
x12 + x13 + x14 = x57 + x67 = f
x12 + x32 x + x 23 13 x14 + x34 x + x 35 25 x36 + x 46 = x 23 + x 25 = x32 + x34 + x35 + x36 = x 46 + x65 = x56 + x57 + x56 = x65 + x67
所以取 P = c13 = 6 。
③在路①—③—⑥—⑦中,修改每一 条弧的容量
c13 = 6-P = 6-6 = 0
c36 = 7 − P = 7 - 6 = 1
c31 = 0 + P = 0 + 6 = 6
c63 = 0 + P = 0 + 6 = 6
c76 = 0 + P = 0 + 6 = 6
f = f 0 ≤ f max
(15)
使其代价最小,即
d=
( i , j )∈V
∑d
ij
xij = min
(16)
式中:d ij 指单位车辆数通过弧 (i, j )的代价。
图11 代价条件
图1 约束条件

运筹学最大流问题例题

运筹学最大流问题例题

运筹学最大流问题例题一、问题描述在运筹学领域,最大流问题是一种重要的网络流问题,其目标是在给定有向图中,找到从源点到汇点的最大流量。

求解最大流问题可以应用于许多实际场景,比如物流调度、电力网络分配等。

二、问题分析最大流问题可以通过使用流网络模型来求解。

流网络由一组有向边和节点组成,其中每条边都带有一个容量值,代表该边所能通过的最大流量。

流量值表示通过该边的实际流量。

为了求解最大流问题,我们需要使用网络流算法,其中最著名的算法是Ford-Fulkerson算法和Edmonds-Karp算法。

这些算法通过不断寻找增广路径来增加流量,直到无法找到增广路径为止。

三、问题实例为了更好地理解最大流问题,以下是一个具体的例子:假设有一个物流网络,由多个节点和边构成。

每条边都带有一个容量值,表示该边所能通过的最大流量。

网络中有一个源点和一个汇点,我们需要找到从源点到汇点的最大流量。

节点和边的关系如下:源点 -> A: 容量为5源点 -> B: 容量为3A -> C: 容量为2A -> D: 容量为4B -> C: 容量为2B -> E: 容量为3C -> 汇点: 容量为4D -> 汇点: 容量为5E -> 汇点: 容量为3根据以上描述,我们可以通过使用Ford-Fulkerson算法来求解最大流问题。

算法的基本步骤如下:1. 初始化流网络,将所有边上的流量设为0。

2. 寻找增广路径:通过深度优先搜索或广度优先搜索,寻找从源点到汇点的一条路径,使得路径上的边上仍有剩余容量。

3. 计算路径上的最小容量值,即可通过的最大流量。

4. 更新路径上的边的流量,即增加最小容量值。

5. 重复步骤2-4,直到无法找到增广路径为止。

6. 最后,计算源点流出的总流量,即为最大流量。

通过以上例子,我们可以清楚地了解最大流问题的基本思想和求解步骤。

在实际应用中,可以根据具体情况使用不同的网络流算法来求解最大流问题。

运筹学最大流问题例题

运筹学最大流问题例题

运筹学最大流问题例题摘要:I.引言- 介绍运筹学最大流问题- 问题的背景和实际应用II.最大流问题的定义- 给定图和容量- 源点和汇点- 中间点III.最大流问题的求解方法- 增广链法- 最小费用最大流问题IV.例题详解- 例题一- 例题二- 例题三V.结论- 总结最大流问题的求解方法和应用- 展望未来研究方向正文:I.引言运筹学最大流问题是运筹学中的一个经典问题,主要研究在给定的有向图中,如何从源点向汇点输送最大流量。

最大流问题广泛应用于运输、通信、网络等领域,具有重要的理论和实际意义。

本文将介绍运筹学最大流问题的相关概念和方法,并通过例题进行详细解析。

II.最大流问题的定义最大流问题给定一个有向图G(V, E),其中包含一个源点(vs)、一个汇点(vt) 和若干个中间点。

对于图中的每一条边(vi, vj),都有一个非负容量cij。

我们需要从源点向汇点输送流量,使得总流量最大。

III.最大流问题的求解方法最大流问题的求解方法主要有增广链法和最小费用最大流问题。

1.增广链法增广链法是一种基于动态规划的方法。

假设我们已经找到了从源点到汇点的最大流量f,现在要寻找一条增广链,使得流量可以增加。

增广链的定义是:从源点出发,经过若干条边,最后到达汇点的路径,且这条路径上所有边的容量之和c > f。

如果找到了这样的增广链,我们可以将源点与增广链的起点之间的边(vs, v1) 的容量增加c,同时将增广链上所有边的容量减少c,从而得到一个新的最大流量f",满足f" > f。

不断寻找增广链,直到无法找到为止,此时的最大流量即为所求。

2.最小费用最大流问题最小费用最大流问题是在最大流问题的基础上,要求源点向汇点输送的流量所经过的路径的费用最小。

求解方法是在增广链法的基础上,每次寻找增广链时,不仅要满足c > f,还要满足从源点到汇点的路径费用最小。

IV.例题详解以下是三个最大流问题的例题详解:例题一:给定一个有向图,源点vs 的入次为0,汇点vt 的出次为0,其他点的入次和出次均为1。

运筹学最大流问题例题

运筹学最大流问题例题

运筹学最大流问题例题运筹学中的最大流问题是一种重要的优化问题,它在网络流量分配、路径规划等领域有着广泛的应用。

下面我将给出两个较为详细的最大流问题例题,以帮助读者更好地理解。

例题一:假设有一个有向图,其中包含一个源点S和一个汇点T,其他节点分别表示供给点和需求点。

每条边的容量表示该路径上的最大流量。

现在我们需要确定从S到T的最大流量。

其中,源点S有一个供给量为10的容器,汇点T有一个需求量为10的容器。

其他节点没有容器。

图中各点之间的边的容量如下:S -> A: 5S -> B: 3A -> C: 4A -> D: 2B -> E: 2B -> F: 4C -> T: 3D -> T: 1E -> T: 1F -> T: 5求解:通过构建网络流图,我们可以将这个问题转化为一个最大流问题。

首先,我们为每条边都添加一个容量属性,然后为S和T之间添加一个超级源点和超级汇点。

图示如下所示:```S/ | \A B C/ | | \D E F T```超级源点S0与源点S之间的边的容量为源点S的供给量10,超级汇点T0与汇点T之间的边的容量为汇点T的需求量10。

接下来,我们要找到从超级源点到超级汇点的最大流量,即求解这个网络流图的最大流。

解答:根据这个网络流图,我们可以使用Ford-Fulkerson算法求解最大流问题。

具体步骤如下:1. 初始化网络流为0。

2. 在剩余容量大于0的路径上增广流量:从超级源点出发,找到一条路径到达超级汇点,该路径上的流量不超过路径上边的最小容量。

3. 更新剩余容量:将路径上的每条边的剩余容量减去增广流量。

4. 将增广流量加到网络流中。

5. 重复步骤2-4,直到找不到从超级源点到超级汇点的路径。

通过应用Ford-Fulkerson算法,我们可以得到从超级源点到超级汇点的最大流量为8。

因此,从源点S到汇点T的最大流量也为8。

最大流问题经典例题

最大流问题经典例题

最大流问题经典例题最大流问题是指在一个有向图中,从源点到汇点的最大流量是多少。

这个问题在现实生活中有很广泛的应用,比如网络通信中的数据传输、水管输水时的流量控制等。

下面我们来看一道经典的最大流问题的例题。

问题描述:给定一个有向图,其中每条边的容量都只会为1,求从源点到汇点的最大流量。

解题思路:这是一道非常基础的最大流问题,我们可以使用网络流的算法来解决。

下面,我将分几个步骤来阐述解题思路。

1. 构建网络流图首先,我们需要将原有的有向图转化为网络流图。

对于每条边,我们都要添加两条反向边,并将容量均设为1。

这样,我们就得到了一个新的有向图,它的任何一条边的容量都为1。

2. 使用Edmonds-Karp算法接下来,我们可以使用Edmonds-Karp算法,也叫增广路算法,来求出最大流量。

它是一种广度优先搜索的算法,的基本思想是:从源点开始,每次找一条容量不为0,且未被搜索过的路径,将路径上的边的容量减去该路径的最小容量,这个最小容量就是该路径的流量。

然后将路径中的正向边的流量加上这个流量,反向边的流量减去这个流量,依次迭代。

3. 输出结果最后,我们将算法得到的最大流量输出即可。

代码实现:以下是使用Python语言实现的最大流问题的代码:```def bfs(graph, start_node, end_node):visited = [False] * len(graph)queue = []queue.append(start_node)visited[start_node] = Truepred = [-1] * len(graph)while queue:curr_node = queue.pop(0)if curr_node == end_node:return True, predfor i, val in enumerate(graph[curr_node]):if not visited[i] and val > 0:queue.append(i)visited[i] = Truepred[i] = curr_nodereturn False, []def edmonds_karp(graph, start_node, end_node):max_flow = 0while True:flow_found, pred = bfs(graph, start_node, end_node) if not flow_found:breakcurr_node = end_nodemin_flow = float('inf')while curr_node != start_node:prev_node = pred[curr_node]min_flow = min(min_flow,graph[prev_node][curr_node])curr_node = prev_nodecurr_node = end_nodewhile curr_node != start_node:prev_node = pred[curr_node]graph[prev_node][curr_node] -= min_flowgraph[curr_node][prev_node] += min_flowcurr_node = prev_nodemax_flow += min_flowreturn max_flowif __name__ == '__main__':graph = [[0, 1, 0, 1, 0],[0, 0, 1, 0, 1],[0, 0, 0, 1, 0],[0, 0, 0, 0, 1],[0, 0, 0, 0, 0]]start_node = 0end_node = 4max_flow = edmonds_karp(graph, start_node, end_node)print("The maximum flow in the network is:", max_flow) ```在这个例子中,我们构建了一个有向图,其中每条边的容量均为1。

第四节 最大流问题

第四节 最大流问题

v4
(11,6)
v1
(3,3)
(17 ,2)
v6
v5
8
v3
(6,3)
v2
(10,5) (3,2) (4,1) (8,3) (5,1)
(5,2)
v4
(11,6)
v1
(3,3)
(17,2)
v6
v5
µ = (v1,v2,v3,v4,v5,v6 )
+ µ ={(v1,v2) ,(v2,v3), (v3 , v4),(v5,v6)}
23
(-v2,2) v1
(5,1) (2,2) (2,2)
v3 (v1,2)
(6,3) (2,0) (5,2)
(3,3)
(0, +∞)
vs
(6,2)
vt
(v3,2)
(vs,4)
v2
(3,2)
v4
(v2,1)
24
(-v2,2)v1
(5,1)
(2,2) (2,2) (3,2)
v3
(v1,2)
(3,3)
1 (-2, l(v3)), 这里 l (v3 ) minl (v2 ), f32 min ,1 1,
18
在弧(v1,v3)上,f13=2, c13=2,不满足标号条件。 (4)检查v2,在弧(v3,v2)上,f32=1>0, 给v3标号
(-v1,1)
v2
(4,3) (1,1)
如所有fij=0, V( f ) 零流。
V( f ) 称为可行流 f 的流量,即发点的净输出量。
6
(3). 最大流
若 V(f *) 为网络可行流,且满足: V(f *)=Max{V(f )∣f }为网络D中的任意 一个可行流,则称f *为网络的最大流。

最大流练习题

最大流练习题

最大流练习题最大流问题是指在一个网络中,从源点s到汇点t的最大流量。

本文将为读者介绍最大流问题的基本概念和求解方法,并提供一些练习题供读者巩固所学知识。

一、最大流问题概述在一个网络中,每个节点都有一定的容量,表示通过该节点的最大流量。

源点s表示流的起点,汇点t表示流的终点。

通过网络中的边,流将从源点s流向汇点t,其中边的容量表示通过该边的最大流量。

最大流问题的目标是找到从源点s到汇点t的最大流量。

使用最大流算法,可以得出最大流量并找到一条流量最大的路径。

二、最大流问题的求解方法1. Ford-Fulkerson算法Ford-Fulkerson算法是最常用的求解最大流问题的方法之一。

该算法的基本思想是不断寻找增广路径,直至无法找到增广路径为止。

步骤:- 初始化流量为0。

- 当存在增广路径时,通过该路径增加流量,并更新路径上各边的容量。

- 重复上一步骤,直至不存在增广路径。

2. Edmonds-Karp算法Edmonds-Karp算法是Ford-Fulkerson算法的改进版本,其核心思想是使用广度优先搜索寻找增广路径。

该算法保证每次找到的增广路径是最短的,从而提高了算法效率。

步骤:- 初始化流量为0。

- 使用广度优先搜索寻找最短增广路径。

- 通过该路径增加流量,并更新路径上各边的容量。

- 重复上一步骤,直至不存在增广路径。

三、最大流问题练习题1. 题目描述:给定一个带权有向图,其中每个边的容量和费用均已给定。

请计算从源点s到汇点t的最大流量。

2. 题目描述:给定一个带权无向图,其中每个节点的容量已给定。

请计算从源点s到汇点t的最大流量,并找出一条流量最大的路径。

3. 题目描述:给定一个带权有向图,其中每个节点的容量已给定。

请计算从源点s到汇点t的最大流量,并找出一条流量最大的路径。

以上练习题旨在让读者更好地理解最大流问题,并熟练掌握最大流问题的求解方法。

读者可以使用Ford-Fulkerson算法或Edmonds-Karp 算法来解决这些问题,并验证自己的答案是否正确。

运筹学课件第四节最大流问题

运筹学课件第四节最大流问题

fij
fi j t , (vi , v j ) fi j t , (vi , v j )
一f.○i j令调, (整v过i ,程v j )不在可增广链
○ 但是,如果vt 被标上号,表示得到一条增广链μ,转入下一
步调整过程。
例 求图的网络最大流,弧旁的权
数表示(cij , fij)。
S
量,记为C(S, ) 。
v1
2
4 3
1 v3 2
2
vs
2
3
4 3
v4
v2 4 vt
边集{(vs,v1),(vs,v3),(vs,v4)} 边集{(vs,v1),(v1,v3),(v2,v3),(v3,vt)} 为图的割集,割集容量分别为11,9
最大流-最小割定理
定理10:设f为网络G=(V,E,C)
v1
(5,5) vs
(4,2)
v2
(3,2)
v3
(5,2)
v4
(3,3) v5
(3,3)
(2,2)
(2,2)
v6
(4,2) vt
(5,4)
v1
(5,2)
v4
(5,5)
(+ vs,2) (3,3)
(4,2)
vs
(∆ ,+∞)
(4,2)
v2
(3,2)
v5
(3,3)
(2,2)
vt
(5,4)
v3
(2,2)
(- v5,2)
(+ v1,2)
v1
(5,2)
v4
(5,5)
(+ vs,2) (3,3) (+ v2,2) (4,2)
vs
(∆ ,+∞)

最大流问题经典例题

最大流问题经典例题

最大流问题经典例题最大流问题是图论中的一个经典问题,其目的是在一个有向图中找到一条从源点到汇点的路径,使得路径上的流量最大。

最大流问题有多种解法,其中最著名的是Ford-Fulkerson算法和Edmonds-Karp 算法。

下面介绍一个最大流问题的经典例题:给定一个有向图G=(V,E),其中V表示节点集合,E表示边集合。

假设有源点s和汇点t,并且每条边都有一个容量c,表示该边最多可以通过的流量。

请找到从源点s到汇点t的最大流量。

解法:一种解法是使用Ford-Fulkerson算法。

该算法通过不断增广路径来寻找最大流,直到无法找到增广路径为止。

具体实现过程如下:1. 初始化流f=0。

2. 寻找一条增广路径,即从s到t的一条路径,使得路径上所有边的剩余容量都大于0。

3. 计算该路径上的最小剩余容量d。

4. 对该路径上的所有边e,将其流量增加d,同时将其反向边的流量减少d。

5. 将f增加d。

6. 重复步骤2-5,直到无法找到增广路径。

另一种解法是使用Edmonds-Karp算法。

该算法在Ford-Fulkerson算法的基础上优化了增广路径的选择,选择最短路作为增广路径,从而提高了算法的效率。

具体实现过程如下:1. 初始化流f=0。

2. 寻找一条从s到t的最短增广路径,即路径上所有边的剩余容量都大于0,且路径长度最短。

3. 计算该路径上的最小剩余容量d。

4. 对该路径上的所有边e,将其流量增加d,同时将其反向边的流量减少d。

5. 将f增加d。

6. 重复步骤2-5,直到无法找到增广路径。

无论使用哪种算法,最后得到的f即为从源点s到汇点t的最大流量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大流问题
基本概念
v2 3 vs 5 v1 2 v3 1 1 4 v4
5
3 2 vt
给定一个有向图G=(V,E),其中仅有一个点的入次 为零称为发点(源),记为vs,仅有一个点的出次为 零称为收点(汇),记为vt,其余点称为中间点。 对于G中的每一个弧(vi,vj),相应地给一个数cij (cij≥0),称为弧(vi,vj)的容量。我们把这样的D称 为网络(或容量网络),记为G=(V,E,C)。
给定容量网络G=(V,A,E),若点集V被剖分 为两个非空集合V1和V2,使 vs∈V1 ,vt∈V2, 则把弧集(V1,V2)称为(分离vs和vt的)割集。
v2
4 1 3 vs 1 v4 5 3 vt
5
v1 2 v3
2
显然,若把某一割集的弧从网络中去掉, 则从vs到vt便不存在路。所以,直观上说,割 集是从vs到vt的必经之路。
可行流是指满足如下条件的流: (1)容量限制条件:对G中每条边(vi,vj), 有
0 f ij cij
(2)平衡条件: 对中间点,有:
f f
ij j k i
ki
对收点vt与发点vs,有: f si f jt W
j
(即中间点vi的物资输入量等于输出量)
(即vs发出的物资总量等于vt接收的物资总量),W是 网络的总流量。
注:有向边也称为弧。
对教材P259定义21的解释
v1 vs v3 vt v2
v4 边集(vs,v1),(v1,v3),(v2,v3),(v3,vt), (v4,vt)是G的割集。其顶点分别属于两个互补不相交 的点集。去掉这五条边,则图不连通,去掉这五条边中 的任意1-4条,图仍然连通。
割集的容量(简称割量) 最小割集
所谓网络上的流,是指定义在弧集E 上的函数f={f(vi,vj)},并称f(vi,vj)为弧 (vi,vj)上的流量,简记为fij。
v2 3,1 vs 5,2 1,0 v1 1,0 4,1 v4
5,2
3,1 2,1 2,2 v3 vt
标示方式:每条边上标示两个数字,第一个是容量,第二 是流量
可行流、可行流的流量、最大流。
对最大流问题有下列定理: 定理1 容量网络中任一可行流的流量 不超过其任一割集的容量。 定理2(最大流-最小割定理)任一容 量网络中,最大流的流量等于最小割集 的割量。 推论1 可行流f*={fij*}是最大流,当且 仅当G中不存在关于f*的增广链。
求最大流的标号法
标号法思想是:先找一个可行流。 对于一个可行流,经过标号过程得到 从发点vs到收点vt的增广链;经过调整 过程沿增广链增加可行流的流量,得 新的可行流。重复这一过程,直到可 行流无增广链,得到最大流。
v2
(-,+∞)
vs
(3,3)
(4,3) (1,1)
(v2,1)
v4 (5,3) (3,0) v3
(1,1)
(v3,1) (-,+∞)
vt vs
(1,0) v1
(3,0) (2,2) v3
(5,1)
(2,1)
(5,2)
(vs,4)
v1
(2,2)
(-v2,1)
(vs,3)
(2,2)
得增广链,标号结束, 进入调整过程
v5
[-v4, 2]
如图已经得到增广链,然后进行调整。
标号过程: (1)给vs标号(-,+∞),vs成为已标号未检查的点,其 余都是未标号点。 (2)取一个已标号未检查的点vi,对一切未标号点vj: 若有非饱和弧(vi,vj),则vj标号(vi,l(vj)),其中l(vj)= min[l(vi),cij – fij],vj成为已标号未检查的点;若有非 零弧(vj,vi),则vj标号(-vi,l(vj)),其中l(vj)=min[l(vi), fji], vj成为已标号未检查的点。vi成为已标号已检查的点。 (3)重复步骤(2),直到vt成为标号点或所有标号点 都检查过。若vt成为标号点,表明得到一条vs到vt的 增广链,转入调整过程;若所有标号点都检查过, 表明这时的可行流就是最大流,算法结束。 调整过程:在增广链上,前向弧流量增加l(vt),后 向弧流量减少l(vt)。
可行流总是存在的,例如f={0}就是一个流量为0的可 行流。 所谓最大流问题就是在容量网络中寻找流量最大的可 行流。 一个流f={fij},当fij=cij,则称f对边(vi, vj)是饱和的, 否则称f对边(vi, vj)不饱和。 最大流问题实际上是一个线性规划问题。
但利用它与图的密切关系,可以利用图直观简便地求 解。
无增广链,标号结束,得 最大流。同时得最小截。
下图中已经标示出了一个可行流,求最大流 v2
(4, 0) [-, ∞] vs (1, 0) [vs, 4] [v2, 4]
(4, 0)
v4
(5, 2)
vs
(2, 0)
[v4, 3]
(1, 0)
(3, 2)
(5, 2)
[vs, 3]
v1
(2, 2)
v3
(4, 0)
割集(V1, V2)中所有起点在V1,终点在V2的边的容量 的和称为割集容量。例如下图中所示割集的容量为5
v2 4 1Βιβλιοθήκη 3vs 5 v1 1
v4
5
3 2 v3 vt
2
在容量网络的所有割集中,割集容量最小的割集称为 最小割集(最小割)。
对于可行流f={fij},我们把网络中使fij=cij的 弧称为饱和弧,使fij<cij的弧称为非饱和弧;把 使fij=0的弧称为零流弧,使fij>0的弧称为非零 流弧。 若μ 是联结发点 v2 4,1 v4 v 和收点 v 的一条链, 3,1 s t 5,2 1,0 我们规定链的方向是 vs 3,1 1,0 vt 从vs到vt,则链上的 2,1 5,2 v1 2,2 v3 弧被分成两类:前向 弧、后向弧。 设f是一个可行流,μ是从vs到vt的一条链,若μ 满足前向弧都是非饱和弧,后向弧都是都是非零 流弧,则称μ是(可行流f的)一条增广链。
下面用实例说明具体的操作方法:例
v2 (3,3) (4,3) v4 (5,3) (3,0) (2,1) v1 (2,2) v3 vt
vs
(5,1)
(1,1)
(1,1)
在图中给出的可行 流的基础上,求vs 到vt的最大流。
(3,3) v2 (4,3) (1,0) v4 (5,3) vt
(-v1,1)
相关文档
最新文档