弹性波动力学2014
弹性波动理论
![弹性波动理论](https://img.taocdn.com/s3/m/f131579d77eeaeaad1f34693daef5ef7bb0d124b.png)
四、波动方程 若应力体内两相邻质点应力相同,无相对运动,静止平衡状态
若二者之间有应力差,产生波动
为研究弹性波动形成的物理机制和传播规律,须建立波的运动方程(波动方程)
波动方程: 研究介质中质点位移随时间和空间的变化规律。
在弹性理论中,对于均匀、各向同性、理想弹性介质中的三维波动方程式为
(
)
x
2u
2u t 2
一个体积为V的立方体,在流体静压力P的挤压下所发生体积形变。即每个正
截面的压体变模量(压缩模量): 压力P与体积相对变化之比
P K=-
(1.7)
(4) 切变模量(μ)
切变模量(刚性模量):表示了物体切应力与切应变之比
μ=
(1.8)
对于液体: μ=0,不产生切应变,只有体积变化。
(5) 拉梅常数(λ、μ) 弹性力学中:受力物体内任意点受力 沿坐标轴分为三个分力,每个分力 都会引起纵向和横向沿三个轴的应力与应变。
因此:振动图是描述地震波质点位移随时间的变化规律的图像。 图中: t1――初至,质点刚开始振动 △t――波(质点振动)的延续时间,△t的大小直接影响地震勘探的分辨率。
1.8 (a) 振动图 (b)波形记录
体波:纵、横波,在整个空间
面波:弹性分界面附近 瑞利面波:自由界面,地滚波,R波 特点:低频、低速,能量大(强振幅),旋转(铅垂面,椭圆,逆转)
天然地震中,危害极大 勒夫面波:低速带顶底界面,平行界面的波动,振动方向垂直传播方向,
SH波 特点:对纵波勘探影响不大,对横波勘探严重干扰
图1.5 (a)瑞雷面波的传播 (b)勒夫面波的传播
自然界中绝大部分物体,在外力作用下,既可显弹,也可显塑
地震勘探,震源是脉冲式的,作用时间很短(持续十几~几十毫秒),岩土受 到的作用力很小,可把岩、土介质看作弹性介质,用弹性波理论来研究地震波。
波动理论基础
![波动理论基础](https://img.taocdn.com/s3/m/fcb691bbd1f34693daef3e6c.png)
请批评指正! 谢谢!
低应变理论基础
2014年11月16日
一、波动与振动
弹性动力学主要目标是在给定扰动源信息及边界条件、初始条件下求解弹性 物体的动力响应。解答的形式有两种:一种是波动解,一种是振动解。前者描 述行波在弹性介质中的传播过程,后者描述弹性体的振动。为了说明两者的联 系与差异,首先考察波动与振动两个物理现象。 一个原来处于静止状态的物体,当其局部受到突然的扰动,并不能立即引 起物体各部分的运动。如下图所示的一根半无限长杆端部受到打击时,远离杆 端的区域并不能立即感受到端部的打击信号,而要经过一定的时间后才能接受 到这个信号。这是动力问题和静力问题最根本的区别。实际上由于连续介质中 的各个质点由某种约束力而彼此联系起来,在末受到扰动之前,质点之间的相 互作用力处于平衡状态。当某一个质点受到扰动以后,它就要偏离
惯性两个基本性质所决定的。弹性性质有使发生了位移的 质点回复到原来平衡位置的作用,而运动质点的惯性有使 当前的运动状态持续下去的作用,或者说弹性是贮存势能 的要素,惯性是维持动能的表征。正是由于这两种特性的 存在,系统的能量才能得以保持和传递,外部的扰动才能 激发起弹性被和弹性体的振动。弹性波的传播和弹性体的 振动,实际上可以看作是同一物理问题的不同表现形式。
原来的平衡位置而进入运动状态。由于质点间相对位置的 变化,使得受扰动质点同其周围质点之间增加了附加的弹 性力,从而与受扰动质点相邻的质点也必然受到影响而进 入运动状态。这种作用依次传递下去,便形成一个由扰动 源开始的波动现象。这种扰动借质点间的弹性力而逐渐传 播的过程,称为弹性波。如果介质是无限大的,扰动将会 随时间的发展一直传播出去。然而一个实际的物体总是有 边界的,当扰动到达边界时,将要和边界发生相互作用而 产生反射。对一个有界的物体,由于扰动在其边界上来回 反射,从而使得整个物体就会呈现出在其平衡位置附近的 一种周期性的振荡现象,称之为弹性体的振动。弹性波和 弹性体的振动之间存在着本质的内在联系。这两种现象的 形成有着相同的机制,它们都是由介质的弹性和
弹性波动力学
![弹性波动力学](https://img.taocdn.com/s3/m/6e0ba008a76e58fafbb0030c.png)
学习意义:理解不同边界条件下的地震波波动方程的含义,理解各种弹性力学参数的物理意义并将参数和地下介质的岩性问题联系起来,最终为地震剖面的岩性解释服务。
刚体:变形忽略不计的物体弹性波:扰动在弹性介质中的传播波前面:波在介质中传播的某个时刻,介质内已扰动的区域和未扰动区域间的界面称为波前面地震波分类:纵波横波,平面波球面波柱面波,体波界面波表面波 哑指标:在同一项中重复两次从而对其应用求和约定的指标 自由指标:在同一项中出现一次因而不约定求和的指标各项同性张量:如果一个张量的每个分量都是坐标变换下的不变量,则称此张量为各项同性张量张量性质:二阶实对称张量的特征值都是实数:二阶实对称张量对应于不同特征值的两个特征向量垂直:二阶实对称张量总存在三个相互垂直的主方向:在主轴坐标系内二阶实对称张量的矩阵形式是对角形:三个相互垂直主方向的右手坐标系为主轴坐标系弹性:物体受外力时发生形变,外力消除时物体回到变形前的水平 弹性变形:在弹性范围内发生的可恢复原状的变形 弹性体:处于弹性变形阶段的物体弹性波动力学基本假设:物体是连续的:物体是线性弹性的:物体是均匀分布的:物体是各项同性的:小变形假设:无体物初应力假设 位形:弹性体在任意时刻所占据的空间区域参考位形:弹性体未受外力作用处在自然情况下的位形 运动:刚性平移,刚性转动,变形应变主方向:如果过p 点的某个方向的线源,在变形后只沿着他原来的方向产生相对伸缩主应变:沿着应变主方向的相对伸缩体力:连续分布作用于弹性体每个体元上的外力称为体力 面力:连续分布作用于弹性体表面上的力 运动微分方程的物理意义:表示应力张量在弹性体内部随点位置变化时应满足的关系式内能:弹性体在某个变形状态下,其内部分子的动能以及分子之间相互作用具有的势能总和应变能密度:单位体积内的弹性体所具有的应变能 广义胡克定律:线性弹性体内一点处的应力张量分量可以表示为该点处应变量张量的线性齐次方程动弹性模量:由介质的速度参数表达的弹性模量极端各向异性弹性体:过p 点任意方向都不同的弹性体粘滞力:实际流体中两层流体相互滑动流体间相互作用的阻力 理想流体介质:可以将粘滞力忽略的流体无旋波:无旋位移场的散度对应弹性体的涨缩应变场以波的形式传播(涨缩应变场)无散波:无散位移场的旋度对应弹性体的转动情况以波的形式运动平面波:波前面离开波源足够远时脉冲型和简谐型均匀和非均匀平面波 非频散波:波的传播速度仅仅依赖媒介密度拉美系数等而与波的频率无关 频散波:波的传播速度与频率有关频散:初始扰动的没一个简谐成分都以不同速度前进,从而初始波形在行进中发生了变化相速度:简谐波的传播速度群速度:由简谐波叠加而成的波其合成振幅的传播速度非均匀平面波:如果波的等位相面各点振幅不同,既等位相面和等振幅面不平行球面波:弹性媒质的位移矢量场具有球对称性,且只是空间变量和时间变量的函数 1、证明:kmjn kn jm im n ijk e e δδδδ-=;2、321321321n n n m m m i i i imne δδδδδδδδδ=3、321321321n n n m m m i i i ijkimn ijk e e e δδδδδδδδδ=4、kmjn kn jm knkm ki jn jm ji inim ii δδδδδδδδδδδδδ-==5、如果i i e a a =,ii e b b =,i i e c c=,证明:c b a b c a c b a )()()(∙-∙=⨯⨯;k ijk j i e e c b c b =⨯)()()(k ijk j i m m k ijk j i e e c b e a e e c b a c b a ⨯=⨯=⨯⨯n m kn ijk j i m k m ijk j i m e e e c b a e e e c b a=⨯=)(njn im jm in j i m n knm kij j i m e c b a e e e c b a)(δδδδ-==nn m m n m n m n n m m m n m e c b a e c b a e c b a c b a-=-=)(c b a b c a e c b a e b c a n n m m n n m m)()(∙-∙=-=分析:由于标量对坐标的选择无关,因此,如果证明了物理量在坐标变换前后相等,即可以认为此物理量是标量。
《弹性波动力学》固体中弹性波-05 声波在流体-固体界面上的反射和折射
![《弹性波动力学》固体中弹性波-05 声波在流体-固体界面上的反射和折射](https://img.taocdn.com/s3/m/5ff438d9172ded630b1cb663.png)
势函数的反射和折射系数的定义为
t t r r , t , t i i i
反射系数与折射系数
势函数的反射和折射系数为 r z2 L cos 2 2tT z2T sin 2 2tT z1L r , 2 2 i z2 L cos 2tT z2T sin 2tT z1L
上式应对所有的z都成立,因而式中指数因子部分必然应该恒等,即
k1L sin i k1L sin r k2 L sin tL k2T sin tT 波矢的界面分量相等
从此导得反射定律 i r
P P
与折射定律
sin i k2 L c1L , sin tL k1L c2 L sin i k2T c1L . sin tT k1L c2T
声波在流体/固体界面上的 反射和折射
P P
i r
流体 固体
z
折射
步骤(思路)
声学边界条件 写出波函数表达式 将波函数代入边界条件 定义和求解反射系数、透射系数 结果讨论
P P
i r
流体 固体
z
tT tL
S P
x
流固界面的边界条件
15
30
45
60
75
90
Incident Angle
Incident Angle
1.0 0.8
Amplitude
Tp R 第二临界角
f
第一临界角 0.6
0.4
1000.,1483 1700.0,1700.0,600.0
第一临界角 不存在第二临界角
t 1 2 z2 L cos 2tT t , 2 2 i 2 z2 L cos 2tT z2T sin 2tT z1L
弹性波
![弹性波](https://img.taocdn.com/s3/m/cc1002f7770bf78a65295445.png)
斯通利波
在两种不同介质的半空间体的交界面上传播的波称为斯通利波,因斯通利首先发现并研究这种波而得名。它是一种波速与两个介质的性质有关的变态瑞利波。斯通利波的存在与介质的弹性拉梅常数和介质密度有关。在两个介质的拉梅常数λ1、G1和λ2、G2满足λ1/G1=λ2/G2=1的情况下,存在条件如图所示,如果两个介质的密度ρ1和ρ2之比ρ1/ρ2和G1/G2在图示坐标系中对应的点落在曲线A和曲线B之间,斯通利波就存在。在地震学中,理论上已证明斯通利波是存在的,但尚未观测到。
式中为拉普拉斯算符;α和β分别为纵波波速和横波波速;嗞=嗞(x,y,z,t)为标量势;ψx=ψx(x,y,z,t)、ψy=ψy(x,y,z,t)、ψz=ψz(x,y,z,t)为矢量势φ(x,y,z,t)的三个分量。ψx、ψy、ψz统称为波函数,它们和嗞同坐标系中的三个位移分量u、v、w的关系为:
上述波动方程是根据下面的假设导出的:①弹性介质中各质点间的相对位移为无穷小量;②介质是完全线弹性的,即应力和应变之间呈均匀线性关系,服从胡克定律;③介质是各向同性的;④不计外力(如重力、体积力、摩擦力等)。
在精确理论发展的同时,近似解理论也得到发展。有限差分方法先被用于解决短杆中弹性波的传播问题,后被推广到一些复杂结构中波的传播问题。有限元法逐步用于研究弹性波问题,开始用于分析细杆中弹性波的传播,后用于分析各种结构(柱、板、壳体)中的波的传播以及层状介质、正交异性介质中的波的传播等。非线性弹性波的传播问题的研究也取得初步成果。
浙江大学硕士论文1
![浙江大学硕士论文1](https://img.taocdn.com/s3/m/c2d5fa387375a417866f8ffd.png)
分类号: P315.3 单位代码: 10335密级:公开学号: 21338038硕士学位论文中文论文题目:基于弹性波动力学的检波器耦合系统研究英文论文题目: Research on Geophone CouplingSystem Based on Elastics Theory申请人姓名:陈高翔指导教师:田钢专业名称:地质资源与地质工程研究方向:检波器耦合所在学院:地球科学学院论文提交日期基于弹性波动力学的检波器耦合系统研究论文作者签名:指导教师签名:论文评阅人1:评阅人2:评阅人3:评阅人4:评阅人5:答辩委员会主席:委员1:委员2:委员3:委员4:委员5:答辩日期:Research on Geophone Coupling System Based on Elastics TheoryAuthor’s signature:Supervisor’ s signature:External Reviewers:Examining Committee Chairperson:Examining Committee Members:Date of oral defence:浙江大学研究生学位论文独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解浙江大学有权保留并向国家有关部门或机构送交本论文的复印件和磁盘,允许论文被查阅和借阅。
本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索和传播,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。
(保密的学位论文在解密后适用本授权书)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日回望过去的三年时光,有太多人与事需要我铭记与致谢。
石油工程专业第二学士学位人才培养方案
![石油工程专业第二学士学位人才培养方案](https://img.taocdn.com/s3/m/821a8a590242a8956bece4dd.png)
石油工程专业第二学士学位人才培养方案一、基本学制:二年。
二、培养目标石油工程专业第二学士学位为已经获得第一学士学位并在油田工作的学员开设,本专业在全脱产的学员具有扎实的基础理论的前提下,培养适应能力强,掌握石油工程领域基础理论、基本知识和基本技能,能在石油工程领域从事油气钻井与完井工程、采油工程、油藏工程、油田化学等方面的工程设计、工程施工与管理、应用研究与科技开发等方面工作的复合型技术人才。
三、业务培养要求本专业学生主要学习与石油工程领域有关的基本理论和基本知识,受到石油工程方面的基本训练,具有进行油气钻井与完井、油气开发工程及油田化学领域的设计、施工以及初步的应用研究和科技开发的基本能力。
毕业生应获得以下几个方面的知识和能力:1.掌握与石油工程有关的基本理论、基本知识;2.具有应用数学、地质学方法及系统的力学理论进行油气田开发设计的基本能力;3.具有较强的英语写作能力,能顺利地阅读本专业外文方面的书刊,能起草本专业的文本等;4.具有应用基础理论和专业知识进行油气钻采工程设计和油气开发设计的基本能力;5.具有应用基础理论和专业知识分析和解决石油工程实际问题、进行技术革新和科学研究的初步能力;四、主干学科、学位课程及主要实践性教学环节1.主干学科:石油与天然气工程。
2.学位课程:理论力学、材料力学、工程流体力学、渗流力学、油藏物理、钻井工程、完井工程、采油工程、油藏工程基础、油田化学。
3.实践性教学环节:地质认识实习、石油工程生产实习、石油工程课程设计、毕业设计。
五、毕业规定学生在毕业时,应获得最低总学分93.5 学分,其中理论教学71.5 学分,实践教学22 学分。
自主发展计划6 学分。
六、授予学位工学学士。
七、石油工程专业第二学士学位课程设置及教学进程表八、自主发展计划学生应取得 6 个自主发展计划学分,具体详见《长江大学第二课堂学分管理办法(试行)》。
九、专业课程中英文对照制定人:夏宏南学院审定人:夏宏南勘查技术与工程专业第二学士学位人才培养方案一、基本学制:二年。
Ch0 绪论
![Ch0 绪论](https://img.taocdn.com/s3/m/67c8a1cf89eb172ded63b7ee.png)
声学的各个分支和应用
¡ 什么是声学?
™声学的定义 ™声学的分支
¡ 声学的应用
™超声波 ™地震和海啸 ™声呐 ™声发射及其应用
什么是声学
¡ 声波(弹性波、机械波):机械振动在弹性媒质中的 传播;
¡ 声学:研究声波的产生、传播、接收、作用和处理 重现的学科;
嘴巴 耳机 扬声器 炸药爆炸
空气 水 固体 杆、管
为海军的眼睛。
声呐(Sonar)
¡ 声呐就是利用声波对水下目标进行探测和定 位的声波测量系统(sonar:sound navigation and ranging );
¡ 声呐采用了声波的定向辐射和定向接收技术; ¡ 主动方式时其探测距离达到300公里; ¡ 被动方式时其探测距离达到600公里。
声呐(Sonar)
按质点振动方向与波的传播方向划分声波
¡ 纵波:质点的振动方向与波的传播方向平行 ¡ 横波:质点的振动方向与波的传播方向垂直。 ¡ 准纵波:质点的振动方向与波的传播方向接近于平行; ¡ 准横波:质点的振动方向与波的传播方向接近于垂直。 ¡ 在流体介质中一般只存在纵波; ¡ 在固体介质中一般存在纵波和横波; ¡ 在各向异性固体介质中一般存在准纵波和准横波。 ¡ “质点的振动方向”也称之为质点的偏振方向
¡ 地震波可用于研究地球(+).
中国石油大学(北京)测井系乔文孝
3
水声学
¡ 研究弹性波在液体(尤其是海洋) 中传播的学 科;
¡ 海水中难以传播电磁波; ¡ 水声学的主要应用举例:
™舰船的导航 ™渔业、海洋开发、海洋地貌、海洋地质、海底勘
探等领域。 ™水声发射、接收系统称为声呐(Sonar),它被称之
¡ 例如,发音词典是一个语言合成的结果, “声锁”是语言识别的成果;
第六章弹性波波动方程及其解ppt课件
![第六章弹性波波动方程及其解ppt课件](https://img.taocdn.com/s3/m/ee8cfcb6fbb069dc5022aaea998fcc22bdd1437f.png)
又 • u • uS 0
2
代入纳维方程 ( )( • u ) u f u
uS f uS
2 2
VS uS f uS
2
vs
结论:在均匀各向同性弹性体内,切变扰动以速度VS向
(4)
(5)
式u j , ji (ui , jj u j ,ij ) f i ui即为位移在弹性体
内传播时所满足的方程 .称为纳维 ( Navier)方程.
纳维方程是线性弹性假设条件下得到的各向同性弹性体中
的弹性波最基本方程。
指标表示的纳维方程 ( )u j , ji ui , jj f i ui
§6.1 线性弹性动力学的基本方程
1.
基本方程
➢
➢
运动微分方程 ji , j
几何方程
1
eij (ui , j u j ,i )
2
2 ui
f i 2
t
u1
e11
x1
u2
e22
x2
u
e33 3
x3
1 u1 u2
e12 (
)
2 x2 x1
v p t
上式表示波场是以速度VP向外传播的无旋场。
转动矢量表示的横波方程
2
( )( • u ) u f u两边取旋度
2
(
u
)
( )( ( • u )) 2 ( u ) ( f )
《弹性波动力学》习题0909
![《弹性波动力学》习题0909](https://img.taocdn.com/s3/m/4dda3458561252d380eb6e63.png)
第二章 流体中的声传播规律
1) 2) 3) 试叙述建立流体中声波波动方程的思路。 r *分别在一维和三维直角坐标系里导出质点振动速度 v 的波动方程.
如果流体媒 质中有体 力分布 ,设作 用在单 位体积媒 质上的 体力为 F ( x, y, z , t ) , 试导出 流体媒质中有体 力分布时的声波波动方程. 4) 什么是声强? 5) 如果在水中与空气中具有同样大小的平面波质点振动速度幅值, 问水中声强比空气中声强大多少倍? 6) 在温度为 20℃的空气里,有一平面声波,已知其声压级为 SPL=74 分贝,试分别求其有效声压、平均声能 量密度与声强. 7) 空气中某点的声压级为 SPL=40dB,⑴该点的声压值是声压参考值的多少倍?⑵该点的声压的有效值 是多少. 8) 20℃时空气和水的特性阻抗分别为 415 及 1.48×106 瑞利, 计算平面声波由空气中垂直入射于水面上时 声压、声强的反射系数、透射系数, 并计算平面声波由水中垂直入射于空气界面时声压、声强的反射 系数、透射系数. 9) *试证明,当平面波斜入射于两种流体界面且发生全内反射时, 透射能流为零. 10) 坐标系选取如图 2.15 所示,x=0 为两种半无限大流体的分界面,设平面简谐纵波自介质 1 以角度 θi 入 11) 12) 13) 14) 射于界面( x=0),试写出两种介质中声压的表达式,叙述推导声压的反射、透射系数的思路。 什么是临界角? 试分析声波在两种流体界面上反射和透射时影响反射系数和透射系数的各种可能因素。 什么是模式转换? 什么是非均匀波?试写出非均匀波的波函数并说明其中各个符号的意义。
14) 流 体 与 固 体 界 面 如 图 4.12 所 示 , 已 知 V1p=1500m/s, V2p=5000m/s, V2s=2700m/s,入射波的频率为 f, 试写出入射波、 反射波和折射波的波函数表达式。 15) 简述 Rayleigh 波的性质。 16) 简述 Love 波存在的条件及其性质。 17) Lamb 波的简正频率是如何确定的?写出 Lamb 波的截止频率 表达式;画出对称 Lamb 波和反对称 Lamb 波的示意图。 18) 试 写 出 (1) 有 衰减 的平 面波 (2) 有 衰减 的 各向 均 匀 的 球 面 波 (3)Rayleigh 波的表达式,并作必要的符号和图形说明。 19) 你学过哪些制导波?总结它们的异同点。 20) 座标如图 4.18 所示,设 P 波自固体一侧以角度θ i 入射于固体 与流体界面(x=0),试写出固体、流体中的势函数表达式,叙述推导反 射、透射系数的思路。 21) *写出反射纵波勘探的纵 向分辨率和横向分辨率的表达式并分析其 意义。 22) *假设反射纵波勘探采用如图 4.20(a)所示的子波, 地层模型如图 4.20 (b)所示, 第一和第二层介质的纵波波速分别 2500m/s 和为 3000m/s。 试求(1)对于界面 2,反射纵波勘探的横向分辨率是多少? (2)第二层 介质的厚度最薄为多少时可以被识别。
弹性动力学中的基本波
![弹性动力学中的基本波](https://img.taocdn.com/s3/m/778dd88983d049649b6658ad.png)
6、波动方程的定解问题
下面是本章要用到的第一章中的公式
xx 2 exx yy 2 eyy zz 2 ezz
u exx x
v eyy y
w ezz z
(1-74)
xz exz yz eyz xy exy
(2-19)
,并代入式(2-19),可得: 用E 和v 表示 、
2(1 ) 1 1 2
(2-20)
可见纵波速度大于横波速度。对自然界中常见的岩石 来说, = ,即 =0.25。具有这种性质的物体称为 =1.73; 泊松体。对泊松体而言,
总结:在均匀各向同性完全弹性介质中,纵波和横 波彼此独立存在和传播,在非均匀介质中,纵波和横波 彼此不能分开、独立传播,即纵波能产生横波,横波也 能产生纵波。 2 VS VP 拉梅方程
u u p us grad curl
(2 -3 )
其中 和 称为位移位, 为标量位, 为向量位。
up为标量位的梯度,其旋度为零,称为无旋场;us为向
量位的旋度,其散度为零,称为无散场;即
curl ( grad ) 0 div(curl ) 0
(2-4)
弹性波动力学概念
![弹性波动力学概念](https://img.taocdn.com/s3/m/d37453d376a20029bd642df3.png)
质点振动部分一 基本概念1) 构成振动系统的各部分都可看成是一个物理性质集中地元件,这种振动系统也称为质点振动系统。
OR 由物理性质集中的元件构成的振动系统。
2)单自由度系统A 简谐振动(无阻尼自由振动):物体在线性恢复力或线性恢复力矩的作用下的运动。
B 阻尼自由振动:因摩擦,声波辐射等原因阻碍震动的进行(阻尼),而导致震动幅度随时间衰减。
C 受迫振动:(策动力)在策动力作用下的振动称作受迫振动。
3)什么是3dB 带宽?在但自由度振动系统的震速振幅的频率特性曲线上,速度振幅比共振峰值处下降0.707倍所对应的两个频率分别为 和 ( > ),则3分贝带宽定义为 ,可以用3分贝带宽的大小表示频率特性曲线的平坦程度。
0.00.5 1.0 1.5 2.0012345678910B z z1z2二 基本原理与技能1) 简谐振动、阻尼振动和受迫振动表达式简谐振动:阻尼振动:欠阻尼状态:x(t)= cos( )过阻尼状态:x(t)=临界阻尼状态:x(t)=(受迫振动:2) 频率特性曲线的测量扫频法:将幅值相等但不同频率的简谐力加在振动系统上,测量每个频率的速度振幅,用描点法作出频率特性曲线。
脉冲法:将含有等幅值的各种频率成分的时域信号(强迫力)加在振动系统上,测量系统响应。
流体中声场部分一基本概念11)声压:设流体体积元受声扰动后压强由改变为P,则由声扰动产生的逾量压强(简称逾压)就称为声压,2)声场:媒质中有声波存在的区域。
3)声波传播速度:常数,温度为t(℃)时理想气体中的声速为(m/s)温度为20℃的空气中的声速约为334米/秒,常温下水中声速约为1500米/秒4)质点振动速度:5)声阻抗率:声场中某位置的声压与该位置的质点的速度的比值定义为该位置的声阻抗率。
== -26)声压级:声场中某点的声压级定义为该点的声压的有效值与参考声压的比值取常用对数,再乘以20。
空气中参考声压水中参考声压7)声强级:声场中某点的声强级定义为该点的声强与参考声强的比值取常用对数,再乘以10空气中参考声强一般取瓦米在空气中声压级与声强级数值上近于相等声强:通过垂直于声传播方向的单位面积上的平均能量流称为平均能量流密度或称为声强,即:I=38)临界角:光线从光密介质射向光疏介质时,折射角将大于入射角;当入射角为某一数值时,折射角等于90°,此入射角称临界角。
弹性波动力学复习提纲课件
![弹性波动力学复习提纲课件](https://img.taocdn.com/s3/m/68e8a114302b3169a45177232f60ddccda38e6db.png)
04 弹性波的散射和干涉
弹性波的散射
弹性波散射的定义
弹性波在传播过程中遇到障碍物时,其传播方向和能量分布发生变化的现象。
弹性波散射的分类
瑞利散射、米氏散射、共振散射等。
弹性波散射的物理机制
波动与障碍物相互作用,产生反射、折射、吸收等现象。
弹性波散射的数学模型
散射波函数、散射系数等。
弹性波的干涉
三维波动方程
总结词
三维弹性波的波动方程是描述弹性波在三维空间介质中传播的基本方程。
详细描述
三维波动方程适用于描述任意方向传播的波,适用于各种复杂的三维介质结构。该方程全面考虑了波 在三维空间中的传播特性,包括波的传播方向、速度以及介质中质点的位移、速度和加速度。
边界条件和初始条件
总结词
边界条件和初始条件是确定弹性波波动方程解的重要约束条件。
随着入射角的增大,反射系数会发生变化。
弹性波的折射
1 2
折射系数
描述入射波与折射波之间振幅关系的系数。
斯涅尔定律
入射角等于折射角。
3
折射系数与入射角的关系
随着入射角的增大,折射系数也会发生变化。
全反射和透射
要点一
全反射
当入射角达到某一临界值时,折射波消失,只剩下反射波 。
要点二
透射
当入射角小于某一临界值时,折射波存在,且其振幅与入 射波相似。
详细描述
通过向物体内部发射弹性波并检测反射回来的波,可 以判断物体内部的缺陷、损伤等,如飞机、高铁等大 型机械的检测,确保其安全运行。
声呐探测
总结词
利用弹性波在水中传播的特性进行水下探测和通信。
详细描述
声呐系统通过向水下发送声波并接收回波,可以探测水 下目标的位置、大小、形状等信息,广泛应用于海洋科 学研究、水下考古等领域。同时,声呐技术还可用于水 下通信,实现水下设备之间的信息传递。
弹性波
![弹性波](https://img.taocdn.com/s3/m/8fdcb8dd988fcc22bcd126fff705cc1754275f64.png)
应力波
应力波是应力和应变扰动的传播形式,弹性波是应力波的一种,即扰动或外力作用引起的应力和应变在弹性 介质中传递的形式。弹性介质中质点间存在着相互作用的弹性力。某一质点因受到扰动或外力的作用而离开平衡 位置后,弹性恢复力使该质点发生振动,从而引起周围质点的位移和振动,于是振动就在弹性介质中传播,并伴 随有能量的传递。在振动所到之处应力和应变就会发生变化。弹性波理论已经比较成熟,广泛应用于地震、地质 勘探、采矿、材料的无损探伤、工程结构的抗震抗爆、岩土动力学等方面。
图一
反射折射
弹性波到达界面后,一部分返回到原来的弹性介质内,即发生反射现象;另一部分穿过界面进入相邻的另一 弹性介质内,即发生折射现象。在同一弹性介质中,介质本身不均匀引起的弹性波传播方向改变也称为弹性波的 折射(若传播方向改变后与原来的传播方向相反则为反射)。纵波入射到平面交界面上会产生一个反射纵波和一 个反射横波;横波入射到平面交界面上,也会发生同样的现象。
绕射
弹性波在传播过程中遇到障碍物边缘或孔洞时所发生的弯折现象称为波的绕射。障碍物或孔洞越小,波长越 长,则绕射现象越显著。绕射现象反映出波的特性。在地震学中,研究震源附近区域内弹性波的传播时需要考虑 波的绕射。
研究
弹性波传播问题的研究可分为理论研究和实验研究两方面。
中国海洋大学《弹性波动力学》期末复习资料
![中国海洋大学《弹性波动力学》期末复习资料](https://img.taocdn.com/s3/m/35055e7c10a6f524cdbf8556.png)
一,名词解释1、 弹性:物体的变形随外力的撤除而完全消失的属性。
2、 塑性:物体的变形随外力的撤除后仍部分残留的属性。
3、 外力:是指其它物体作用在所研究物体上的力。
4、 面力:分布在物体表面上各点的外力,称为面力。
5、 应力:截面上任意点内力的集度称为应力。
6、 正应力:物体在某截面上一点的应力是矢量,这个矢量,一般来说不与截面垂直,也不与截面相切,通常把它分解为垂直于截面方向的分量σ和切于截面的分量τ,σ即为正应力。
7、 剪应力:物体在某截面上一点的应力是矢量,这个矢量,一般来说不与截面垂直,也不与截面相切,通常把它分解为垂直于截面方向的分量σ和切于截面的分量τ,τ即为剪应力。
8、 应力分量:垂直于三个坐标轴的平面上正应力和剪应力的投影。
9、 线应变:物体内一点沿某一方向线元受力后,该线元长度的改变量与原长度比值的极限称为该方向的线应变。
10、剪应变:过物体内任一点引两条相互垂直线段,变形后,这两个线段之间的夹角改变量(用弧度表示)定义为该点在这两个方向的剪应变,也称为角应变。
11、平面波:等相位面是平面,且波阵面与波的传播方向垂直的弹性波。
12、频散:不同谐波成分组成的波,虽然受同一起始扰动下,但各自以不同的速度传播,并且起始扰动的形状在传播中将产生变化。
扰动经传播以后将扩展成为一更长的波列,这种现象我们称之为频散。
13、群速度:产生频散时,波的传播速度与组成这个波的各个谐波成分的相速度是不同的,我们称这个波整体的传播速度为群速度。
14、相速度:指一定的相位移动的速度。
15、自由界面:地表应力为零的界面。
二,证明题1、 如果某一连续体内位移场是某一标量φ的梯度,即:φφ∇==grad U,证明:0=⨯∇=U U rot。
证明:)()()(),,(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂∂∂∂∂⨯∇=∇⨯∇=⨯∇=k y x x y j x z z x i z y y z z y x U U rotφφφφφφφφφφ2、 如果连续体内位移场是某一矢量位移ψ的旋度,即ψψ⨯∇==rot U ,证明:0=∙∇=U U div证明:)()()(])()()[()(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂-∂∂∂∂+∂∂-∂∂∂∂+∂∂-∂∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂∙∇=⨯∇∙∇=∙∇=y z x z x y z y z x y x yx z x z y z y x k yx j x z i z y U U div x y z x y z xy z x y z x y z x y z ψψψψψψψψψψψψψψψψψψψ 3、 已知标量φ为空间坐标的函数,即),,(z y x φφ=,且二阶可导,证明: φφ2)(∇=∇∙∇; 证明:φφφφφφφφφφφ2222222)()()(),,()(∇=∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂∙∇=∇∙∇z y x z z y y x x zy x4、在二维问题中,假设位移位ϕ及ψ都只与x ,y 和t 有关,即(,,)x y t ϕϕ=,(,,)x y t ψψ=,根据位移矢量公式证明二维问题的位移分量为:yx w x y v y x u x y zz ∂∂-∂∂=∂∂-∂∂=∂∂+∂∂=ψψψφψφ,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 I2 II III 0
其中,
I Tii T 11 T 22 T 33
II 1 2 (Tii Tjj TijTij )
III det(Tij )
I,II,III 分别叫做二阶张量的第一、第二和第三不变量。 其特征向量满足的方程为:
(Tij ij )n j 0 n i n i 1
6.标量的梯度、向量的旋度、散度等的混合计算等。 第二章 1. 内力、附加内力、体应变、泊松比
2. 弹性波、波阵面、波速、纵波、横波、平面波、球面波、 柱面波、体波、面波 3. 弹性波动力学的基本假设: (连续性、线性弹性、均匀性、 各向同性、微小变形) 第三章 1.位形、参考位形、变形、运动; 2.位移、速度、加速度,空间点和质点的统一; 3.小变形应变张量( eij )及其各个分量的意义;
1. 弹性波(SV 波、SH 波、P 波)传播到介质和空气分界面, 入射波、反射波的类型及传播方向,垂直入射时各个波的(位 移)振幅系数。 2,弹性波(SV 波、SH 波、P 波)传播到弹性介质分界面, 入射波、反射波、透射波的类型及传播方向,垂直入射时各个 波的(位移)振幅系数等 3. 面波的基本概念。 第九章(本次考试不要求) 求解弹性波动力学问题的方法(理论推导,即解析解;数值方 法,如有限单元法、有限差分法、伪谱法等) ,一维有限差分 法合成地震记录的编程实现。 本次考试题型及分数分布: 一、名词解释 (每小题 5 分,共 30 分) 二、简答(每小题 8 分,共 32 分) 三、计算 (1 小题,共 15 分) 四、 (15 分)推导(一小题,共 15 分) 五、 (8 分)波场分析。
第一章 1.指标记号,求和约定,自由指标,哑指标 2.三个符号,克罗尼克尔符号( ij )排列符号( eijk ), 以及微分符号 ( ).
ij
1, i j 0, i j
eijk
1, ijk分别是123,231,312 1,ijk分别是321,213,132 0, ijk中有一个或多个指标与其他相同 ei xi
3.坐标变换系数( ij ),新旧坐标系点坐标以及向量分量的变换 关系
ij cos(ei , e j )
新旧坐标系基向量满足:
e i ij e j ei ji e j
向量分量以及点的坐标同样满足:
x i ij x j xi ji x j
4.各阶张量的定义。
二阶张量: 一个量 Tij 有 3 2 9 个分量,在坐标系旋转时满足
ห้องสมุดไป่ตู้
Tij il jmTlm以及Tij li mj Tlm ,则该量是二阶张量。
5.二阶张量特征值和特征向量的计算
T 11 T 12 T 13 二阶张量 (Tij ) T 21 T 22 T 23 ,其特征值 满足的方程为: T 31 T 32 T 33
C1133 C 2233 C 3333 C 2333 C 3133 C1233
C1123 C 2223 C 3323 C 2323 C 3123 C1223
C1131 C 2231 C 3331 C 2331 C 3131 C1231
C1112 e11 C 2212 e22 C 3312 e33 C 2312 2e23 C 3113 2e31 C1221 2e12
i ij , j fi u
t i ij n j
第五章
(1)广义胡克定律:线性弹性体内一点处的应力张量分量为 该点处的应变张量分量的线性齐次函数,反之亦然。即
ij Cijkl ekl
线性弹性体广义胡克定律, 根据研究的介质类型不同, 有不同 的简化形式。 (2) 由于应变张量以及应力张量的对称性,线性弹性体的广义 胡克定律可以写成下面的矩阵形式:
11 C1111 C 22 2211 33 C 3311 23 C 2311 31 C 3111 12 C1211
C1122 C 2222 C 3322 C 2322 C 3122 C1222
eij
1 (u i , j u j ,i ) 2
4.线元伸缩率的计算,两线元夹角变化的计算
e ei j n i n j
cos ' cos 2eij ni n j (e e) cos
第四章 体力、面力、应力向量、一点的应力状态、应力张量及其各个 分量的意义、运动微分方程、边界条件
积弹性模量 k ,各弹性参数都是正值,而且泊松比的范围是 0-0.5,岩石的泊松比在 0.25 左右。各个弹性参数间的的变换 关系见表 5-1. 第六章 1. 线性弹性动力学问题的三组基本方程、边界条件、初始条 件; 2. 线性弹性动力学问题的基本求解路线 3. 按位移求解的路线, (对均匀各向同性线性弹性体)推导用位 移表示的运动微分方程以及改写定解条件,会求解简单问题。 第七章 1. Helmholtz 定理 2.波动方程 3.无旋波、等体积波 4. 一般平面波的方程、质点振动方向和波动传播方向关系的 证明,纵波(P 波) 、横波(S 波)的概念,横波的分类(SV、 SH 波) 5. 无限介质中平面波、柱面波、球面波的特点 第八章
(3) 各向同性线性弹性体的广义胡克定律:
ij ij 2eij
eij
或者,
1 ij ij 2 (3 2 ) 2
其中的 、 叫做 Lame 常数。 (4)各种物理参数之间的关系(需要时会查表) Lame 常数, , ,弹性模量 E,泊松比 ,剪切模量 G,体