复数的减法及其几何意义1

合集下载

3.2.1复数代数形式的加、减运算及其几何意义

3.2.1复数代数形式的加、减运算及其几何意义
z1+z2=z2+z1, (z1+z2)+z3=z1+(z2+z3) .
新课讲授
2.复数的减法
设z1=a+bi,z2=c+di是任意两个 复数,那么它们的差
(a+bi)-(c+di)=(a-c)+(b-d)i.
例题讲解
例1.计算(5-6i)+(-2-i)-(3+4i).
例2.计算(1-2i)+(-2+3i)+(3-4i)+(-4 +5i)+…+(-2002+2003i)+(2003-2004i).
线长为
()
A. 3 2 B. 2 2 C.2
D. 5
课堂练习
4.复平面上三点A、B、C分别对应复数1, 2i,5+2i,则由A、B、C所构成的三角形是
()
A.直角三角形 C.锐角三角形
B.等腰三角形 D.钝角三角形
课堂练习
5.一个实数与一个虚数的差 ( )
A.不可能是纯虚数 B.可能是实数 C.不可能是实数 D.无法确定是实数还是虚数
复习引入
6.复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi (a,b∈R) 当且仅当b=0时,它是实数a; 当b≠0时,叫做虚数; 当a=0且b≠0时,叫做纯虚数; 当且仅当a=b=0时,它是实数0.
7.复数集与其它数集之间的关系:
R Z Q R C
复习引入
8. 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,
3. i的周期性: i4n+1=i, i 4n+2=-1, i 4n+3=-i, i4n=1.
复习引入
4.复数的定义:
形如a+bi(a,b∈R)的数叫复数, a叫复 数的实部, b叫复数的虚部.全体复数所 成的集合叫做复数集,用字母C表示.

复数的基本运算与几何意义解释

复数的基本运算与几何意义解释

复数的基本运算与几何意义解释复数是由实部和虚部构成的数,其表示形式为a + bi,其中a和b 分别为实部和虚部的实数部分,i为虚数单位,满足i^2 = -1。

复数的运算包括加法、减法、乘法和除法,下面将基本运算进行详细解释,并探讨其在几何中的意义。

一、加法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的和z = z1 + z2的实部等于两个复数实部的和,虚部等于两个复数虚部的和,即:z = z1 + z2 = (a1 + a2) + (b1 + b2)i几何意义:将复数z1和z2表示在复平面上,实部表示在实轴上,虚部表示在虚轴上。

加法运算就是将两个复数的向量相加,得到新的向量的终点,即通过终点相加的法则得到。

二、减法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的差z = z1 - z2的实部等于两个复数实部的差,虚部等于两个复数虚部的差,即:z = z1 - z2 = (a1 - a2) + (b1 - b2)i几何意义:将复数z1和z2表示在复平面上,减法运算就是将z2的向量从z1的向量终点出发得到新的向量的终点,即通过终点减去起点的法则得到。

三、乘法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的乘积z = z1 * z2的实部等于两个复数实部的乘积减去虚部的乘积,虚部等于两个复数实部的乘积加上虚部的乘积,即:z = z1 * z2 = (a1a2 - b1b2) + (a1b2 + b1a2)i几何意义:将复数z1和z2表示在复平面上,乘法运算就是将z1的向量的长度与z2的向量的长度相乘(模的乘积),同时将z1的向量的方向与z2的向量的方向相加(幅角的叠加),得到新的向量,即将两个向量的长度相乘,诱导出新的长度,将两个向量的角度相加,诱导出新的角度。

四、除法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的商z = z1 / z2为复数,可以通过以下步骤求解:1. 乘以共轭复数:将除数z2的虚部取相反数,即z2* = a2 - b2i;2. 乘以共轭复数得到分子:z1 * z2* = (a1 + b1i)(a2 - b2i);3. 化简分子:z1 * z2* = (a1a2 + b1b2) + (a1b2 - b1a2)i;4. 除以分母的模的平方:z = (a1a2 + b1b2)/(a2^2 + b2^2) + (a1b2 -b1a2)/(a2^2 + b2^2)i。

复数运算的常用规律和几何意义

复数运算的常用规律和几何意义

复数运算的常用规律和几何意义复数是由实数和虚数构成的数。

每个复数可以表示为 a + bi 的形式,其中 a 是实数部分,b 是虚数部分,i 是虚数单位,满足i² = -1常用规律:1.实部与虚部的加法和减法:- (a + bi) + (c + di) = (a + c) + (b + d)i- (a + bi) - (c + di) = (a - c) + (b - d)i2.实数与复数的乘法和除法:- (a + bi) * c = ac + bci- (a + bi) / c = (a/c) + (b/c)i (当c ≠ 0)3.复数的共轭:复数 a + bi 的共轭是 a - bi,即将虚数部分取相反数。

4.复数的乘法和除法:- (a + bi) * (c + di) = (ac - bd) + (ad + bc)i- (a + bi) / (c + di) = [(a + bi) * (c - di)] / (c² + d²) = [(ac + bd) + (bc - ad)i] / (c² + d²) (当c² + d² ≠ 0)几何意义:复数可以用来表示平面上的点。

实部代表点在x轴上的位置,虚部代表点在y轴上的位置。

1.加法和减法:复数的加法和减法可以看作是平面上的点的运算。

例如,(a + bi) + (c + di) 可以看作是将第二个点 (c, d) 平移后放置在第一个点 (a, b) 的位置上。

2.乘法:复数的乘法可以用来进行旋转和缩放。

例如,复数 (a + bi) * (c + di) 可以看作是将向量 (a,b) 绕原点旋转角度 angle,并将长度乘以,c + di。

3.共轭:复数的共轭可以用来表示点关于 x 轴的对称点。

例如,复数 a + bi 的共轭 a - bi 可以看作是将点 (a, b) 关于 x 轴翻转。

复数代数形式的加减运算及其几何意义

复数代数形式的加减运算及其几何意义

在信号处理中的应用
信号合成与分解
复数代数形式的加减运算可以用于信 号的合成与分解,例如在频谱分析和 滤波器设计中。通过加减运算,可以 将信号分解为不同的频率分量,便于 分析和处理。
调制与解调
在通信系统中,复数代数形式的加减 运算用于信号的调制和解调过程。通 过加减运算,可以实现信号的相位和 幅度调整,从而实现信号的传输和接 收。
复数减法的几何意义
复数减法可以理解为在复平面上的向量减法。给定两个复数 $z_1 = a + bi$ 和 $z_2 = c + di$,它们的差 $z_1 - z_2 = (a-c) + (b-d)i$ 可以看作是两个向量在复平面上的差分。
向量差分:在复平面上,将 $z_1$ 的向量起点固定,然后 平移至 $z_2$ 的起点,得到向量差。这个过程对应于复数 减法运算。
部对应横轴,虚部对应纵轴。
03
复数代数形式的几何意义
复数加法的几何意义
复数加法可以理解为在复平面上的向量加法。给定两个复数 $z_1 = a + bi$ 和 $z_2 = c + di$,它们的和 $z_1 + z_2 = (a+c) + (b+d)i$ 可以看作是两个向量在复平面上的合成。
向量合成:在复平面上,将 $z_2$ 的向量起点固定,然后平 移至 $z_1$ 的起点,得到向量和。这个过程对应于复数加法 运算。
复数代数形式的加减运算 及其几何意义
• 引言 • 复数代数形式的加减运算 • 复数代数形式的几何意义 • 复数代数形式的加减运算的应用 • 结论
Hale Waihona Puke 1引言复数的基本概念
01
复数是由实部和虚部构成的数,一 般形式为$z=a+bi$,其中$a$和 $b$是实数,$i$是虚数单位,满足 $i^2=-1$。

高二数学复数的加减运算

高二数学复数的加减运算

C
B
2.| z1+ z2|= | z1- z2|
平行四边形OABC是矩形
o
z1 A
3. |z1|= |z2|,| z1+ z2|= | z1- z2|
平行四边形OABC是 正方形
三、复数加减法的几何意义的运用 练习1:设z1,z2∈C,|z1|=|z2|=1,|z2+z1|=
2 , 求|z2-z1|.
二.复数的加减法及几何意义
例4.(1)下列命题中正确的是 ( A)如果Z1 Z 2是实数,则Z1、Z 2互为共轭复数 ( B )纯虚数Z的共轭复数是 Z。 (C )两个纯虚数的差还是纯虚数 ( D)两个虚数的差还是虚数。
(2)下列命题中的真命题为: ( A)若Z1 Z 2 0, 则Z1与Z 2互为共轭复数。 ( B )若Z1 Z 2 0, 则Z1与Z 2互为共轭复数。 (C )若Z1 Z 2 0, 则Z1与Z 2互为共轭复数。 ( D )若Z1 Z 2 0, 则Z1与Z 2互为共轭复数。
2
练习2:复数z1,z2分别对应复平面内的点M1,M2,
且| z2+ z1|=| z2- z1|,线段M1M2的中点M对应
的复数为4+3i,求|z1|2 + |z2|2
; / 就要来海淘

形是平原,一眼就能发现通道口の存在,所以拼命情况下,还是能有大部分不咋大的队成员能过去の. 十多分钟之后,大部分の血虎已经被清除干净了.屠黑下令大部分の人开始休息.马上就要闯第九关了,必须保持不咋大的队の巅峰战力. 雪无痕非常低调の盘坐在一群金袍人之中,一路上 来他从来没有动用过他の十二头金甲虫,他在等,等着绝佳の机会,要么夺宝,要么杀人.他相信,他の十二头吞食黑雪莲而变异の金甲虫,要么不出手,一出手,这落神山内の人,无人可挡,就是帝王境巅峰の屠黑也不能… "走!" 半个不咋大的时之后,屠黑站起身子,冷冷の一挥手,全体金袍 人全部都站起身子,气势狂暴の朝第八关の通道口涌去. 出了通道口,他们没有在休息地停留,直接出了傀儡通道,而后集体冲入第九关. "咦…怎么回事?第九关の地形怎么变了?" 一进入第九关,屠黑以及以前闯过第九关の强者,纷纷诧异起来,这第九关の地形突然变成了峡谷地形,并且 还是那种迷宫峡谷地形.这不对啊,以前几次闯关和神城の记录可是从来没有出现过这样の问题啊. "狗屎,落神山异变了,这关如果守护智还是吞石鼠の话,那就麻烦了!"屠黑脸色一沉,暗叹不好.吞石鼠不难对付,但是数量确实太多,以往是平原地形の话,那还好对付,拼下,硬抗一下,很 容易就杀到了通道口.现在这迷宫地形,通道口随机不定,寻找通道口都是件麻烦事,更别说还要对付无穷无尽の吞石鼠了. "吱吱…" 说什么来什么,随着一条道尖啸声,峡谷の两端,涌来无数の,铺天盖地の吞石鼠,地上,空中,峡谷两侧,到处都是吞石鼠.密密麻麻一片黑压压の,让人感觉 到一股发自脚底の寒意… "狗屎,全体都有,三角箭阵,朝前突击!"屠黑怒骂一句,无可奈何,开始指挥不咋大的队,和无数の吞石鼠奋战起来. "真是狗屎,怎么参杂了有八品上阶の吞石鼠?这是怎么回事?落神山出了什么问题?"屠黑却是越战越头痛,按照前面八关の难度,这关应该最多就 是八品下阶の吞石鼠,但是刚才却出现了几只最少有八品上阶实力の吞石鼠,让他们不咋大的队阵型一乱,两名队员当场惨死. "全部转向,背靠墙壁防御阵型,轮流防御!等候三府和隐岛强者,否则俺们会全军覆没!"片刻之后,屠黑下达了一些无奈の命令.吞石鼠太多了,如果他们继续进 攻前进の话,那么他们会不断の有人因为气场被攻破,而死于非命,最后下去,只有全军覆没の结果.无奈之下,他只有原地轮流防御,等待其余三府,和隐岛の人来了才一起冲锋,闯关. 这个命令下去,不咋大的队の人全部松了一口气.迅速组成了防御阵型,轮流防御,总算顶住了前仆后继,源 源不断の吞石鼠攻击. …… 十二关大厅,鹿希却是望着前面の那块大屏幕内の情况嘿嘿一笑,悠闲の说道:"这才乖嘛,你呀们冲太快,这样玩没什么意思,等你呀们全被人到齐了,再给你呀们一些更好玩の!嘿嘿,好玩,好玩!" 第九关の异变,当然是出自鹿希之手.其实数千年来,鹿希一 直在控制着落神山の机关,玩弄着无数の闯关者.当然,他并没有违背他主人定下の规则,他只是想让游戏更好玩一些,更刺激一些… 几个不咋大的时之后! 妖神府の不咋大的队,达到了第九关,但是他们一出现,立即就遭受了同样の海量吞石鼠围攻,也就只能勉强の防御着,不敢前进. 三 个不咋大的时之后! 蛮神府の蛮子进来了. 而这些蛮子却凭借着自己の超强防御,竟然无视吞石鼠の攻击,开始前进.结果却突然遇到了一群八品上阶の吞石鼠,在付出几条人命の情况下,他们也不敢前行了,似乎也在等待着其他练家子の到来,一同前进. 五个不咋大的时后! 隐岛の人 也到了,反而破仙府の人却是最后才到达の.而破仙府の人却是陆续到达の,最先到达の是,风家の人,而当他们看到海量の吞石鼠の时候,当然不敢乱动,原地防御着,等待着后面の其他世家の势力到达. 最后进来の是白家の子弟,而当白家子弟一进入第九关,很怪异の事情发生了,吞石鼠 却突然全部退去了,一只都没有停留,只留下地面无数の鼠尸,以及一地の鲜血. "发生了什么事?龙飞,风萧萧,月柔,花六有没有发现俺家白重炙?"夜枪望着眼前の破仙府各世家精英,有多人都挂了彩,甚至有几名强者,手骨都被咬断,露出血淋淋の伤口,以及森寒の白骨,非常诧异の说道. 【作者题外话】:四更爆发完毕,大家新年快乐! 本书来自 品&书#网 当前 第2陆捌章 抢宝 文章阅读 "额…俺刚才问了,俺们一路走过来,都没有发现你呀家不咋大的子.请大家检索(品%书¥¥网)看最全!更新最快の这里の俺不清楚,这地方太怪异了,以前从来没有遇到这样怪异の 事情,并且这吞石鼠居然在你呀们一到达突然全部消失了,太诡异了,莫非有什么阴谋?"龙城带队名字叫龙飞,龙飞见吞石鼠退去,松了一口气,叹道. "是啊,太诡异了,怎么夜枪你呀们一来,吞石鼠就退去了?刚才俺们都奋战都一些多不咋大的时!"风家带队风萧萧,满身是血,正轻轻の擦拭 着衣服. 月柔,没有说话,只是淡淡の摇了摇头,表示着她没有遇到或者找到白重炙.神情也有些焦急,月柔是月烟儿那一代の人,可谓是看着月倾城长大の,当然希望能找到白重炙,以免月倾城伤心. 夜轻语也没有说话,只是见众人没有找到白重炙,神情更是落魄伤心了几分.每一关她都饱 含希望,满心期待,但是换来の却是一次次の心痛和伤心… "俺建议,大家分别开走了,这里很诡异,休整一下一起走吧,安全第一!"一直没有说话の花六开口了.众人商议一阵,也觉得应该走一起,毕竟这里可是迷宫地形,万一再来一波吞石鼠,也好应付.并且此地诡异,他们估计其他两府以 及神城隐岛の强者很可能还在这一关,如果遇到了也好有个照应. 半个不咋大的时之后,破仙府强者,开始集体前行,不断の在峡谷内游走,寻找着下一关の通道口. 只是,迷宫地形实在太大了,也太多复杂了,众人转了许久都没有找到出口.很奇怪の是,他们一路走来,也没有遇到一只吞石 鼠. 而神城,和隐岛妖族蛮族の部队,也在白家强者到达第九关の时候,攻击他们の吞石鼠突然退去,而后他们开始寻找第九关の出口. 诡异の是,几个不咋大的队,不断の在迷踪峡谷内前行,却没有相遇一次,也没有遇到一只吞石鼠. 十二关大厅,鹿希却发出了暗暗の笑声,他眼前の屏幕上, 几只不咋大的队,正按照他设置の路线,不断の前进着,如果不出意外の话,半个不咋大的时之后,四方势力就会在峡谷迷宫の中央の一块超级大の空地上同时相遇. "哈哈,好玩,好玩!额…时候不多了,不咋大的寒子快要炼化了,最后玩一次,就玩大点吧!"鹿希宛如一些孩子一样,盯着屏 幕の上面,一双眼睛眯成了一条细缝,满脸の得意和开心. …… 夜枪很疑惑,他怀疑,他们似乎都在里面绕圈一样. 不咋大的队走了几个不咋大的时了,但是却什么都没有发现,不光是人,连吞石鼠都还是没有遇到一只,更多说找到第九关の出口了. 其他の各世家队长,也明显发现了这一诡 异の情况.只是在如此场景,他们也没有方法,只能继续前行,希望能找到通道口. 峡谷虽然很大,但是不咋大的队却有着数百人,所以不咋大的队被拉成了长蛇行.花家和龙城のの人在前探路,月家剧中,白家和风家の殿后. 十多分钟之后,峡谷却是越来越宽阔起来,长蛇阵逐渐の变成了三 角箭矢阵.这么宽阔の地形,他们还是第一次在迷宫峡谷遇到,所以他们很是谨慎,脚步放慢了许多,并且全部刀甲在身,战气运转,随时准备应对突发の状况. 慢慢の,地形越老越开阔,不得已,不咋大的队阵型再次变换,变成了圆形防御阵型.大部分の帝王境巅峰强者,被派到了前方,月家女 子和风家の人被围在了中央.速度也再次慢了下来. 一百米,两百米,五百米. 当众人转了一些大弯の时候,他们眼前の视野突然变得无比开阔起来.前方,出现了一块宽阔宛

复数的加减法及其几何意义

复数的加减法及其几何意义

复数的加减法及其几何意义一、复数的加减法1. 复数的定义- 设z = a+bi,其中a,b∈ R,a称为复数z的实部,记作Re(z)=a;b称为复数z的虚部,记作Im(z) = b。

- 例如,z = 3 + 2i,实部a = 3,虚部b=2。

2. 复数的加法法则- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,则z_{1}+z_{2}=(a_{1}+a_{2})+(b_{1}+b_{2})i。

- 例如,若z_{1}=2 + 3i,z_{2}=1 - 2i,则z_{1}+z_{2}=(2 + 1)+(3-2)i=3 + i。

3. 复数的减法法则- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,则z_{1}-z_{2}=(a_{1}-a_{2})+(b_{1}-b_{2})i。

- 例如,若z_{1}=4+5i,z_{2}=2 + 3i,则z_{1}-z_{2}=(4 - 2)+(5 -3)i=2+2i。

二、复数加减法的几何意义1. 复数的几何表示- 在复平面内,复数z = a+bi可以用点Z(a,b)来表示,也可以用向量→OZ来表示,其中O为坐标原点。

- 例如,复数z = 3+2i对应的点为(3,2),对应的向量→OZ,起点为O(0,0),终点为Z(3,2)。

2. 复数加法的几何意义- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,它们对应的向量分别为→OZ_{1}和→OZ_{2}。

- 那么z_{1}+z_{2}对应的向量为→OZ_{1}+→OZ_{2},即平行四边形法则:以→OZ_{1}和→OZ_{2}为邻边作平行四边形,则对角线→OZ对应的复数就是z_{1}+z_{2}。

- 例如,z_{1}=2 + i,z_{2}=1+2i,→OZ_{1}=(2,1),→OZ_{2}=(1,2),以→OZ_{1}和→OZ_{2}为邻边的平行四边形的对角线向量→OZ=→OZ_{1}+→OZ_{2}=(3,3),对应的复数z_{1}+z_{2}=3 + 3i。

复数加减运算的几何意义

复数加减运算的几何意义

复数加减运算的几何意义“同学们,今天咱们来好好探讨一下复数加减运算的几何意义。

”我站在讲台上对学生们说道。

复数加减运算的几何意义可是非常有趣且重要的。

大家都知道复数可以用平面上的点来表示,对吧?比如一个复数 a+bi,就可以对应平面直角坐标系中的一个点(a,b)。

那复数的加减运算在几何上是怎么体现的呢?我们来看个例子。

比如说有两个复数 z1=3+2i 和 z2=1-i,它们在平面上就分别对应点(3,2)和(1,-1)。

当我们做 z1+z2 的时候,就是把它们对应的点的坐标相加,得到(3+1,2+(-1)),也就是(4,1),这就是 z1+z2 对应的点。

从几何意义上看,就相当于把 z1 对应的向量平移到 z2 对应的点上,得到的终点就是 z1+z2 对应的点。

再比如,我们来看复数的减法。

有两个复数 z3=5+3i 和 z4=2+i,它们分别对应点(5,3)和(2,1)。

那么 z3-z4 就等于(5-2,3-1),也就是(3,2)。

从几何上看,这就相当于从 z3 对应的点向 z4 对应的点引一个向量,这个向量的终点坐标就是 z3-z4 对应的点。

给大家讲个实际应用的例子吧。

在通信领域中,信号常常可以用复数来表示。

当我们对这些信号进行处理时,复数的加减运算就有着重要的作用。

比如在信号的传输和接收过程中,需要对不同的信号进行合成或分离,这时候就涉及到复数的加减运算。

通过理解复数加减运算的几何意义,我们可以更好地分析和处理这些信号,以保证通信的质量和准确性。

同学们,复数加减运算的几何意义不仅仅是理论上的知识,它在很多实际问题中都有着广泛的应用。

大家一定要好好理解和掌握,这样才能在以后的学习和工作中更好地运用它。

大家都听明白了吗?如果还有疑问,随时提出来,我们一起探讨。

复数的加减运算及其几何意义 完整版课件

复数的加减运算及其几何意义 完整版课件

两个复数差的模的几何意义 (1)|z-z0|表示复数 z,z0 的对应点之间的距离,在应用时, 要把绝对值号内变为两复数差的形式; (2)|z-z0|=r 表示以 z0 对应的点为圆心,r 为半径的圆; (3)涉及复数模的最值问题以及点的轨迹问题,均可从两点 间距离公式的复数表达形式入手进行分析判断,然后通过几何 方法进行求解.
[跟踪训练] 1.-i-(-1+5i)+(-2-3i)-(i-1)=________.
答案:-10i
2.已知复数 z1=a2-3-i,z2=-2a+a2i,若 z1+z2 是纯虚数, 则实数 a=________.
答案:3
复数加、减运算的几何意义 [例 2] (链接教材第 77 页练习 2 题)如图所 示,在平行四边形 OABC 中,顶点 O,A,C 分 别表示 0,3+2i,-2+4i.求: (1)―A→O 所表示的复数,―B→C 所表示的复数; (2)对角线―C→A 所表示的复数; (3)对角线―O→B 所表示的复数及―O→B 的长度.
()
2.已知复数 z1=3+4i,z2=3-4i,则 z1+z2 等于( )
A.8i
B.6
C.6+8i
D.6-8i
答案:B
3.已知复数 z+3i-3=3-3i,则 z=
A.0
B.6i
C.6
() D.6-6i
答案:D 4.在复平面内,向量―OZ→1 对应的复数是 5-4i,向量―OZ→2 对应的
复数是-5+4i,则―OZ→1 +―OZ→2 对应的复数是
是什么? 提示:|z-z0|的几何意义是复平面内点 z 与点 z0 的距离.

[做一做]
1.判断正误(正确的打“√”,错误的打“×”)
(1)复数与复数相加减后结果不可能是实数.

第十五课复数的加减运算及其几何意义

第十五课复数的加减运算及其几何意义
2 2 2 2
(a-c) +(b-d) =1. ② 由①②得 2ac+2bd=1.
2 2
∴|z1+z2|= a+c +b+d = a +c +b +d +2ac+2bd= 3.
2 2 2 2 2 2
小结(略)
一、选择题 1.若复数 z 满足 z+i-3=3-i,则 z=( A.0 B.2i C.6 D.6-2i )
→ =-OA →, → 对应的复数为-(3+2i), 解: ①AO 则AO 即-3-2i. → = OA → -OC → ,所以 CA → 对应的复数为 (3 ②CA +2i)-(-2+4i)=5-2i. → =OA → + AB → =OA → + OC → ,所以OB → 对应 ③ OB 的复数为(3+2i)+(-2+4i)=1+6i,即 B 点对 应的复数为 1+6i.
二、填空题 3.已知|z|=3,且 z+3i 是纯虚数,则 z=________.
解:设 z=a+bi(a,b∈R),∵|z|=3,∴a +b =9.
2 2
又 w=z+3i=a+bi+3i=a+(b+3)i 为纯虚数,
a=0, ∴ b+3≠0 a=0, ,即 b≠-3,
又 a +b =9,∴a=0,b=3.∴z=3i.
3.对复数加减法几何意义的理解:它包含两个方面:一方面是利
用几何意义可以把几何图形的变换转化为复数运算去处理, 另一方
面对于一些复数的运算也可以给予几何解释, 使复数作为工具运用 于几何之中.
题型一、复数代数形式的加减运算
例 1:计算:(1)(1+2i)+(3-4i)-(5+6i); (2)5i-[(3+4i)-(-1+3i)]; (3)(a+bi)-(2a-3bi)-3i(a,b∈R).
解:∵z+i-3=3-i

复数的基本运算及几何意义

复数的基本运算及几何意义

复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。

一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。

例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。

例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。

例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。

例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。

1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。

例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。

例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。

该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。

4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。

复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。

综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。

在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。

复数的减法的几何意义

复数的减法的几何意义

复数的减法的几何意义
1. 复数的减法的几何意义啊,就好像是在一个神秘的数学花园里挖宝藏呀!比如说,你看啊,(1+2i)-(2+i),这就像是从一个宝藏点走到另一个宝藏点的路径变化呢!
2. 哎呀呀,复数的减法的几何意义可重要啦!就像我们走路一样,从一个地方到另一个地方的距离变化,比如(3+4i)-(1+3i),不就是位置的改变嘛!
3. 复数的减法的几何意义真的很奇妙哦!好比是一场刺激的冒险中路线的调整呢,像(2+3i)-(1+i),这中间的变化多有趣呀!
4. 嘿,复数的减法的几何意义你可别小瞧呀!就如同在迷宫里找出口,每一步的变化都很关键,像(4+2i)-(3+i)这样。

5. 哇塞,复数的减法的几何意义简直太有意思啦!这就跟玩拼图一样,一块一块的变化,比如(5+3i)-(2+2i),拼出不同的形状呀!
6. 复数的减法的几何意义,那可是相当神奇的呀!就像搭积木,每一次减去一些,形状就变了,像(3+5i)-(2+3i)。

7. 哈哈,复数的减法的几何意义可不容错过哟!如同在地图上标记路线,减去一段就有不同的走向,比如(6+4i)-(3+2i)。

8. 哟呵,复数的减法的几何意义真的超棒的呀!就像变魔术一样,一下子就有了不同的结果,像(7+3i)-(4+i)。

9. 哇哦,复数的减法的几何意义太有魅力啦!好比是赛车在赛道上的位置调整,像(8+2i)-(5+i),多刺激呀!
10. 复数的减法的几何意义,那绝对是数学里的一颗璀璨明珠呀!就好像是音乐中的变奏,给人带来惊喜,像(9+1i)-(6+i)。

我的观点结论就是:复数的减法的几何意义充满了神奇和趣味,能让我们看到数学中不一样的精彩世界!。

7.2.1复数的加、减及其几何意义课件(人教版)

7.2.1复数的加、减及其几何意义课件(人教版)

【变式训练3】 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小
值是(
)
A.1
B.
C.2
D.
解析:设复数-i,i,-1-i在复平面内对应的点分别为Z1,Z2,Z3,
因为|z+i|+|z-i|=2,|Z1Z2|=2,
所以点Z的集合为线段Z1Z2.
问题转化为,动点Z在线段Z1Z2上移动,
-3-2i,那么向量 对应的复数是
;
(2)设复数 z1 =1-i,z2 =2+2i 对应的点分别为 Z 1,Z2 ,则|Z 1 Z2 |
=
.
探究一 复数的加、减运算
【例1】 计算:
(1)(3-5i)+(-4-i)-(3+4i);
(2)(-7i+5)-(9-8i)+(3-2i).
复数代数情势的加、减法运算技能
0,3+2i,-2+4i.求:
(1)
表示的复数;
(2)对角线 表示的复数;
(3)对角线
表示的复数.
解:(1)因为
=-
(2)因为 =
,所以
表示的复数为-3-2i.
− ,
所以对角线 表示的复数为(3+2i)-(-2+4i)=5-2i.
(3)因为对角线
所以对角线
=
+ ,
表示的复数为(3+2i)+(-2+4i)=1+6i.
∴平行四边形 OZ1ZZ2 为正方形.
∴|z1-z2|=|
|=|
|=
.
,
,
.
1.解决复数问题时,设出复数的代数情势z=x+yi(x,y∈R),利用

复数的加减法几何意义

复数的加减法几何意义

y
Z
A
b
y
Z
A
2a 0 Z a
C
x
0 Z
a
x
B
-b
B
6
二、复数加法与减法运算的几何意义
例3、已知复平面内一个平行四边形的三个顶点对应的 复数是0, 5+2i , -3+i ,求第三个顶点对应的复数. 解:设 OA ,OB 对应的复数分别为5+2i ,-3+i
y
B
0
C
A
如图(1),在
OACB中, OC = OA+ OB
16
复数加法与减法运算的几何意义


17
0
B
1
x
|Z+1-2i|min =|MA|= 5 -1
14
二、复数加法与减法运算的几何意义
2、设复平面内的点Z1 , Z2 分别对应复数为Z1 , Z2 , 则线段Z1 , Z2 垂直平分线的方程是:
y
1
|Z -Z1|=|Z -Z2 |
例如|Z+1|=|Z -i|是连结复数-1, i
1
Z
-1
0
x
在复平面内对应点的线段的垂直 平分线方程。
y
Z2 Z1
证明:| Z 2 -Z 1| =|(x2+y2 i)- ( x1+ y1i)|
=|(x2- x1)+( y2- y1)i| = ( x2-x1)² + (y2 - y1)² =d
0
x
10
复数加法与减法运算的几何意义
例4、用复数表示圆心在点P,半径为r的圆的方程。
解:如图,设圆心P对应的复数是P=a+bi,圆的半径为r,

复数代数形式的加减运算及其几何意义 课件

复数代数形式的加减运算及其几何意义 课件
[分析] 要想求得z1,z2,只需求得x,y,要求x,y, 需得到关于x,y的方程组,由复数相等的条件即可得到关 于x,y的方程组,然后解之.
[解析] z=z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x +3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x- 3y)+(x+4y)i
[例2] 如图,平行四边形OABC,顶点O,A,C分别 表示0,3+2i,-2+4i,试求
(1)A→O所表示的复数,B→C所表示的复数; (2)对角线C→A所表示的复数; (3)对角线O→B所表示的复数及O→B的长度.
[分析] 要求某个向量对应的复数,只要找出所求向 量的始点和终点,或者用向量的相等直接给出所求的结 论.
[解析] (1)(-2+3i)+(5-i)=(-2+5)+(3-1)i=3 +2i.
(2)(-1+ 2i)+(1- 2i)=(-1+1)+( 2- 2)i=0. (3)(a+bi)-(2a-3bi)-3i=(a-2a)+(b+3b-3)i= -a+(4b-3)i.
[点评] (1)复数加减运算法则的记忆. 方法一:复数的实部与实部相加减,虚部与虚部相加 减. 方法二:把i看作一个字母,类比多项式加减中的合并 同类项. (2)加法法则的合理性: ①当b=0,d=0时,与实数加法法则一致. ②加法交换律和结合律在复数集中仍成立. ③符合向量加法的平行四边形法则. (3)复数的加减法可以推广到若干个复数,进行连加连 减或混合运算.
又z=13-2i,
∴5x+x-43y=y=-132 ,解得xy= =-2 1 . ∴z1=(3×2-1)+(-1-4×2)i=5-9i. z2=(-1×4-2×2)-(5×2-3×1)i=-8-7i. [点评] 灵活运用复数加减法的运算法则和复数相等 的充要条件.

复数的加减法及几何意义课件人教新课标

复数的加减法及几何意义课件人教新课标
我们知道,两个向量的和满足平行四边形法则, 复 数可以表示平面上的向量,那么复数的加法与向量的 加法是否具有一致性呢?
1.复数加法运算的几何意义?
z1+ z2=OZ1 +OZ2 = OZ
符合向量加法 的平行四边形
法则.
y
Z2(c,d)
Z(a+c,b+d)
Z1(a,b)
o
x
2.复数减法运算的几何意义?
注意到 i2 1,虚数单位 i 可以和实数进行运 算且运算律仍成立,所以复数的加、减、乘运算我 们已经是自然而然地在进行着,只要把这些零散的 操作整理成法则即可了!
1.复数加、减法的运算法则:
已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数)
(1)加法法则:z1+z2=(a+c)+(b+d)i; (2)减法法则:z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减).
注:⑴复数的减法是加法的逆运算;
⑵易知复数的加法满足交换律、结合律,
即对任何 z ,z ,z ∈C,有 123
z +z =z +z , 1221
(z +z )+z =z +(z +z ). 12 31 23
⑶复数的加减法可类比多项式的加减法进行.
时,原有的加法与乘法的运算律(包括交换律、结合律和 分配律)仍然成立。
练习. 根据对虚数单位 i 的规定把下列运算的结果都化 为 a+bi(a、bR)的情势. 3(2+i)= 6+3i ; (3-i)i= 1+3i ;i = 0+i ; -5= -5+0i ;0= 0+0i ;2-i= 2+(-1)i .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的减法及其几何意义
教学目标
1.理解并掌握复数减法法则和它的几何意义.
2.渗透转化,数形结合等数学思想和方法,提升分析、解决问题水平.
3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).
教学重点和难点
重点:复数减法法则.
难点:对复数减法几何意义理解和应用.
(一)引入新课
上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义)
(二)复数减法
复数减法是加法逆运算,那么复数减法法则为(+i)-(+i)=(-)+(-)i,
1.复数减法法则
(1)规定:复数减法是加法逆运算;
(2)法则:(+i)-(+i)=(-)+(-)i(,,,∈R).把(+i)-(+i)看成(+i)+(-1)(+i)如何推导这个法则.
(+i)-(+i)=(+i)+(-1)(+i)=(+i)+(--i)=(-)+(-)i.
推导的想法和依据把减法运算转化为加法运算.
推导:设(+i)-(+i)=+i(,∈R).即复数+i为复数+i减去复数+i的差.由规定,得(+i)+(+i)=+i,依据加法法则,得(+)+(+)i=+i,依据复数相等定义,得
故(+i)-(+i)=(-)+(-)i.这样推导每一步都有合理依据.我们得到了复数减法法则,两个复数的差仍是复数.是唯一确定的复数.
复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(+i)±(+i)=(±)+(±)i.
(三)复数减法几何意义
我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么?
设z=+i(,∈R),z1=+i(,∈R),对应向量分别为,
如图
因为复数减法是加法的逆运算,设z=(-)+(-)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,1为一条边画平行四边形,那么这个平行四边形的另一边2所表示的向量OZ2就与复数z-z1的差(-)+(-)i对应,如图.
在这个平行四边形中与z-z 1差对应的向量是只有向量2吗?
还有.因为OZ2Z1Z,所以向量,也与z-z1差对应.向量是以Z1为起点,Z为终点的向量.
能概括一下复数减法几何意义是:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.
(四)应用举例
在直角坐标系中标Z 1(-2,5),连接OZ1,向量1与多数z1对应,标点Z2(3,2),Z 2关于x轴对称点Z2(3,-2),向量2与复数对应,连接,向量与的差对应(如图).
例2 根据复数的几何意义及向量表示,求复平面内两点间的距离公式.
解:设复平面内的任意两点Z1,Z2分别表示复数z1,z2,那么Z1Z2就是复数对应的向量,点之间的距离就是向量的模,即复数z2-z1的模.如果用d表示点Z1,Z2之间的距离,那么d=|z2-z1|.
例3 在复平面内,满足下列复数形式方程的动点Z的轨迹是什么.
(1)|z-1-i|=|z+2+i|;
方程左式能够看成|z-(1+i)|,是复数Z与复数1+i差的模.
几何意义是是动点Z与定点(1,1)间的距离.方程右式也能够写成|z-(-2-i)|,是复数z 与复数-2-i差的模,也就是动点Z与定点(-2,-1)间距离.这个方程表示的是到两点(+1,1),(-2,-1)距离相等的点的轨迹方程,这个动点轨迹是以点(+1,1),(-2,-1)为端点的线段的垂直平分线.
(2)|z+i|+|z-i|=4;
方程能够看成|z-(-i)|+|z-i|=4,表示的是到两个定点(0,-1)和(0,1)距离和等于4的动点轨迹.满足方程的动点轨迹是椭圆.
(3)|z+2|-|z-2|=1.
这个方程能够写成|z-(-2)|-|z-2|=1,所以表示到两个定点(-2,0),(2,0)距离差等于1的点的轨迹,这个轨迹是双曲线.是双曲线右支.
由z1-z2几何意义,将z1-z2取模得到复平面内两点间距离公式d=|z1-z2|,由此得到线段垂直平分线,椭圆、双曲线等复数方程.使有些曲线方程形式变得更为简捷.且反映曲线的本质特征.
例4 设动点Z与复数z=+i对应,定点P与复数p=+i对应.求
(1)复平面内圆的方程;
解:设定点P为圆心,r为半径,如图
由圆的定义,得复平面内圆的方程|z-p|=r.
(2)复平面内满足不等式|z-p|<r(r∈R+)的点Z的集合是什么图形?
解:复平面内满足不等式|z-p|<r(r∈R+)的点的集合是以P为圆心,r为半径的圆面部分(不包括周界).利用复平面内两点间距离公式,能够用复数解决解析几何中某些曲线方程.不等式等问题.
(五)小结
我们通过推导得到复数减法法则,并进一步得到了复数减法几何意义,应用复数减法几何意义和复平面内两点间距离公式,能够用复数研究解析几何问题,不等式以及最值问题.
(六)布置作业P193习题二十七:2,3,8,9.。

相关文档
最新文档