分数的意义和性质重难点突破
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的意义和性质重难点突破
突破建议:
1.多角度了解与揭示分数的来源,促进学生对分数本质的理解。在小学数学里,认识分数是学习数的概念的一次重要扩展。因此,教学中要从揭示产生分数的现实背景出发,帮助学生领会分数的含义,理解分数的意义。
从现实的角度来看,数是用来表示量的。如6支笔、8个人等这些量的共同特征,可以用自然数6、8来表示。但除了上面列举的有一些单位量合成的,可以用自然数表示的量之外,还存在许多可以分割的、无法用自然数来表示的量。历史上,分数正是为了比较精确地测量这类需要分割的量而引入的。另外,从数学的角度来看,分数的引入是为了解决整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2
÷3=。再引出分数概念之后,又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟:利用分数,可以解决整数除法除不尽的矛盾。即从数学内部发展的角度,揭示了分数的来源。
总之,教学通过多角度呈现分数的来源,使学生感悟到分数是为了适应客观实际需要而产生的。同时,为学生提供了较为丰富的理解分数意义的教学素材,从而为学生理解分数的本质意义提供了牢固的学习平台。
2.充分利用学生已有知识基础与学习经验,在学习活动中及时抽象概括分数的意义。本单元的教学是学生在三年级学习“分数的初步认识”的基础上展开的,即学生已有将一个图形、实物等平均分可以得到分数的认知基础。因此,本节课的研究对象是将一些物体看成一个整体。但在实际的教学中,分数单位“1”的相对性与自然数“1”的确定性,在学生已有的知识经验中是相互矛盾的,进而导致分数的意义不为他们已有的认知结构所接受和同化。也就是说,单位“1”它不仅表示一个物体,也可以表示由多个物体所组成的一个整体,如一个物体、一个图形、一个计量单位可以称作单位“1”,一些物体所组成的一个整体也可以称作单位“1”,即与单位“1”相对应的量是动态的,具有相对性。当单位“1”表示为一个物体(如一个苹果、一个圆形、一米线段)时,与学生已有经验中所确定不变的自然数“1”相一致,当单位“1”表示为多个物体(如10个苹果、23个圆形、35条1米长的线段)时,与自然数“1”就有了冲突,学生的理解也随之产生偏差。因此,本单元教学的主要任务是在帮助学生重构与拓展单位“1”的含义,进而揭示分数的本质。
3.在练习纠错中不断积累数学经验,正确表征分数内涵。分数概念的多重意义性意味着学生必须要跟随教学进度,不断激发已有的分数学习经验,由浅入深,分步扩展,主动建构新的分数经验,不断扩充、完善对分数内涵和分数概念的认知与把握。在此基础上,要善于
因此,只有牢牢把握分数概念的不同表征方式,深刻理解分数概念的多重意义,才能达到触类旁通、举一反三的学习效果,才能真正将所学知识用于解决学习和生活中遇到的相关问题,提升数学素养,发展数学能力。