圆中基本图形变换及计算(课本图形变换)
几何变换思想-PPT
第一,对一些概念得准确把握
平移、旋转、轴对称变换与生活中物体得平移、旋转和轴对 称现象不是一个概念。数学来源于生活,但不等于生活,是生活现 象得抽象和概括。生活中得平移和旋转现象往往都是物体得运动, 如推拉窗、传送带、电梯、钟摆、旋转门等物体得运动,都可以 称为平移现象或旋转现象。而中小学中得几何变换都是指平面图 形在同一平面得变换,也就是说原图形和变换后得图形都是平面 图形,而且都在同一平面内。几何中得平移、旋转和轴对称现象 来自于生活中物体得平移现象、旋转现象和轴对称现象,如果把 生活中这些物体画成平面图形,并且在同一平面上运动,就可以说 成是几何中得平移、旋转和轴对称变换了。
3、几何变换思想得具体应用 图形变换作为空间与图形领域得重要
内容之一,在图形得性质得认识、面积公 式得推导、面积得计算、图形得设计和欣 赏、几何得推理证明等方面都有重要得应 用。
小学数学中几何变换思想得应用
4、几何变换思想得教学 (1)课程标准关于图形变换得数学要求
课程标准关于图形变换得内容和目标分为以下几个层次:
以保持,但通过改变其位置,组合成新得图形,便于计算和证 明。
(3)反射变换 在同一平面内,若存在一条定直线L,使对于平面
上得任意一点P及其对应点P′,其连线PP′得中垂线 都是L,则称这种变换为反射变换,也就是常说得轴对 称,定直线L称为对称轴,也叫反射轴。
轴对称有如下性质: ①把图形变为与之全等得图形,因而面积和
(1)射线PP’得方向一定;(2)线段PP'得长度一 定,则称这种变换为平移变换。也就是说一个图 形与经过平移变换后得图形上得任意一对对应点 得连线相互平行且相等。
平移变换有以下一些性质: ①图形变为与之全等得图形,因而面积和周长
不变。 ②在平移变换之下两点之间得方向保持不变。
08 图形变换
=
x1’ y1’ 1 x2’ y2’ 1 . ..
. ..
Tx Ty 1
. ..
. ..
. .. xn yn 1
. .. xn + Tx yn + Ty 1
. .. xn’ yn ’ 1
如果点P(x,y)经T1变换后平移了(Tx1,Ty1),然后再经T2
变换后又平移了(Tx2,Ty2),那么将产生什么结果呢?从
xi ’= Sx . xi
yi ’= Sy . yi
(式8-2-3)
当Sx = Sy <1时,图形缩小;
当Sx = Sy =1时,图形不变;
当Sx = Sy >1时,图形放大;
当这S种x情≠况S。y 时, 图形发生畸变;不考虑
如图8-2-2所示。注意图形放大或缩小时, 图形位置都发生了变化。
2.比例变换
在 示点变P换(x矩,y阵)沿TX中和,Y取方a向=S相x,对d原=S点y,的它比们例分变别换表系 数,比例变换矩阵T为:
T=
Sx 0 0 0 Sy 0 001
(式8-2-6)
则比例变换可表示为:
P’=P•T =[x y 1] Sx 0 0 0 Sy 0 = [x Sx y Sy 1 ] 001
y
Ty
Tx x
图8-2-1 平移变换
y
Sx = Sy >1 Sx = Sy =1 Sx = Sy <1
x
图8-2-2 比例变换
3)对于旋转变换,先讨论平面上点绕坐标原 点的旋转变换。
一个平面图形绕坐标原点逆时针旋转θ角
度,图形的形状保持不变,但图形各顶点的位
置坐标相应地发生了改变。如图8-2-3所示,可
几何第06章 图形变换
第40课时 图形的变换(一)【知识梳理】1、轴对称及轴对称图形的联系:轴对称及轴对称图形可以相互转化. 区别:轴对称是指两个图形之间的位置关系,而轴对称图形一个图形自 身的性质;轴对称只有一条对称轴,轴对称图形可能有几条对称轴.2、通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段 被对称轴垂直平分的性质.3、能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简 单图形之间的轴对称关系,并能指出对称轴.4、探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆) 的轴对称性及其相关性质.5、欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物 体的镜面对称,能利用轴对称进行图案设计. 【例题精讲】1、观察下列一组图形,根据你所发现的规律下面一个应该是什么形状?2、如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE +PB 的最小值是 .3、如图,P 在∠AOB 内,点M 、N 分别是点P 关于 AO 、BO 的对称点,MN 分别交OA 、OB 于E 、F.⑴ 若PEF 的周长是20cm ,求MN 的长.⑵若∠AOB=30°试判断△MNO 的形状,并说明理由4、将一张矩形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可得到 条折痕.如果对折n 次,可以得到 条折痕.5、做一做:用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形.请你在图2、图3、图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示).FE NMA OB PC 'ABCD6、已知如图,在直角梯形ABCD 中,AD ∥BC ,BC=5cm ,CD=6cm ,∠DCB=60º,∠ ABC=90º,等边三角形MNP (N为不动点)的边长为a cm ,边MN和直角梯形ABCD 的底边BC 都在直线l上,NC=8 cm ,将直角梯形ABCD 向左翻折180º,翻折一次得图形①,翻折二次得图形②,如此翻折下去. (1)、将直角梯形ABCD 向左翻折二次,如果此时等边三角形MNP 的边长a≥2cm ,这时两图形重叠部分的面积是多少?(2)、将直角梯形ABCD 向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积就等于直角梯形ABCD 的面积,这时等边三角形MNP 的边长a 至少应为多少?(3)、将直角梯形ABCD 向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD 的面积的一半,这时等边三角形MNP 的边长a 应为多少?【当堂检测】1.下列图形是否是轴对称图形,找出轴对称图形的有几条对称轴.2.小明的运动衣号在镜子中的像是 ,则小明的运动衣号码是 ( ) A. B. C. D3.在角、线段、等边三角形、平行四边形形中,轴对称图形有( ) A.1个 B.2个 C.3个 D.4个4.下面四个图形中,从几何图形的性质考虑,哪一个与其它三个不同?请指出这个图形,并简述你的理由.答:图形 ;理由是 :5.如图,ΔABC 中,DE 是边AC 的垂直平分线AC=6cm , ΔABD 的周长为13cm ,则ΔABC 的周长为______cm. 6.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在点C '的位置,则C B '与BC 之间的数量关系是 .A B PM N ② ① D C 第5题图第41课时 图形的变换(二)【知识梳理】 一、图形的平移1、平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的 图形运动称为平移,平移不改变图形的形状和大小.注:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平 面图形在同一平面内的变换.(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的 距离,这两个要素是图形平移 的依据.(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形 相比,只改变了位置,而不改变图形的大小,这个特征是得出图 形平移的基本性质的依据.2.平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点 都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具 有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等, 对应角相等. 注:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的 特征.(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图 形之间的性质,又可作为平移作图的依据. 二、图形的旋转1、图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;2、中心对称图形:____________________________________3、平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形; 【例题精讲】1. 如图,在△ABC 中,∠C=90°,AC=2cm ,把这个三角形 在平面内绕点C 顺时针旋转90°,那么点A 移动所走过的路 线长是 cm .2. 将两块含30°角且大小相同的直角三角板如图1摆放.(1) 将图2中△11A B C 绕点C 顺时针旋转45°得图2,点11P A C 是与AB 的交点,求证:112CP AP 2=; (2)将图2中△11A B C 绕点C 顺时针 旋转30°到△22A B C (如图3),点 22P A C 是与AB 的交点.线段112CP PP 与 之间存在一个确定的等量关系,请你写出这个关系式并说明理由;(3)将图3中线段1CP 绕点C 顺时针旋转60°到3CP (图4),连结32P P ,求证:32P P ⊥AB.A G(O)EC B F ①3.把两个全等的等腰直角三角板ABC 和EFG (其直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论;(2)连接HK ,在上述旋转过程中,设BH=x ,△GKH 的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)在(2)的前提下,是否存在某一位置,使△GKH 的面积恰好等于△ABC 面积的516?若存在,求出此时x 的值;若不存在,说明理由.4.如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2), 量得他们的斜边长为10cm ,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合(在图3至图6中统一用F 表示)(图1) (图2) (图3)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决. (1)将图3中的△ABF 沿BD 向右平移到图4的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图3中的△ABF 绕点F 顺时针方向旋转30°到图5的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图3中的△ABF 沿直线AF 翻折到图6的位置,AB 1交DE 于点H ,请证明:AH ﹦DH(图4) (图5) (图6)【当堂检测】1.下列说法正确的是( )A .旋转后的图形的位置一定改变B .旋转后的图形的位置一定不变C .旋转后的图形的位置可能不变D .旋转后的图形的位置和形状都发生变化 2.下列关于旋转和平移的说法错误的是( )A .旋转需旋转中心和旋转角,而平移需平移方向和平移距离B .旋转和平移都只能改变图形的位置C .旋转和平移图形的形状和大小都不发生变化D .旋转和平移的定义是相同的3.在“党”“在”“我”“心”“中”五个汉字中,旋转180o 后不变的字是_____,在字母“X”、“V”、“Z”、“H”中绕某点旋转不超过180后能与原图形重合的是____. 4.△ABC 是等腰直角三角形,如图,A B=A C ,∠BAC =90°,D 是BC 上一点,△ACD 经过旋转到达△ABE 的 位置,则其旋转角的度数为( ) A .90° B .120° C .60° D .45°5.以下图形:平行四边形、矩形、等腰三角形、线段、圆、 菱形,其中既是轴对称图形又是中心对称图形的有( ) A .4个 B .5个 C .6个 D .3个6.如图的图案中,可以看出由图案自身的部分经过平移而得到的是( )7.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是( ) A .①③ B .①② C .②③ D .②④ 8.如图,若将△ABC 绕点C 顺时针旋转90°后得到△A B C ''',则A 点的对应点A′的坐标是( ) A .(-3,-2)B .(2,2) C .(3,0)D .(2,1)第8题图 A B CD E第42课时 视图与投影【知识梳理】1、主视图、左视图、俯视图2、主俯长相等,主左高平齐,俯左宽相等 【例题精讲】1. 下列多边形一定不能进行平面镶嵌的是( )A 、三角形B 、正方形C 、任意四边形D 、正八边形 2. 用一张正多边形的纸片,在某一点处镶嵌(即无缝隙的围成一周),可实施 的方案有哪6种?每一种方案中需要的纸片各是几张?3.如图,用灰白两色正方形瓷砖铺设地面,第6个图案中灰色瓷砖块数为____.4. 用含30角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形,②菱形,③矩形,④直角梯形.其中可以被拼成的图形是( ) A .①② B .①③ C .③④ D .①②③5. 为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.注:两个图案中,只有半径变化而圆心不变的图案属于一种,例如:图①、图②只算一种.6.下图是某几何体的展开图.(1)这个几何体的名称是 ;(2)画出这个几何体的三视图;(3)求这个几何体的体积.( 取3.14)7.东东和爸爸到广场散步,爸爸的身高是176cm , 东东的身高是156cm ,在同一时刻爸爸的影长是 88cm ,那么东东的影长是 cm.8.如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位 置依次翻到第1格、第2格、第3格, 这时小正方体朝上一面的字是( )A .奥B .运C .圣D .火① ② ③ ④ ⑤第1个图案 第2个图案 第3个图案 20 10 迎 接 奥 运 圣 火 图1迎 接奥 12 3 图2【当堂检测】1.如图所示的阴影部分图案是由方格纸上3个小方格组成,我 们称这样的图案为L 形.那么在由4×5个小方格组成的方格纸 上最多可以画出不同位置的L 形图案的个数是 ( ) A .16个 B .32个 C .48个 D .64个2.在下面的四个几何体中,它们各自的左视图与主视图不相同的是( )3.如图甲,正方形被划分成16个全等的 三角形,将其中若干个三角形涂黑,且 满足下列条件:(1)涂黑部分的面积是原正方形面积 的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中 分别设计另外三种涂法.(在所设计 的图案中,若涂黑部分全等,则认为 是同一种涂法,如图乙与图丙)4.现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1, 并且平行四边形纸片的每个顶点与小正 方形的顶点重合(如图1、图2、图3).分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线, 沿此裁剪线将平行四边形纸片裁成两部 分,并把这两部分重新拼成符合下列要 求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁 剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙; (3)所画出的几何图形的各顶点必须与小正方形的顶点重合.图1 矩形(非正方形) 图2 正方形 图3 有一个角是135°的三角形 正方体 长方体 圆柱 圆锥 A B C D。
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)
能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
中考数学总复习:图形的变换--知识讲解(基础)【含解析】
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=D G﹣AD=3﹣2=.2.如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆. (1)求ABC ∆所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解. 【答案与解析】(1)由平移的性质得 AF ∥BC ,且AF=BC ,△EFA ≌△ABC ∴四边形AFBC 为平行四边形 S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE ⊥AF证明:由(1)知四边形AFBC 为平行四边形 ∴BF ∥AC ,且BF=AC 又∵AE=CA∴BF ∥AE 且BF=AE∴四边形EFBA 为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA 为菱形 ∴BE ⊥AF ;(3)如上图,作BD ⊥AC 于D ∵∠BEC=15°,AE=AB ∴∠EBA=∠BEC=15° ∴∠BAC=2∠BEC=30°BCA ('C )E∴在Rt△BAD中,AB=2BD 设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x=3∴AC=23.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】(2016·松北区模拟)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=12∠B=12×120°=60°,∠CRP=12∠D=12×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P 在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=12∠MPC,∠NMP=∠AMN=12∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换【高清课堂图形的变换例4】5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转α角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,1111OE OFE OA FOBO A OB⎧⎪∠∠⎨⎪⎩===,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,α=30°,∴ ∠E1OA=900-α=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP 绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
《圆的认识》公开课课件
与圆相关的数学问题挑战与探讨
复杂几何图形中的圆
探讨圆与其他几何图形(如三角形、矩形等)的组合问题,求解面 积、周长等。
圆的动态变化
研究圆的半径、位置等参数变化时,圆的性质如何变化。
圆的高级应用
介绍圆在高等数学、物理学等领域的应用,如圆周运动、复平面上的 圆等。
THANKS
谢谢
单位圆法
以坐标原点O为圆心,1为半径作单 位圆,利用三角函数在单位圆上的 性质表示任意角,从而画出对应的 图形。
03
CHAPTER
圆的性质定理与证明
切线长定理及其证明
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等。
证明方法
通过连接圆心和切点,利用切线性质和相似三角形性质进行证明。
切线性质定理及其证明
弦切角推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
与圆相关的线段性质
切线性质
圆的切线垂直于经过切点的半径 。
切线长定理
从圆外一点引圆的两条切线,它 们的切线长相等,圆心和这一点
的连线平分两条切线的夹角。
割线性质
从圆外一点引圆的两条割线,这 一点到每条割线与圆的交点的两
条线段长的积相等。
05
CHAPTER
与圆相关的图形变换与计算
圆的平移与旋转
平移定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形 运动称为平移。
旋转定义
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运 动称为旋转。
圆的平移与旋转特性
圆在平移和旋转过程中,其形状和大小均不发生改变,仅位置和方 向发生变化。
圆的参数方程
01
定义
圆的参数方程是{x=a+r*cosθ, y=b+r*sinθ},其中θ为参数,表示圆上
人教版二年级数学上册【课本】二年级(上)第10讲 图形变换
第十讲 图形变换前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲把里面的人物换成相应红字标明的人物.卡莉娅萱萱卡莉娅 萱萱萱萱卡莉娅卡莉娅萱萱萱萱图形变换是一种重要的数学思想,包含图形的平移和旋转,这在大家的生活中并不陌生,那么我们从生活中的直观实例入手,感知平移和旋转的运动特征,然后通过观察思考、操作验证的学习方法掌握平移的方法,为今后学习平行线和推导基本平面图形面积的计算公式等几何知识做铺垫.【提示】找一找房子的墙角平移前后有什么变化吧!图形平移变换时,图形的大小、形状和方向不变;位置变化.在表格里填空.在表格里填空.例题1 向右平移7格向下平移6格向 平移 格向 平移 格 练习1【提示】最后结果是4个图形吗?如图所示,数对(↓5,→4)表示把中心的图形先向下平移5格,再向右平移4格.请画出数对(↑4,→6)和(↓5,←7)分别对应的图形.例题2平移后的图形对应的数对是哪个?A .(↓4,→11)B .(↓7,→14)C .(→11,↓7)D .(→12,↓4)下面这些现象都是旋转.图形旋转变换时,图形的大小、形状不变;位置和方向变化.【提示】图形的4个顶点中哪个点不变?还有哪些特殊的线呢?你能按照下图的规律,画出第4个图形吗?例题 3平移后练习2下图旋转后,能得到选项中的哪个图?【提示】找找最便捷的移动路径!笑脸“ ”按照 ……这样的规律在下图方格中移动,并且只能向右或者向下移动到相邻的方格中,那么当“ ”移动到“?”处是什么样子呢?例题4A B C D练习3【提示】不仅可以平移,还可以旋转哦!注意小鱼身体上的颜色.观察下图,判断从前面到后面每次发生了怎样的变化,发生平移的在“→”上的括号中写“①”,发生旋转的在“→”上的括号中写“①”.例题6观察下图,在可以经过平移和旋转到A 位置的小鱼下面的括号中画“√”.例题5A ( )( )( )( )( )( )( )( )练习4图形“ ”依照 ……的规律在下图方格中移动,并且只能向下或者向右移动到相邻的方格中,那么当“ ”移动到“?”处是什么样子呢?()()()()【提示】根据平移和旋转的特点判断.课堂内外摩天轮摩天轮是一种大型转轮状的机械建筑设施,上面挂在轮边缘的是供乘客乘搭的座舱.乘客坐在摩天轮慢慢的往上转,可以从高处俯瞰四周景色.最常见到摩天轮存在的场合是游乐园(或主题公园)与园游会,作为一种游乐场机动游戏,与云霄飞车、旋转木马合称是“乐园三宝”.但摩天轮也经常单独存在于其他的场合,通常被用来作为展会活动的观景台使用.世界上著名的摩天轮英航“伦敦眼”,坐落于泰晤士河畔,距地面总高达135公尺.位于日本福冈的“天空之梦福冈”,是座轮身直径112公尺、离地面总高120公尺的摩天轮.该项目的设计方,是曾经设计英国观景摩天轮“伦敦眼”的荷兰艾维公司.作业1.在表格里填空.2.平移后的图形对应的数对是().A.(↑8,→10)B.(→18,↑8)C.(→14,↑4)D.(↑4,→10)3.下图绕田字格中心旋转之后,能得到选项中的哪个图?()4.……的规律在下图方格中移动,并且只能向下A B C D5.把可以通过平移和旋转到A位置的燕子圈出来.A。
图形学课件(第三章图形变换)
连续变换可以通过将一系列基本 变换矩阵按照时间顺序进行串联 来实现。每个基本变换对应一个 变换矩阵,将这些矩阵依次相乘 即可得到连续变换的总矩阵。
连续变换的应用
在计算机动画制作中,连续变换 被广泛应用于模拟物体的自然运 动和动态效果。通过连续变换, 可以逼真地模拟现实世界中的各 种运动轨迹和动态效果,提高动 画的逼真度和观赏性。
场景模拟
通过图形变换技术,可以模拟出各种真实场景,如城市街道、自然 风光、建筑模型等,为虚拟现实和增强现实应用提供逼真的视觉效 果。
交互体验
利用图形变换技术,用户可以在虚拟现实和增强现实环境中与场景 进行互动,如漫游、旋转、缩放等。
实时渲染
通过图形变换技术,可以实现高精度的实时渲染,为用户提供更加逼 真的虚拟现实和增强现实体验。
04 矩阵运算与组合变换
矩阵的乘法
矩阵的乘法规则
矩阵的乘法仅当第一个矩阵的列数等于第二个矩阵的行数时才能进行。乘法结果是一个新的矩阵,其行数等于第一个 矩阵的行数,列数等于第二个矩阵的列数。
矩阵乘法的几何意义
在二维空间中,矩阵的乘法可以看作是先进行行变换再进行列变换的操作。在三维空间中,矩阵的乘法可以看作是先 进行旋转或缩放再进行平移的操作。
特殊矩阵
单位矩阵、零矩阵、转置矩阵等。
组合变换
组合变换的概念
组合变换是指将多个基本变换(如平移、旋转、缩放等)按照 一定的顺序进行组合,从而实现对图形的一系列变换。
组合变换的矩阵表示
组合变换可以通过将相应的基本变换矩阵进行乘法运算来实现 。例如,先进行平移再进行旋转的组合变换可以通过将相应的
平移矩阵和旋转矩阵相乘得到。
透视变换通常使用四个参数: 视点、视平面、主点、和灭点 来定义。
圆的七十二变数学
“圆的七十二变”这个表述并不是数学中的专业术语,它可能是对圆在数学和几何学中多种应用和变形的形象描述。
在数学和几何学中,圆是一个非常重要的概念,它有着广泛的应用和多种变形。
以下是一些与圆相关的数学概念和变形:
1. 圆的周长和面积:这是圆最基本的两个属性。
周长是圆的边界长度,计算公式为C=2πr,其中r为半径。
面积是圆内部所包含的区域的大小,计算公式为S=πr²。
2. 圆弧和扇形:圆弧是圆上任意两点间的部分长度,其公式为L=θr,其中θ为圆心角的大小(以弧度制表示)。
扇形则是由两个半径和它们之间的圆弧所围成的区域,其面积计算公式与圆心角和半径有关。
3. 圆的方程:在平面直角坐标系中,圆可以用方程x²+y²=r²来表示,其中r为圆的半径。
此外,还有参数方程和极坐标方程等其他表示方法。
4. 圆的变形:通过对圆的平移、旋转、缩放等变换,可以得到不同的几何图形。
例如,将圆沿其直径进行对折可以得到一个半圆;将圆进行缩放可以得到椭圆等。
5. 圆与其他几何图形的组合:通过将圆与其他几何图形(如直线、多边形等)进行组合,可以得到更复杂的几何图形,如圆柱体、圆锥体等。
以上仅是与圆相关的一些数学概念和变形的简要介绍。
实际上,圆在数学和几何学中的应用非常广泛,涉及到许多高级的数学理论和实际应用。
几何图形的相关性质和变换方法
几何图形的相关性质和变换方法一、几何图形的性质1.点、线、面的基本性质–点:没有长度、宽度和高度,只有位置。
–线:由无数个点连成,有长度和方向。
–面:由无数个线段围成,有面积和边界。
2.角度和弧度的概念–角度:用来度量两条射线之间的夹角,单位为度、弧度。
–弧度:以圆的半径为长度单位,用来度量角的大小。
3.平行线、相交线、异面直线等基本概念–平行线:在同一平面内,永不相交的直线。
–相交线:在同一平面内,只有一个交点的直线。
–异面直线:不在同一平面内的直线。
4.三角形、四边形、圆等基本图形的性质–三角形:由三条边和三个角组成,具有稳定性。
–四边形:由四条边和四个角组成,具有不稳定性。
–圆:平面上所有到定点距离相等的点的集合。
5.几何图形的对称性–对称轴:将图形平分的直线。
–对称点:关于对称轴或对称中心对称的点。
–对称图形:通过某条对称轴或某个对称中心对称的图形。
二、几何图形的变换方法•定义:在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。
•特点:图形的大小、形状和方向不变,位置发生变化。
•定义:在平面内,将一个图形绕着某一点转动一个角度。
•特点:图形的大小、形状不变,方向发生变化。
•定义:在平面内,将一个图形沿着某条直线对折,使得对折后的两部分完全重合。
•特点:图形的大小、形状不变,位置发生变化。
4.相似变换–定义:在平面内,将一个图形的每个点按照某个比例关系进行变换,使得变换后的图形与原图形形状相同,但大小不同。
–特点:图形的形状不变,大小发生变化。
5.投影变换–定义:将平面内的图形通过某个方向(如垂直方向)投影到另一个平面或直线上的变换。
–特点:图形的大小、形状不变,但部分或全部信息发生变化。
6.组合变换–定义:将多种几何变换方法结合使用,对一个图形进行变换。
–特点:图形的大小、形状、位置发生变化。
通过掌握以上几何图形的性质和变换方法,可以更好地理解和解决各类几何问题,提高解题能力。
《圆的面积》说课稿15篇
《圆的面积》说课稿15篇《圆的面积》说课稿1一、把握教材,定为目标(一)教材《圆的面积》是义务教育课程标准试验教科书小学数学第十一册第四单元的内容,它是在学生掌握了圆的周长及三角形、长方形、平行四边形、梯形的面积计算基础上进行教学的,而像圆这样的曲线图形的面积计算,学生还是第一次接触到。
引导学生运用转化的思想求圆的面积。
由于让学生完全自主探索如何把圆转化成长方形是有很大难度的,教材上给了明确的提示,让学生利用学具进行操作,在此基础上,让学生自主发现圆的面积与拼成的长方形面积的关系,圆的周长、半径和长方形长、宽的关系,并推出圆的面积计算公式。
之后练习中安排了已知半径、直径或圆的周长求面积的题目,还安排了一些求组合图形面积的题目,以培养学生综合运用知识的能力。
(二)目标基于以上认识,我认为本课的教学目标应确定为:1、知识目标:使学生理解圆面积公式的推导过程,掌握求圆面积的方法,并能正确计算;并能运用公式解答一些简单的实际问题。
2、能力目标:通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。
3、德育目标:渗透极限思想,进行辩证唯物主义观念的启蒙教育。
(三)重点、难点本节课的重点是:正确计算圆的面积。
本节课的难点是:圆面积公式的推导。
二、选择教法,突出主体充分利用学生已学的数学知识和数学思想方法进行教学。
首先教学圆面积定义时,先让学生回忆已学过的圆形面积的含义,教学圆的面积计算公式之前,让学生体会到将一个圆形转换成已学过的图形,是一种基本的数学思想和方法,但每个图形面积公式的推导过程又有其自身的特殊性。
在充分发挥多媒体课件的作用,利用它的优势,不断把圆细分,这样拼出的图形越来越接近于长方形,效果更直观。
三、教学过程与总体评价(一)导入新课我们之前学过哪些图形的面积,那么圆的面积怎样计算呢?只要知道了圆的面积公式,就可以解决计算出圆的面积,这节课我们就一起来学习圆的面积。
答疑解惑之图形变换与圆
答疑解惑之图形变换与圆作者:朱桂军来源:《数学金刊·初中版》2011年第04期一、图形的变换在学习的几种图形变换中。
我们怎么确定图形是运用了哪种变换?图形变换中我们主要接触了平移、旋转和轴对称这三种,在这三种变换过程中,不变的是图形的形状和大小,改变的仅仅是图形的位置,(1)要判断一个图形是否包含平移变换,首先要观察该图形是否包含平移所需的“基本图形”,然后再观察平移的方向或平移的距离,即平移的方式。
操作方法为观察对应点所连的线段是否平行(或在同一条直线上)且相等,(2)判断一个图形是否包含旋转变换时,我们首先确定它的旋转中心和旋转角度,再观察图形上的每一点是否都绕旋转中心沿相同的方向旋转相等的角度,操作方法为观察各组对应点与旋转中心的连线的夹角是否相等,(3)判断一个图形是否包含轴对称变换时,关键是确定它的对称轴,即观察各组对应点连线段的垂直平分线是否重合为一条直线,成轴对称与轴对称图形是一回事吗?不是,成轴对称与轴对称图形是两个极易混淆的概念,它们之间既有联系。
又有区别,我们把一个图形沿着一条直线对折,如果能与另一个图形重合,则称这两个图形成轴对称,所以,成轴对称是指两个图形具有的特殊位置关系,而轴对称图形是指把一个图形沿着某一条直线折叠,直线两旁的部分能够完全重合,所以轴对称图形是指一个图形自身所具有的一种特殊形状,从定义不难看出,如果把成轴对称的两个图形看成一个整体,那么这个整体便是一个轴对称图形,而如果把轴对称图形位于对称轴两旁的部分看成两个个体,那么这两个个体就成轴对称,如何简便地找到成轴对称的图形的对称轴?首先找到成轴对称的一组对应点,然后作该组对应点连线段的垂直平分线,这条垂直平分线即为所求的对称轴,对于有公共点且成轴对称的两个图形,由于它们的公共点在对称轴上,因此,只要作经过两个公共点的直线即可,怎样准确地判断一个图形是不是中心对称图形?中心对称图形是指绕某一点旋转1800后能与自身重合的图形,所以判断一个图形是否为中心对称图形时,可先找旋转中心,观察图形是否包含旋转变换,然后观察各组对应点是否都关于同一点对称,即对应点的连线段是否都经过同一点,且被该点平分,如果上述两步都是肯定回答,那么该图形便是中心对称图形,一个正多边形旋转它一个内角的度数。
圆中的基本图形和常见数学思想
圆中的基本图形和常见数学思想圆一直是初中阶段数学学习的一个难点,因为圆中知识点很多,综合性也很强。
而且中考中圆常常和四边形,三角形,甚至代数中的二次函数结合起来考察学生的能力。
所以学生遇到圆的综合题往往觉得相当吃力。
针对这种情况,笔者一直在考虑如何突破圆的教学难关,让学生对圆不再望而生畏,并且提高解题能力。
教师有必要把圆中涵盖的知识点融入到几个基本图形中,并教会学生在复杂的图形中提炼出基本图形。
另外一定要帮助学生进行解题方法的训练和总结。
让他们熟悉圆中常用的数学方法。
笔者归纳了以下几个方面的内容,概述如下。
1 圆中基本图形主要有这个图形中涵盖了:1、垂径定理及其推论;2、同弧所对的圆心角是圆周角的两倍;3、半径、弦心距、弓形高、弦长四者的关系;4、直径所对的圆周角是直角这个图形中涵盖了:1、圆的内接四边形的对角互补,外角等于内对角,2、相似关系;3、割线定理这个图形中涵盖了:1、弦切角等于所夹弧所对的圆周角,2、相似关系;3、切割线定理这个图形中涵盖了:1、三角形的外心是三角形三条垂直平分线的交点,并且到三角形三个顶点的距离相等2、同弧所对的圆心角是圆周角的两倍这个图形中涵盖了:1、从圆外引圆的两条切线,切线长相等。
2、三角形的内心是三角形三条角平分线的交点,并且到三角形三条边的距离相等3、三角形的面积和周长、内切圆半径三者的关系,4、三角形两条内角角平分线组成的夹角与第三个内角的关系这个图形中涵盖了:1、同弧所对的圆周角相等,2、相似关系,3、相交弦定理这个图形中涵盖了:1、直径所对的圆周角是直角,90度的圆周角所对的弦是直径2、相似关系,射影定理,3、直角三角形的外心在斜边的中点4、直角三角形的外接圆的半径等于斜边的一半这个图形中涵盖了:1、连心线垂直平分公共弦2、圆的对称性这个图形中涵盖了:等边三角形的内切圆半径、外接圆半径、等边三角形的边长三者的比例关系。
这个图形中涵盖了:正方形的内切圆半径、外接圆半径、正方形的边长三者的比例关系。
第三章圆的基本性质大单元教学设计浙教版九年级数学上册
8.探索弧长计算公式及扇形的面积计算公式,并能利用公式解决问题。
内容分析
本章的主要内容有:圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接 圆等有关概念.圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关
的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学
学生的数学运用能
力.
1. 经历探 索扇 形面积 1.扇形的概念和扇 推导扇形面积计算
计算公式的过程,培养 形面积的计算公式. 公式的过程.掌握扇
学生的探索能力.
2.弧长与扇形面积 形面积计算公式,会
2. 了解扇 形面 积公式 的关系.
用公式解决问题.
后,能用公式解决问
题,训练学生的数学运
用能力.
图形旋转后的图形的 并且还知道要确定 旋转中心的距离相
作法.
一个三角形旋转后 等,对应点与旋转中
的位置。
心的连线所成的角
垂径定理 2 圆心角 2
彼此相等的性质.
1.通过实验观察,让学 1.了解圆是轴对称 使学生掌握垂径定
生理解圆的轴对称性; 图形,过圆心的任意 理、记住垂径定理的
2.掌握垂径定理,理解 一条直线(或直径所 题设和结论.
其探索和证明过程; 在的直线)都是它的 对垂径定理的探索
运 用垂径 定理 解决有 对称轴.
和证明,在解决问题
关的计算和证明问题. 2.通过猜想,证明, 时想到用垂径定理.
形成垂径定理.
研 究垂径 定理 的逆定 研究垂径定理及其 证明垂径定理,会运
理.
逆定理.
用垂径定理及其逆
2.运用垂径定理的逆 2.解决有关弦的问 定理解决问题.
定理解决问题.
浙江省中考数学总复习第五章基本图形(二)第24讲圆的有关计算讲解篇(2021年整理)
浙江省2018年中考数学总复习第五章基本图形(二)第24讲圆的有关计算讲解篇编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第五章基本图形(二)第24讲圆的有关计算讲解篇)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第五章基本图形(二)第24讲圆的有关计算讲解篇的全部内容。
第24讲 圆的有关计算圆的弧长及扇形面积公式考试内容考试要求圆的半径是R ,弧所对的圆心角度数是nb弧长公式 弧长l =错误! 扇形面积公式S 扇=错误!=错误!lR拓展求运动所形成的路径长或面积时,关键是理清运动所形成图形的轨迹变化,特别是扇形,需要理清圆心与半径的变化.考试内容考试要求基本 思想转化思想:处理不规则图形的面积时,注意利用割补法与等积变换转化为规则图形,再利用规则图形的公式求解.c1.(2017·衢州)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB∥CD∥EF,AB =10,CD =6,EF =8.则图中阴影部分的面积是( )A.错误!πB.10π C.24+4πD.24+5π2.(2017·温州)已知扇形的面积为3π,圆心角为120°,则它的半径为____________________.3.(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB 长为30cm,则弧BC的长为____________________cm.(结果保留π)【问题】(1)如图,将长为8cm的铁丝首尾相接围成半径为2cm的扇形.则S扇形=________cm2。
计算机图形学第4章图形变换(2)
5、使直线回到原来位置,结果图形即为原图形绕 指定直线旋转变换后的图形。
直线回到原来位置需要进行(3)~(1)的逆变换,其中:
图形绕空间任意轴旋转的总变换矩阵是
H = T
4.3.5 三维对称变换
三维对称变换可以是关于给定对称轴的或者 是关于给定对称平面的变换。三维对称矩阵的建 立类似于二维的。关于给定对称轴的对称变换等 价于绕此轴旋转180°,可以直接使用已讨论过 的相对于轴线的旋转变换公式。关于给定对称平 面的对称变换其最简单的是对称于坐标平面的变 换。当对称平面是坐标平面时(x-y,或x-z,y-z), 可以将此变换看成是左手系和右手系之间的转换。
变换过程为 [x' y' z' 1]=[x y z 1]· S(Sx,Sy,Sz) 其中,Sx,Sy,Sz分别为在x,y,z坐标轴方向上的 比例系数。
4.3.3 三维旋转变换
三维旋转变换:是指将物体绕某个坐标轴旋转 一个角度,所得到的空间位置变化。我们规定旋 转正方向与坐标轴矢量符合右手法则,即从坐标 轴正值向坐标原点观察,逆时针方向转动的角度 为正。如图所示。
设用户选定的窗口范围为(wxl,wyl)和(wxr,wyr), 视口范围为(vxl,vyl)和(vxr,vyr)。 将窗口中的图形转为视口中图形的过程: 1、先平移窗口使其左下角与坐标原点重合; 2、再比例变换使其大小与视口相等; 3、最后再通过平移使其移到视口位置。
4.3 三维几何变换
三维几何变换是二维几何变换的扩展。三维齐 次变换可用4×4矩阵表示。 平移变换 - 比例变换 - 旋转变换 - 绕空间任意轴 的旋转变换 - 对称变换 - 错切变换
四、二维观察变换将投影平面上矩形窗内的图形 变换到显示器(或规范化)坐标中的视口内。
圆的证明与计算 (基本图形)
圆的证明与计算(基本图形)圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系,以及中点等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推论: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,近几年武汉市中考题的22题的第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
三、解题方法:1、判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;(07武汉)22.(本题8分)如图,等腰三角形ABC中,AC=BC=10,AB=12。
以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。
(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值。
(第22题图)(10武汉)22.(本题满分8分) 如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.2、与圆有关的计算:计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
圆与图形变换易错扫描
使 点 C旋 转 到AB 边 的延 长 线 点 C
处 .那 么AC 边扫
图1
图2
其 中的 一 种 情 形.
过 点 D 直 线 Ⅳ上 作
A曰,交AB于 点 , 交 C D于 点 J 7 、 【因 为
过 的 图形 ( 中 图 阴影 部 分 )的 面
积 是 — —
E = 鲋 C一
形变换
1 .平 移 变 换 与 轴 对 称 变 换
5 。 ( ) 图 l 所 示 , AAB 绕 点 A 5 ;2 如 0 当 C
顺 时针 旋 转 2。 . 5时 E= B AC +
知 识点 1 将 图形 沿某 个 方 向平
: j: ::: l: j : : :! : : j : 二 l : : 二 : j j
1 1/ 22 14 o
5 ÷( 8 7 9 ^ 6 )= . + x 4
去 R △A t 曰C和 扇 形BC 面 积 来 C 的
计 算.
要 l 数字公开
在 Rt △ABc中 , C B =
AB ・ i 3 。 3 c , 阴 5 sn 0 = m . = , + 形 s 5扇 尉 一 s 盯c s - 嬲 - 尉 s 一 10 2
A
Байду номын сангаас
坐标 的比等 于k 或 .解题 时 易只在第
一
象限 内作 图, 造成 漏解-
这 样 我 们 就 会 找 到 不 少解 题 思
路 了 . 面给 出两种 方法. 下 确 定 一 个 旋 转 变 换
霉
如 1 示点 对 图2 ,A 所
・
舅
解 1四 形曰D 法 边 Ac
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1如图。
AB 为⊙O 直径,AE 与过C 点切线垂直,垂足为E 。
(1) 求证:AC 评分∠EAB ;
(2) 若BC=8,sin ∠ECA=
53,求EC
2如图。
AB 为⊙O 直径,C 为⊙O 上一点,AC 平分∠EAB ,AE ⊥CE 于E ,
(1) CE 为⊙O 的切线;
(2) 若AB=10,sin ∠ACE=5÷5,求CE
3如图。
AB 为⊙O 直径,C ,D 为⊙O 上两点,∠BAC=∠DAC ,CE ⊥AD 于E ,连BC ,
(1) 求证:CE 是⊙O 的切线;
(2) 若DE=1,BC=2,求劣弧BC 的长。
4如图。
AB 为⊙O 直径,AB=10,玄AD=6,玄AC 平分∠BAD ,CE ⊥AD 于E ,
(1) 求证;CE 为切线;
(2) 求AC 的长。
B
B
B
B
5如图。
AB 为⊙O 直径,CE 与⊙O 相切于C ,AE ⊥CE 于E ,交
⊙O 于D ,连CD , (1):求证:AC 平分∠DAB ;
(2)若DE=2,sin ∠DAC=5÷5,求⊙O 的半径
6如图。
AB 为⊙O 直径,C 为⊙O 上一点,过C 的切线CE ⊥AE 于E ,交圆于点D ,连AC ,CD ,BC (1) 求证:AC 平分∠BAD ; (2) 若DC=4,tan ∠DCE 2
1,求半径OA
7如图。
AB 为⊙O 直径,C 为⊙O 上一点,AE 与过C 点的切线垂直于E ,交圆于D ,连CD ,CB , (1) 求证:CD=CB ; (2) 若AC=25,CD=5,求AD 。
8.如图,AB 是⊙O 的直径,AB=43,点E 为线段OB 上一
点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点
E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,A
F ⊥PC
于点F ,连接CB .
(1)求证:CB 是∠ECP 的平分线;
(2)求证:CF=CE ;
(3)当
CP CF =43时,求劣弧ˆBC 的长度(结果保留π)
A B
B
B。