2019上海市高中数学最新版椭圆专题练习含答案

合集下载

【精品】2019-2020年度最新人教版最新高中数学高考总复习椭圆习题及详解及参考答案

【精品】2019-2020年度最新人教版最新高中数学高考总复习椭圆习题及详解及参考答案

教学资料参考范本【精品】2019-2020年度最新人教版最新高中数学高考总复习椭圆习题及详解及参考答案撰写人:__________________部门:__________________时间:__________________一、选择题1.设0≤α<2π,若方程x2sin α-y2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A.∪B.⎣⎢⎡⎭⎪⎫π2,3π4 C.D.⎝ ⎛⎭⎪⎫3π4,3π2[答案] C[解析] 化为+=1, ∴->>0,故选C.2.(文)(2010·瑞安中学)已知双曲线C 的焦点、顶点分别恰好是椭圆+=1的长轴端点、焦点,则双曲线C 的渐近线方程为( )A .4x±3y=0B .3x±4y=0C .4x±5y=0D .5x±4y=0[答案] A[解析] 由题意知双曲线C 的焦点(±5,0),顶点(±3,0),∴a =3,c =5,∴b==4,∴渐近线方程为y =±x ,即4x ±3y =0.(理)(2010·广东中山)若椭圆+=1过抛物线y2=8x 的焦点,且与双曲线x2-y2=1,有相同的焦点,则该椭圆的方程是( )A.+=1B.+y2=1C.+=1D .x2+=1[答案] A[解析] 抛物线y2=8x 的焦点坐标为(2,0),则依题意知椭圆的右顶点的坐标为(2,0),又椭圆与双曲线x2-y2=1有相同的焦点,∴a=2,c =,∵c2=a2-b2,∴b2=2,∴椭圆的方程为+=1.3.分别过椭圆+=1(a>b>0)的左、右焦点F1、F2作两条互相垂直的直线l1、l2,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫0,22C.D.⎝⎛⎦⎥⎤0,22 [答案] B[解析] 依题意,结合图形可知以F1F2为直径的圆在椭圆的内部,∴c<b,从而c2<b2=a2-c2,a2>2c2,即e2=<,又∵e>0,∴0<e<,故选B.4.椭圆+=1的焦点为F1、F2,椭圆上的点P 满足∠F1PF2=60°,则△F1PF2的面积是( )A. B. C.D.643[答案] A[解析] 由余弦定理:|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=|F1F2|2.又|PF1|+|PF2|=20,代入化简得|PF1|·|PF2|=,。

文科数学高考真题分类汇编 椭圆答案

文科数学高考真题分类汇编 椭圆答案

所以圆心到直线的距离d = 2ab = a ,整理为 a2 = 3b2 , a2 + b2
( ) 即 a2 = 3 a2 − c2
2a2
=
3c2
c2
,即
a2
=
2 3
,e = c = 6 ,故选 A. a3
6.A【解析】当0 m 3 ,焦点在 x 轴上,要使 C 上存在点 M 满足 AMB = 120 ,
4.解析 (1)设椭圆 C 的焦距为 2c.
因为 F1(-1,0),F2(1,0),所以 F1F2=2,c=1.
5 又因为 DF1 = 2 ,AF2⊥x 轴,所以 DF2=
DF12 − F1 F22 =
(5 )2 − 22 = 3 ,
2
2
因此 2a=DF1+DF2=4,从而 a=2. 由 b2=a2-c2,得 b2 =3.
2.解析:由题意可得:3 p

p
=
p 2
2
,解得
p
=
8 .故选
D.
3.解析(I)由题意得, b2=1,c=1. 所以a2=b2+c2=2.
所以椭圆C的方程为 x2 + y2 = 1. 2
(Ⅱ)设P (x1 ,y1), Q(x2 ,y2),
则直线AP的方程为 y =
y1 −1 x +1 . x1
令y=0,得点M的横坐标 x M
=

x1 . y1 −1
又 y1 = kx1 + t ,从而 |OM |= xM
= | x1 |. kx1 + t − 1
同理, |ON |= | x2 |. kx2 + t −1
y = kx + t,

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题.椭圆中心在坐标原点,对称轴为坐标轴,离心率为,长、短轴之和为,则椭圆方程为.16410022=+y x .11006422=+y x .1100641641002222=+=+y x y x 或 .110818102222=+=+y x y x 或 .若方程+=,表示焦点在轴上的椭圆,那么实数的取值范围是 .(,+∞) .(,) .(,+∞) .(,).已知圆+=,又(3,),为圆上任一点,则的中垂线与之交点轨迹为(为原点) .直线.圆.椭圆.双曲线二、填空题.设椭圆1204522=+y x 的两个焦点为、,为椭圆上一点,且⊥,则-=. .(年全国高考题)椭圆的一个焦点是(,),那么. 三、解答题.椭圆2222by a x +(>>)()、′()()为椭圆的右焦点,若直线⊥′,求椭圆的离心率..在面积为的△中,21,建立适当的坐标系,求以、为焦点且过点的椭圆方程..如图,从椭圆2222by a x +=(>>)上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥.()求椭圆的离心率;()设是椭圆上任意一点,是右焦点,求∠的取值范围;()设是椭圆上一点,当⊥时,延长与椭圆交于另一点,若△的面积为3,求此时椭圆的方程.参考答案一、 二、5,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(-)-×. -5. 三、.215- .以所在直线为轴,线段的中垂线为轴建立坐标系,可得椭圆方程为.1315422=+y x .()22 ()[,2π] ()1255022=+y x 提示:()∵⊥轴,∴-,代入椭圆方程求得a b 2,∴-,,2ab k ac b AB -= ∵∥,∴-c b abac b =⇒-=2 从而22. ()设,∠θ,则2a 1F 2c.由余弦定理,得θ212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当时,上式取等号.∴≤θ≤,θ∈[,2π]. ()椭圆方程可化为122222=+cy c x ,又⊥,∴-.21==bak AB2(-)代入椭圆方程,得-2c .求得,526c 到的距离为,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则2. 椭圆的准线方程是3. 已知、为椭圆192522=+y x 的两个焦点,、为过的直线与椭圆的两个交点,则△的周长是 4. 椭圆12222=+by a x ()0>>b a 上有一点到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则点的坐标是5. 椭圆12222=+b y a x 焦点为、,是椭圆上的任一点,为 的中点,若 的长为,那么的长等于6. 过椭圆1273622=+y x 的一个焦点作与椭圆轴不垂直的弦,的垂直平分线交于,交轴于,则FN :AB7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是,则椭圆的方程是 8. 方程1162522=++-my m x 表示焦点在轴上的椭圆,则的值是 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是10. 椭圆142222=+by b x 上一点到右焦点的距离为,则点到左准线的距离是11. 椭圆⎪⎭⎫⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是 12. 曲线()023122=+--+m my y m x 表示椭圆,那么的取值是13. 椭圆13422=+y x 上的一点()11,y x A ,点到左焦点的距离为25,则 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是15. 椭圆中心在原点,焦点在轴上,两准线的距离是5518,焦距为52,其方程为 16. 椭圆上一点与两个焦点、所成的∆1F 中,βα=∠=∠1221,F PF F PF ,则它的离心率17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则α的取值是18. 若()()065562222=--+-λλλλy x 表示焦点在轴上的椭圆,则λ的值是19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫ ⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x20. 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的倍,则点的坐标是21. 中心在原点,对称轴在坐标轴上,长轴为短轴的倍,且过()6,2-的椭圆方程是 22. 在面积为的△中,2tan ,21tan -==N M ,那么以、为焦点且过的椭圆方程是 23. 已知△,()()0,3,0,3-B A 且三边、、的长成等差数列,则顶点的轨迹方程是24. 椭圆1422=+y m x 的焦距为,则的值是 25. 椭圆14922=+y x 的焦点到准线的距离是 26. 椭圆()112222=-+m y m x 的准线平行于轴,则的值是 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是 28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为的三角形,两准线间的距离是225,则此椭圆方程是 31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转︒,所得椭圆方程是 33. 椭圆192522=+y x 上一点到右准线的距离是,那么点右焦半径是34. 是椭圆14322=+y x 的长轴,是一个焦点,过的每一个十等分点作的垂线,交椭圆同一侧于点,,,⋅⋅⋅⋅⋅⋅,,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是 35. 中心在原点,一焦点为(,),长短轴长度比为,则此椭圆方程是 36. 若方程222x ky +=表示焦点在轴的椭圆,则的取值是37. 椭圆221123x y +=的焦点为、,点为椭圆上一点,若线段的中点在轴上,那么1PF :2PF38. 经过)()122,M M --两点的椭圆方程是39. 以椭圆的右焦点(为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于、,若直线是圆的切线,则椭圆的离心率是40. 椭圆的两个焦点、及中心将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是41. 点(),0a 到椭圆2212x y +=上的点之间的最短距离是 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则的取值是 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则的值是 44. 设是椭圆上一点,两个焦点、,如果00211275,15PF F PF F ∠=∠=,则离心率等于45. 是椭圆22143x y +=上任一点,两个焦点、,那么12F PF ∠的最大值是 46. 椭圆2244x y +=长轴上一个顶点为,以为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是47. 椭圆长轴长为,焦距,过焦点作一倾角为α的直线交椭圆于、两点,当MN 等于短轴长时,α的值是48. 设椭圆22143x y +=的长轴两端点、,点在椭圆上,那么直线与的斜率之积是 49. 倾斜角为4π的直线与椭圆2214x y +=交于、两点,则线段的中点的轨迹方程是 50. 已知点(,)是椭圆上的一点,是椭圆上任一点,当弦长取最大值时,点的坐标是椭圆训练题答案. 544-或 . 1y =± . 20 . ()()0,0,b b -或 . 2sa - . 1:4 . 2222119559x y x y +=+=或 .9252m <<. 3.. (0, . ()1,+∞ . 1. ()()1,1.22194x y+= . cos2cos2αβαβ+- .()37,,88k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.). 8. 1515,44⎛⎛ ⎝⎭⎝⎭或.222211148371352x y x y +=+=或 . 2241153x y += . 2213627x y += . 53或. . 102m m <≠且 . 22143x y +=. .2212575x y += . 222211259925x y x y +=+=或 .2211510x y += . ()()22441925x y +-+= . 6. 20.222221111x y t t t +=-- . ()0,1 . 7 . 221155x y +=.1 .2π. a a +. 3⎤⎥⎣⎦. ≥且≠.3 . ︒ . 1625 . 566ππ或 . 34-. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭.13⎛⎫- ⎪ ⎪⎝⎭椭圆训练试卷一、选择题:本大题共小题,每小题分,共分.请将唯一正确结论的代号填入题后的括号内..椭圆3m 2y mx 222++=1的准线平行于轴,则实数的取值范围是 ( ).-1<<3 .-23<<且≠.-1<<3且≠.<-且≠. 、、、分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( ).22a b.ba 2.ca 2.cb 2.短轴长为5,离心率为32的椭圆的两个焦点分别为、,过作直线交椭圆于、两点,则Δ的周长为 ( ). . . ..下列命题是真命题的是( ).到两定点距离之和为常数的点的轨迹是椭圆.到定直线ca 2和定(,)的距离之比为ac 的点的轨迹是椭圆.到定点(,)和定直线ca 2的距离之比为ac(>>)的点的轨迹 是左半个椭圆.到定直线ca 2和定点(,)的距离之比为ca (>>)的点的轨迹是椭圆.是椭圆4x 23y 2上任意一点,、是焦点,那么∠的最大值是( )..300...椭圆22b 4x 22b y 上一点到右准线的距离是3,则该点到椭圆左焦点的距离是( )..23.3 ..椭圆12x 23y 2的焦点为和,点在椭圆上,如果线段的中点在轴上,那么是的( ).倍.倍.倍.倍.设椭圆22ax 22b y (>>)的两个焦点是和,长轴是1A ,是椭圆上异于、的点,考虑如下四个命题: ①1F 1F ; ②<<;③若越接近于,则离心率越接近于; ④直线与的斜率之积等于22a b .其中正确的命题是 ( ) .①②④ .①②③ .②③④ .①④.过点M(-2,0)的直线与椭圆+=交于P1、P2两点,线段P1P2的中点为P,设直线的斜率为(≠),直线OP的斜率为,则的值为 ( ) .2.-2.21.-21 .已知椭圆22a x 22by (>>)的两顶点(,)、(,),右焦点为,且到直线的距离等于到原点的距离,则椭圆的离心率满足 ( ).<<22.22<<. <<2.2<<.设F1、F2是椭圆2222b y ax=1(>>)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( ).2-3.3-1.23 .22.在椭圆4x 23y 2内有一点(,),为椭圆右焦点,在椭圆上有一点,使的值最小,则这一最小值是` ( ).25.27 . .二、填空题:本大题共小题,每小题分,共分.请将最简结果填入题中的横线上..椭圆3x 2ky 2的离心率是的根,则 ..如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 ..过椭圆3y 2x 22+=1的下焦点,且与圆+-++23=相切的直线的斜率是 . .过椭圆9x25y 2的左焦点作一条长为12的弦,将椭圆绕其左准线旋转一周,则弦扫过的面积为 .三、解答题:本大题共小题,共分.解答题应写出必要的计算步骤或推理过程. .(本小题满分分)已知、为椭圆22a x 22a 9y 25上两点,为椭圆的右焦点,若58,中点到椭圆左准线的距离为23,求该椭圆方程. .(本小题满分分)设中心在原点,焦点在轴上的椭圆的离心率为23,并且椭圆与圆25交于、两点,若线段的长等于圆的直径. (1) 求直线的方程; (2) 求椭圆的方程. .(本小题满分分)已知9x 25y 2的焦点、,在直线:上找一点,求以、为焦点,通过点且长轴最短的椭圆方程..(本小题满分分)一条变动的直线与椭圆4x 22y 2交于、两点,是上的动点,满足关系·.若直线在变动过程中始终保持其斜率等于.求动点的轨迹方程,并说明曲线的形状. .(本小题满分分)设椭圆22a x 22by 的两焦点为、,长轴两端点为、.(1) 是椭圆上一点,且∠,求Δ的面积;(2) 若椭圆上存在一点,使∠,求椭圆离心率的取值范围..(本小题满分分)已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线-+2=的距离为3. ()求椭圆的方程;()设椭圆与直线=+(≠)相交于不同的两点M、N,当|AM|=|AN|时,求的取值范围.椭圆训练试卷参考答案一、 D 二、.或49.12y 8x 22=+.5623±.π三、.解:设(,),(,),由焦点半径公式有58,∴21(∵54),即中点横坐标为41,又左准线方程为45,∴414523,即,∴椭圆方程为925..解:()直线的方程为21; ()所求椭圆的方程为12x 23y 2..解:由9x25y 2,得(,),(,),关于直线的对称点(,),连交于一点,即为所求的点,∴2a 5,∴5,又,∴,故所求椭圆方程为20x 216y 2..解:设动点(,),动直线:,并设(,),(,)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去,得2m 2,其Δ16m 2(2m 2)>,∴6<<6,3m4, 34m 22-,故2,2.由,得,也即(),于是有3mx434m 22-.∵,∴.由,得椭圆7x 27y 22夹在直线±6间两段弧,且不包含端点.由,得椭圆..解:()设,,则21F PF ∆21∠,由2a , 4c∠,得212PF F cos 1b 2∠+.代入面积公式,得 21F PF ∆2121PF F cos 1PF F sin ∠+∠∠2PF F 2133.()设∠α,∠β,点(,)(<<).θ(αβ)βα-β+αtg tg 1tg tg22020000y x a 1y x a y x a --++-220200a y x ay 2-+.∵220a x 220b y ,∴22b a .∴θ202220y b b a ay 2-- 022y c ab 2-3.∴≤3≤3, 即3c4a 2c-4a≥,∴≥,解之得≥32,∴36≤<为所求. .解:()用待定系数法.椭圆方程为22y 3x +=1.()设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(+)++(-)=.由Δ>0,得<+ ①,∴=1k 3mk 32x x 2N M +-=+,从而,=+=1k 3m 2+.∴=km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =+ ②.将②代入①,得2m >,解得0<<.由②得=31m 2->0.解得>21.故所求的取值范围为(21,2).。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.椭圆的两个焦点F1、F2,点P在椭圆C上,且PF1⊥F1F2,,|PF1|=,|PF2|=.(1)求椭圆C的方程;(2)若直线L过圆(x+2)2+(y-1)2=5的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。

【答案】(1);(2)8x-9y+25=0【解析】(1)由椭圆的定义可知a=3,在Rt△PF1F2中,由勾股定理得c=,从而b2=4, 所以椭圆C的方程为=1;(2) 法一:(韦达定理)设直线l的方程为y=k(x+2)+1,代入椭圆C的方程并化简得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.由A,B关于点M对称可得,结合韦达定理可得,所以直线l的方程为8x-9y+25=0.(经检验,符合题意)法二:(点差求斜率)因为A、B关于点M对称,所以x1+ x2=-4, y1+ y2=2,由题意x1x2且A、B的坐标满足椭圆方程,两式相减得直线l的斜率,因此直线l的方程为8x-9y+25=0.(经检验,符合题意.)试题解析:(1)因为点P在椭圆C上,所以,a=3. 在Rt△PF1F2中,故椭圆的半焦距c=,从而b2=a2-c2=4, 所以椭圆C的方程为=1.法一:设A,B的坐标分别为(x1,y1)、(x2,y2),由圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1),从而可设直线l的方程为 y=k(x+2)+1,代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.因为A,B关于点M对称. 所以解得,所以直线l的方程为即8x-9y+25=0. (经检验,符合题意)法二:已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1x2且①②由①-②得③因为A、B关于点M对称,所以x1+ x2=-4, y1+ y2=2, 代入③得=,即直线l的斜率为,所以直线l的方程为y-1=(x+2),即8x-9y+25=0.(经检验,所求直线方程符合题意.)【考点】1.椭圆的定义与方程;2.直线与椭圆的位置关系3.如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程.(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k 的值,使以CD为直径的圆过E点?请说明理由.【答案】(1);(2).【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:解:(1)直线AB方程为:bx-ay-ab=0.依题意解得∴椭圆方程为.[(2)假若存在这样的k值,由得.∴①设,、,,则②而.要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则,即∴③将②式代入③整理解得.经验证,,使①成立.综上可知,存在,使得以CD为直径的圆过点E.【考点】(1)椭圆的标准方程;(2)直线与椭圆的综合问题.4.如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.(1)证明:直线EG与FH的交点L在椭圆W:上;(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.【答案】(1)证明见解析;(2)时,取最大值.【解析】解题思路:(1)由点写出直线方程,联立直线方程得到交点坐标,,验证点满足椭圆方程;(2)联立直线与椭圆的方程,常用“设而不求”的方法,求弦长,进而求所求比值,常用换元法求最值.规律总结:直线与圆锥曲线的位置关系问题,一般综合性强.一般思路是联立直线与圆锥曲线的方程,整理得关于的一元二次方程,常用“设而不求”的方法进行求解.试题解析:(1)点,,,,则直线EG:,直线FH:,则直线EG与FH的交点,因为,故直线EG与FH的交点L在椭圆W:上.(2)联立方程组消去y,得,设,,则,,由,且得.,由于时,直线l与矩形ABCD的边AB、CD相交,所以,则,所以时,取最大值.【考点】直线与椭圆的位置关系.5.椭圆的两个焦点分别是,若上的点满足,则椭圆的离心率的取值范围是()A.B.C.D.或【答案】C.【解析】设椭圆的方程为,,分别为其左右焦点,由椭圆的第二定义或焦半径公式知,.由得,即,再由即可求出离心率的取值范围.【考点】椭圆的几何性质;椭圆的第二定义.6.(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为.(1)求椭圆的标准方程;(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.【答案】(1);(2)证明详见解析.【解析】(1)结合图形及椭圆的定义先得到的周长为,进而根据条件列出方程组,从中求解即可得出的值,进而可写出椭圆的方程;(2)由(1)确定,进而设点,设直线,联立直线与椭圆的方程,解出点,设直线,可得,进而根据三点共线得出,将点的坐标代入并化简得到,进而求出点的坐标,,然后写出直线的方程并化简得到,从该直线方程不难得到该直线恒通过定点,问题得证.(1)依题意有:的周长为所以,则椭圆的方程为 4分(2)由椭圆方程可知,点设直线,由得,从而,,即点同理设直线,可得 7分由三点共线可得,即,代入两点坐标化简可得9分直线,可得点,即从而直线的方程为化简得,即,从而直线过定点 12分.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系.7.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当<时,求实数取值范围.【答案】(1);( Ⅱ).【解析】(1)由题意知,所以.由此能求出椭圆C的方程.(2)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解.解:(1)由题意知,所以.即. 2分又因为,所以,.故椭圆的方程为. 4分(2)由题意知直线的斜率存在.设:,,,,由得.,. 6分,.∵,∴,,.∵点在椭圆上,∴,∴. 8分∵<,∴,∴∴,∴,∴. 10分∴,∵,∴,∴或,∴实数t取值范围为.(12分)【考点】1. 椭圆的方程;2.直线与椭圆的方程.8.过点作倾斜角为的直线与曲线C交于不同的两点,求的取值范围.【答案】.【解析】设出直线的参数方程表示出,利用判别式求解.设直线的参数方程为,代入曲线C的方程并整理得,设两点所对应的参数分别为,则则,由得或所以的取值范围是.【考点】直线与圆锥曲线的综合性问题.9.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是()A.B.C.D.【答案】B【解析】由椭圆可知其左顶点A1(-2,0),右顶点A2(2,0).设P(x,y)(x≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【考点】椭圆的性质.10.若点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为()A.B.C.D.【答案】A【解析】因为,设,则又因为,所以因为对称轴,而,因此当时,的最大值为.【考点】二次函数最值11.如果方程表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是()A.B.C.D.【答案】D【解析】由方程表示双曲线,可得c=,判断出A,C不表示椭圆,再求出B,D中的c,即可得出结论.【考点】双曲线与椭圆的标准方程.12.椭圆的焦点分别为和,点在椭圆上,如果线段的中点在轴上,那么。

理科数学2010-2019高考真题分类训练26专题九 解析几何第二十六讲 椭圆—附解析答案

理科数学2010-2019高考真题分类训练26专题九  解析几何第二十六讲  椭圆—附解析答案
10
的最大距离是
A. 5 2 B. 46 2 C. 7 2 D. 6 2
8.(2013 新课标 1)已知椭圆ax22+by22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交椭圆于
A、B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为
A.4x52 +3y62 =1
B.3x62 +2y72 =1
二、填空题
10.(2018 浙江)已知点 P(0,1) ,椭圆 x2 y2 m ( m 1)上两点 A , B 满足 AP 2PB , 4
则当 m =___时,点 B 横坐标的绝对值最大.
11.(2018
北京)已知椭圆
M:x a
2 2
y2 b2
1(a
b 0) ,双曲线 N:mx22
y2 n2
C.2x72 +1y82 =1
D.1x82 +y92=1
9.(2012
新课标)设 F1 、 F2 是椭圆 E :
x2 a2
y2 b2
1(a
b 0) 的左、右焦点, P 为直线
x
3a 2
上一点,
F2 PF1
是底角为 30o 的等腰三角形,则 E 的离心率为
A、 1 2
B、 2 3
C、 3 4
D、 4 5
y2 b2
1(0 b 1) 的左、右焦点,过点 F1 的
直线交椭圆 E 于 A, B 两点,若 AF1 3 BF1 , AF2 x 轴,则椭圆 E 的方程为_____.
18.(2013
福建)椭圆 :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1, F2 ,焦距为 2c .若

2019年高考数学(人教a版,理科)题库:椭圆(含答案)

2019年高考数学(人教a版,理科)题库:椭圆(含答案)

高考数学精品复习资料2019.5第4讲 椭 圆一、选择题1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1解析 依题意知:2a =18,∴a =9,2c =13×2a ,∴c =3,∴b 2=a 2-c 2=81-9=72,∴椭圆方程为x 281+y 272=1.答案 A2.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为 ( ). A.14B.55C.12D.5-2解析 因为A ,B 为左、右顶点,F 1,F 2为左、右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c .又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2. 所以离心率e =c a =55,故选B. 答案 B3.已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,则实数m 的取值范围是 ( ).A.⎝ ⎛⎭⎪⎫0,34 B.⎝ ⎛⎭⎪⎫43,+∞ C.⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞D.⎝ ⎛⎭⎪⎫34,1∪⎝ ⎛⎭⎪⎫1,43 解析 椭圆标准方程为x 2+y 21m =1.当m >1时,e 2=1-1m ∈⎝ ⎛⎭⎪⎫14,1,解得m >43;当0<m <1时,e 2=1m -11m =1-m ∈⎝ ⎛⎭⎪⎫14,1,解得0<m <34,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞. 答案 C4.设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ).A .1 B.83 C .2 2 D.263解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24+y 2=1在第一象限的交点,解方程组⎩⎨⎧x 2+y 2=3,x24+y 2=1,得点P 的横坐标为263.答案 D5.椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△FAB是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12C.1+54 D.3+14解析 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12.答案 B6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ).A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1解析 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y 25=1.答案 D 二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6.∴|PF 1|=2×5-6=4.答案 48.在等差数列{a n }中,a 2+a 3=11,a 2+a 3+a 4=21,则椭圆C :x 2a 6+y 2a 5=1的离心率为________.解析 由题意,得a 4=10,设公差为d ,则a 3+a 2=(10-d )+(10-2d )=20-3d =11,∴d =3,∴a 5=a 4+d =13,a 6=a 4+2d =16>a 5,∴e =16-134=34. 答案 349. 椭圆31222y x =1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的_____倍.解析 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|. 答案 710.如图,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为________.解析 设标准方程为x 2a 2+y 2b 2=1(a >b >0), 由题可知,|OF |=c ,|OB |=b ,∴|BF |=a , ∵∠OFB =π6,∴b c =33,a =2b . S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3,∴b 2=2,∴b =2,∴a =22,∴椭圆的方程为x 28+y 22=1.答案 x 28+y 22=1 三、解答题11.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 12.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0. 解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5.故椭圆C 的方程为x 29+y 25=1. 13. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12.所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0), 则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3, 即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x2y -3,y 0=3y -42y -3. 因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 14.如图,设椭圆的中心为原点O ,长轴在x轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0). 因△AB 1B 2是直角三角形, 又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.。

2019高考数学一轮复习专题:椭圆双曲线抛物线(含答案)

2019高考数学一轮复习专题:椭圆双曲线抛物线(含答案)

2019高考数学一轮复习专题:椭圆双曲线抛物线(含答案)椭圆、双曲线、抛物线1.椭圆的定义椭圆是平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

椭圆的集合P={M|MF1+MF2=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数。

当2a>|F1F2|时,P点的轨迹是椭圆;当2a=|F1F2|时,P点的轨迹是线段;当2a<|F1F2|时,P点不存在。

2.椭圆的标准方程和几何性质标准方程为x^2/a^2+y^2/b^2=1(a>b>0)或y^2/a^2+x^2/b^2=1(a>b>0)。

椭圆的范围为-a≤x≤a,-b≤y≤b,对称轴为坐标轴,对称中心为(0,0)。

椭圆的顶点为A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)或A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)。

椭圆的长轴A1A2的长为2a,短轴B1B2的长为2b,焦距为2c,离心率为e=c/a,其中c^2=a^2-b^2.3.应用题1) 2017·浙江高考题:椭圆x^2/9+y^2/4=1的离心率是5/3.解析:根据标准方程,a=3,b=2,则c=5,离心率e=c/a=5/3.2) 已知椭圆x^2/a^2+y^2/b^2=1(m>0)的焦距为8,则m的值为3或41.解析:根据椭圆的性质,c^2=a^2-b^2,焦距为2c=8,则c=4,a^2=16+b^2.代入m>0的条件,解得b=2√(m+1),a=4,代入c^2=a^2-b^2,解得m=3或41.解析:当焦点在x轴上时,椭圆方程为$\frac{x^2}{4}+\frac{y^2}{m^2}=1$,根据离心率的定义$e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{m^2}{4}}$,所以$\frac{m^2}{4}=1-e^2$,代入得到 $m=\sqrt{4-4e^2}$。

高中椭圆测试题及答案

高中椭圆测试题及答案

高中椭圆测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率e满足()A. 0 < e < 1B. 0 ≤ e < 1C. 0 ≤ e ≤ 1D. 0 < e ≤ 12. 若椭圆的长轴为2a,短轴为2b,焦距为2c,则下列关系式正确的是()A. a^2 = b^2 + c^2B. a^2 = b^2 - c^2C. b^2 = a^2 - c^2D. c^2 = a^2 - b^23. 已知椭圆的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,其中a > b > 0,下列说法正确的是()A. 椭圆的焦点在x轴上B. 椭圆的焦点在y轴上C. 椭圆的焦点在直线y = \frac{b}{a}x上D. 椭圆的焦点在直线y = -\frac{b}{a}x上4. 椭圆 \frac{x^2}{4} + \frac{y^2}{3} = 1 的离心率为()A. \frac{1}{2}B. \frac{\sqrt{3}}{2}C. \frac{\sqrt{5}}{4}D. \frac{1}{\sqrt{3}}5. 若椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的离心率为\frac{\sqrt{2}}{2},则a和b的关系为()A. a = \sqrt{2}bB. a = 2bC. b = \sqrt{2}aD. b = 2a二、填空题(每题4分,共20分)6. 椭圆 \frac{x^2}{9} + \frac{y^2}{4} = 1 的离心率为 ________。

7. 椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的焦点坐标为(±c,0),其中c = ________。

8. 椭圆 \frac{x^2}{16} + \frac{y^2}{9} = 1 的长轴长度为________。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

高中数学-椭圆经典练习题-配答案

高中数学-椭圆经典练习题-配答案

椭圆练习题一.选择题:1.已知椭圆上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C )A. B. C. D. 3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为4的椭圆方程是( B )A4.椭圆的一个焦点是,那么等于( A )A. B.C.D.5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A.B.C.D.6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B )A.B .C .D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( C )。

A +=1B +=1C +=1D +=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C )(A)450 (B)600 (C)900 (D)1209.椭圆上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D .10.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( C )(A )2 3 (B )6 (C )4 3 (D )12 二、填空题:1162522=+y x 22143x y +=22134x y +=2214x y +=2214y x +=51858014520125201202522222222=+=+=+=+y x D y x C y x B y x 2255x ky -=(0,2)k 1-1512221(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=221254x y +=16x 29y 216x 212y 24x 23y 23x 24y 2221259x y +=2311.方程表示焦点在轴的椭圆时,实数的取值范围_____12.过点且与椭圆有共同的焦点的椭圆的标准方程为_13.设,,△的周长是,则的顶点的轨迹方程为14.如图:从椭圆上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥,则该椭圆的离心率等于_____________三、解答题:15.已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程。

2019年高考数学(文)热点题型和提分秘籍专题38椭圆(题型专练)含解析

2019年高考数学(文)热点题型和提分秘籍专题38椭圆(题型专练)含解析

2019年高考数学(文)热点题型和提分秘籍1.若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 1|=4,则∠F 1PF 2=( )A .30°B .60°C .120°D .150°【答案】C2.椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍【解析】设线段PF 2的中点为D , 则|OD |=12|PF 1|,OD ∥PF 1,OD ⊥x 轴,∴PF 1⊥x 轴。

∴|PF 1|=b 2a =323=32。

又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732。

∴|PF 2|是|PF 1|的7倍。

【答案】A3.在同一平面直角坐标系中,方程ax 2+by 2=ab 与方程ax +by +ab =0表示的曲线可能是( )B C 【解析】直线方程变形为y =-abx -a ,在选项B 和C 中,⎩⎪⎨⎪⎧-a b >0-a >0,解得⎩⎪⎨⎪⎧b >0a <0,所以ax 2+by 2=ab 表示的曲线是焦点在x 轴上的双曲线,【答案】C6.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,点P (a ,b )满足|F 1F 2|=|PF 2|,设直线PF 2与椭圆交于M 、N 两点,若|MN |=16,则椭圆的方程为( )A.x 2144+y 2108=1B.x 2100+y 275=1 C.x 236+y 227=1 D.x 216+y 212=1【答案】B7.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于( ) A.π6 B.π4 C.π3D.π2【答案】D【解析】因为PF 1→+PF 2→=2PO →,O 为坐标原点,|PF 1→+PF 2→|=23,所以|PO |=3,又|OF 1|=|OF 2|=3, 所以P ,F 1,F 2在以点O 为圆心的圆上,且F 1F 2为直径,所以∠F 1PF 2=π2.8.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15 【答案】D9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A.35B.12C.23D.34【答案】A【解析】∵圆O 与直线BF 相切,∴圆O 的半径为bc a ,即|OC |=bca ,∵四边形F AMN 是平行四边形,∴点M 的坐标为⎝⎛⎭⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,∴5e 2+2e -3=0,又0<e <1,∴e =35.故选A.10.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是( )A.⎣⎡⎭⎫12,1B.⎣⎡⎦⎤22,32C.⎣⎡⎭⎫22,1 D.⎣⎡⎭⎫32,1 【答案】C【解析】从椭圆上长轴端点P ′向圆引两条切线P ′A ,P ′B ,则两切线形成的∠AP ′B 最小. 若椭圆C 1上存在点P ,所作圆C 2的两条切线互相垂直,则只需∠AP ′B ≤90°, 即α=∠AP ′O ≤45°,∴sin α=b a ≤sin 45°=22.又b 2=a 2-c 2,∴a 2≤2c 2,∴e 2≥12,即e ≥22.又0<e <1,∴22≤e <1,即e ∈⎣⎡⎭⎫22,1. 11.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1 B .2- 3C.22 D.32【答案】A12.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎫22,1 B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫0,12 【答案】A【解析】设P (x 0,y 0),F 1(-c,0),F 2(c,0),由题易知|x 0|<a ,因为存在点P ,使∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 20+y 20)min ,又y 20=b 2-b 2a2x 20,b 2+c 2=a 2,x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min =b 2,故c 2>b 2,所以e 2=c 2a 2>12,又0<e <1,所以22<e <1,故椭圆C 的离心率的取值范围是⎝⎛⎭⎫22,1,故选A. 13.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫5-12,1B.⎝ ⎛⎭⎪⎫0,5-12 C.⎝⎛⎭⎪⎫3-12,1 D.⎝⎛⎭⎪⎫0,3-12 【答案】B【解析】设正方形的边长为2m ,∵椭圆的焦点在正方形的内部,∴m >c ,又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1上,∴m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,即e 4-3e 2+1>0,e 2<3-52=⎝ ⎛⎭⎪⎫5-122,∴0<e <5-12,故选B. 19.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)相交于A ,B ,C ,D 四点,若椭圆C 1的一个焦点F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为________.【答案】2220.设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.【答案】733【解析】由圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d = x 2+(y -1)2=-3y 2-2y +5 =-3⎝⎛⎭⎫y +132+163, ∵-1≤y ≤1,∴当y =-13时,d 取最大值433,∴P ,Q 两点间的最大距离为d max +3=733.21.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A 、B 两点,F 1B 与y轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于__________。

高考数学专题《椭圆》习题含答案解析

高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( )ABC .D .【答案】B 【解析】,选B .2.(2019·北京高考真题)已知椭圆22221x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( )A .22143x y +=B .22186x y +=C .22142x y +=D .22184x y +=22194x y +=2359e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=.故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则y x =由2AB c =,可知OA c ==c =,解得x =,所以1,3A c ⎫⎪⎪⎭把点A 代入椭圆方程得到22221331c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析.【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩,或1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =.则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+>,43-,∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ 【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围.【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b+(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-.从而()12n FP FP a c a c c -≤+--=.再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤.同理,当等差数列递减时,可解得1010d -≤<,故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,=∴10AM MF +≤+当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为10.9.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>,且点A (2,1)在椭圆C 上,O 是坐标原点.(1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解.【详解】(1)由e =得:12c b a ==,,又点(21)A ,在椭圆上,所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =,因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-,与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD =10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解.【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,所以2224c a b =-=,①又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>,由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△即12F PF △1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A .1,12⎡⎫⎪⎢⎣⎭B.C.⎫⎪⎪⎭D.⎫⎪⎭【答案】C练提升【分析】若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin b aα=求椭圆离心率的范围.【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 45b a α=≤︒=222a c ≤,∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎭.故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤ ⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠,∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立,在2AFF V 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF emn mn mn a +-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤.故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.1 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q为短轴的端点,故离心率πcos 4c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B = ,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.和5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________..【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >,因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c ,根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a ,在12F PF ∆中,由余弦定理,可得:2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a ,整理得2221243=+c a a ,所以22121134+=e e ,又2212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH(H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y,所以点0⎫⎪⎭H y 由λ=HQ PH ,所以λ=HQPH0⎛⎫=-- ⎪⎝⎭ HQ x y y,0,0⎫=⎪⎭PH x 又λ= HQ PH,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x所以00x y y==由220014x y +=221=y 则点Q221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥所以234e ≥,则e ≥,又1e <所以⎫∈⎪⎪⎭e故答案为:⎫⎪⎪⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得.【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围.【详解】22194x y +=的焦点为1(F、2F ,如图所示:A 、B 、C 、D 四点,此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角,所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==.因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y+=的两个焦点,P是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值.【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号,∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号,∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y +=,由已知,得12||||26PF PF a +==,∴12||6||PF PF =-,∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6+②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足MN = ,求直线n 的斜率.【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x,利用根与系数的关系,结合MN =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b ,所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C,原点O 到直线0bx cy bc +-=,所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c ==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++.因为MN =,所以))2121P x x y y ⎫--⎪⎪⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-,即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.练真题1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A.⎫⎪⎪⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝D .10,2⎛⎤ ⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .2.(2018·全国高考真题(理))已知,是椭圆的左,右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A .B .C .D .【答案】D 【解析】因为为等腰三角形,,所以PF 2=F 1F 2=2c,由得,,1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 2312131412PF F △12120F F P ∠=︒AP 222tan sin cos PAF PAF PAF ∠=∴∠=∠=由正弦定理得,所以,故选D.3.(2019·全国高考真题(文))已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若,,则C 的方程为( )A. B. C. D.【答案】B 【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B .法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B .4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上2222sin sin PF PAF AF APF ∠=∠22214,π54sin(3c a c e a c =∴==+121,01,0F F -(),()222AF F B =││││1AB BF =││││2212x y +=22132x y +=22143x y +=22154x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=1AF B △22214991cos 2233n n n F AB n n +-∠==⋅⋅12AF F △2214422243n n n n +-⋅⋅⋅=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=12AF F △12BF F △2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩2121,AF F BF F ∠∠2121cos cos 0AF F BF F ∴∠+∠=2121cos cos AF F BF F ∠∠,223611n n +=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=12F F ,22:+13620x y C =M C一点且在第一象限.若为等腰三角形,则的坐标为___________.【答案】【解析】由已知可得,.∴.设点的坐标为,则,又,解得,,解得(舍去),的坐标为.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>(1)证明:a;(2)若点9,10M ⎛ ⎝在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立;(2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程.【详解】12MF F △M (2222236,20,16,4a b c a b c ==∴=-=∴=11228MF F F c ∴===24MF =M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△12014,42MF F S y =⨯=∴=△0y =20136x ∴=03x =03x =-M \((1)c e a =====b a ∴=a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝,可得b >设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-.【解析】(Ⅰ) 椭圆()222210x ya b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.。

3.1.2 椭圆的简单几何性质-【新教材】人教A版(2019)高中数学选择性必修第一册同步练习

3.1.2 椭圆的简单几何性质-【新教材】人教A版(2019)高中数学选择性必修第一册同步练习

椭圆的简单几何性质同步练习一、选择题1.已知有相同两焦点F1、F2的椭圆x2m +y2=1(m>1)和双曲线x2n−y2=1(n>0),P是它们的一个交点,则△F1PF2的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 随m,n变化而变化2.已知椭圆:x24+y22=1,过点M(1,1)的直线与椭圆相交于A,B两点,且弦AB被点M平分,则直线AB的方程为()A. x+2y−3=0B. 2x+y−3=0C. x+y−2=0D. 2x−y+1=03.若过椭圆x216+y24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A. 3x+4y−13=0B. 3x−4y−5=0C. 4x+3y−15=0D. 4x−3y−9=04.已知椭圆x2a2+y2b2=1(a>b>0)的一个焦点是圆x2+y2−6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为()A. (−3,0)B. (−4,0)C. (−10,0)D. (−5,0)5.我们把由半椭圆x2a2+y2b2=1(x≥0)与半椭圆y2b2+x2c2=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则a,b的值分别为()A. 5,4B. √3,1C. 5,3D. √72,16. 如图,F 1F 2分别为椭圆x 2a 2+y 2b 2=1的左右焦点,点P 在椭圆上,△POF 2的面积为√3的正三角形,则b 2的值为( )A. √3B. 2√3C. 3√3D. 4√37. 已知F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0(O为坐标原点),若|PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,则椭圆的离心率为( )A. √6−√3B. √6−√32C. √6−√5D. √6−√528. 已知F 1,F 2是椭圆的两个焦点,满足MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A. (0,1)B. (0,12]C. (0,√22) D. [√22,1)9. 已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则1e1e 2的最大值为( )A. 3B. 2C. 4√33D. 2√3310. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,短轴长为2,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A 、B 两点.若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k=( )A. 1B. √2C. √3D. 211. 已知F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=112. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F(3,0),过点F 的直线交椭圆E 于A ,B 两点,若AB 的中点坐标为(1,−1),则弦长|AB|=( )A. 5√2B. 2√5C. 5√22D. √1013. 若椭圆C :x 28+y 24=1的右焦点为F ,且与直线l :x −√3y +2=0交于P ,Q 两点,则△PQF 的周长为( )A. 6√2B. 8√2C. 6D. 814. 椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆上的点M满足:∠F 1MF 2=60°,且MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则b =( )A. 1B. √2C. √3D. 2二、填空题15. 已知抛物线C :x 2=−2py(p >0)的焦点F 与y 28+x 24=1的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长|AB|=________. 16. 设M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,以M 为圆心的圆与x 轴相切,切点为椭圆的焦点F ,圆M 与y 轴相交于不同的两点P ,Q ,若△PMQ 为等边三角形,则椭圆C 的离心率为________. 17. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ⋅FP⃗⃗⃗⃗⃗ 的最大值为_________. 18. 设F 1,F 2分别为椭圆x 23+y 2=1的左、右焦点,点A ,B 在椭圆上,若F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,则点A 的坐标是_________.三、解答题(本大题共4小题,共48.0分)19. 已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)四个顶点中的三个是边长为2√3的等边三角形的顶点.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线y =kx +m 与圆O:x 2+y 2=2b 23相切且交椭圆E 于两点M,N ,求线段|MN|的最大值.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的两个顶点分别为A(−a,0),B(a,0),点P为椭圆上异于A,B的点,设直线PA的斜率为k1,直线PB的斜率为k2,且.(1)求椭圆C的离心率;(2)若b=1,设直线l与x轴交于点D(−1,0),与椭圆交于M,N两点,求△OMN面积的最大值.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),且椭圆上的点到点F的最大距离为3,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过右焦点F倾斜角为60°的直线与椭圆C交于M、N两点,求△OMN的面积.22.已知椭圆C:x2a2+y23=1(a>√3)的焦距为2,A,B分别为椭圆C的左、右顶点,M,N为椭圆C上的两点(异于A,B),连结AM,BN,MN,且BN斜率是AM斜率的3倍.(1)求椭圆C的方程;(2)证明:直线MN恒过定点.答案和解析1.【答案】B【解答】解:由题意,不妨设P 是双曲线右支上的一点,|PF 1|=x ,|PF 2|=y ,则x +y =2√m ,x −y =2√n , ∴x 2+y 2=2(m +n), ∵两曲线有相同的焦点, ∴m −1=n +1, ∴m =n +2, ∴x 2+y 2=4(n +1), 即|PF 1|2+|PF 2|2=|F 1F 2|2, ∴△F 1PF 2是直角三角形, 故选B .2.【答案】A【解答】解:设A(x 1,y 1)、B(x 2,y 2), 则x 124+y 122=1,①,x 224+y 222=1,②①−②,得(x 1−x 2)(x 1+x 2)4+(y 1−y 2)(y 1+y 2)2=0.∴y 1−y2x 1−x 2=−12⋅x 1+x2y 1+y 2.又∵M 为AB 中点,∴x 1+x 2=2,y 1+y 2=2. ∴直线AB 的斜率为y 1−y 2x1−x 2=−12.∴直线AB 的方程为y −1=−12(x −1),即2y +x −3=0. 故选:A .3.【答案】A【解答】解:设弦的两端点为A(x 1,y 1), B(x 2,y 2), P 为AB 中点得{x 1+x 2=6y 1+y 2=2,由A , B 在椭圆上有{x 1216+y 124=1x 2216+y 224=1,两式相减得x12−x2216+y12−y224=0,即(x1+x2)(x1−x2)16+(y1+y2)(y1−y2)4=0,即3(x1−x2)8+y1−y22=0,即y1−y2x1−x2=−34,则斜率k=−34,且过点P(3,1),有y−1=−34(x−3),整理得3x+4y−13=0.故选A.4.【答案】D【解答】解:∵圆的标准方程为(x−3)2+y2=1,∴圆心坐标是(3,0),∴c=3.又b=4,∴a=√b2+c2=5.∵椭圆的焦点在x轴上,椭圆的左顶点为(−5,0).故选D.5.【答案】D【解析】解:由题意可得|OF2|=√b2−c2=12,|OF0|=c=√3|OF2|=√32,解得b=1,又a2=b2+c2=1+34=74,得a=√72,即a=√72,b=1.6.【答案】B 【解答】解:∵△POF2的面积为√3的正三角形,S=12×c×√32c=√34c2∴√34c2=√3,解得c=2.∴P(1,√3)代入椭圆方程可得:1a2+3b2=1,与a2=b2+4联立解得:b2=2√3.故选B.7.【答案】A【解答】解:设焦点坐标F 1(−c,0),F 2(c,0),|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |=2c , |PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,|PF 1⃗⃗⃗⃗⃗⃗⃗ |+|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a , 所以|PF 1⃗⃗⃗⃗⃗⃗⃗ |=2√2a(√2−1),|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a(√2−1),由PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0,设线段PF 1的中点为M ,则OM ⊥PF 1, 则|PO ⃗⃗⃗⃗⃗ |=|OF 1⃗⃗⃗⃗⃗⃗⃗ |=|OF 2⃗⃗⃗⃗⃗⃗⃗ |, ∴PF 1⊥PF 2,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |2+|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |2,∴(2√2a(√2−1))2+(2a(√2−1))2=4c 2, 可得c 2=(9−6√2)a 2,解得e 2=9−6√2, 则椭圆的离心率为√6−√3. 故选A .8.【答案】C【解答】 解:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,椭圆上任一点P(x,y),由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内,则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ >0,得x 2+y 2>c 2恒成立,代入椭圆方程化简得y 2<b 4a 2−b 2,又−b <y <b ,所以b 2<b 4a 2−b 2,化简得a 2<2b 2=2a 2−2c 2,得a 2>2c 2,可得e =ca<√22, 又0<e <1,∴0<e <√22, 故选C .9.【答案】D【解答】解:不妨设F 1,F 2分别为左、右焦点,P 为第一象限的点,如图: 设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义知|PF 1|+|PF 2|=2a 1,|PF 1|−|PF 2|=2a 2, ∴|PF 1|=a 1+a 2,|PF 2|=a 1−a 2. 设|F 1F 2|=2c ,在△PF 1F 2中,∠F 1PF 2=π3,由余弦定理得,4c 2=(a 1+a 2)2+(a 1−a 2)2−2(a 1+a 2)(a 1−a 2)cos π3,化简得a 12+3a 22=4c 2,即1e 12+3e 22=4,∴1e 12+3e 22=4≥2√3e 12e 22,∴1e1e 2≤2√33, 当且仅当e 1=√22,e 2=√62时,等号成立,则1e1e 2的最大值为2√33, 故选D .10.【答案】B【解答】 解:椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2, 可得:b =1,ca =√32,解得:a =2,c =√3,b =1, 椭圆方程为x 24+y 2=1,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A ,B 两点, 设A(x 1,y 1),B(x 2,y 2), ∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,∴y 1=−3y 2, 设直线AB 方程为y =k(x −√3), 代入x 24+y 2=1,消去x ,可得(14k 2+1)y 2+√32k y −14=0, ∴y 1+y 2=−√32k 1+14k2=−2√3k1+4k 2,y 1y 2=−141+14k2=−k 24k 2+1,−2y 2=−2√3k 1+4k2,−3y 22=−k 24k 2+1,解得:k =√2. 故选:B .11.【答案】C【解答】解:F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,可得c =1, 过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3, 令椭圆方程x 2a 2+y 2b 2=1中x =1,得y =±√b 2−b 2a 2,可得2√b 2−b 2a2=3, 化简得4a 4−17a 2+4=0, 解得a =2,则b =√3, 所求的椭圆方程为:x 24+y 23=1.故选:C .12.【答案】A【解答】解:设A(x 1,y 1),B(x 2,y 2), 代入椭圆方程得x 12a 2+y 12b 2=1①,x 22a 2+y 22b 2=1②,相减得x 12−x 22a 2+y 12−y 22b 2=0, ∴x 1+x 2a 2+y 1−y2x 1−x 2⋅y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=−2,k AB =−1−01−3=12.∴2a 2+12×−2b 2=0,化为a 2=2b 2,又c =3=√a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.AB 的斜率为12,且过(1,−1),∴直线AB 的方程为y +1=12(x −1),即y =12x −32,代入椭圆方程,得3x 2−6x −27=0. ∴x 1+x 2=2.x 1x 2=−9.∴|AB|=√1+14⋅√(x 1+x 2)2−4x 1x 2=5√2. 故选:A .13.【答案】B【解析】解:∵直线l 过椭圆C 的左焦点F′(−2,0), 直线l :x −√3y +2=0经过左焦点F′, ∴△PQF 的周长|PQ|+|PF|+|QF|=|PF′|+|PF|+|QF′|+|QF|=4a =8√2,14.【答案】C【解析】解:设|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ |=m ,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=n ,因为MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则mncos60°=2,⇒mn =4, 又m +n =2a ,(1),在△MF 1F 2中,由余弦定理可得:|F 1F 2|2=m 2+n 2−2mncos60°=4(a 2−b 2)(2), (1)式平方减去(2)式得:b 2=3,得:b =√3. 故选:C .设|MF 1|=m ,|MF 2|=n ,由数量积及∠F 1MF 2的大小可得mn =4,再由椭圆的定义可得m +n =2a ,在△MF 1F 2中,由余弦定理可得b 的值.本题考查椭圆的性质及数量积的运算性质,属于中档题.15.【答案】10【解答】解:由题意可得F(0,−2),则p =4,抛物线方程为x 2=−8y . 设直线AB 方程为y =kx −2,A(x 1,y 1),B(x 2,y 2),其中y 1=−x 128,y 2=−x 228.由y =−x28得y′=−x4,所以在点A处的切线方程为y−y1=−x14(x−x1),化简得y=−x14x+x128,①同理可得在点B处的切线方程为y=−x24x+x228.②联立①②得x M=x1+x22,又∵M的横坐标为2,∴x1+x2=4.将AB方程代入抛物线得x2+8kx−16=0,∴x1+x2=−8k=4,∴k=−12,∴y1+y2=k(x1+x2)−4=−12×4−4=−6,∴|AB|=p−y1−y2=10.故答案为10.16.【答案】√33【解答】解:如图,过M作MN⊥y轴于N,由△PMQ为等边三角形,可得|PQ|=2√33c,再由题意可得M(c,b2a ),则圆M为(x−c)2+(y−b2a)2=b4a2,取x=0,可得y1=b2a −√b4−a2c2a,y2=b2a+√b4−a2c2a,∴2√b4−a2c2a =2√33c,即3(e2)2−10e2+3=0,解得:e=√33.故答案为:√33.17.【答案】6【解答】解:由题意,F(−1,0),设点P(x0,y0),则有x024+y023=1,解得y02=3(1−x024),因为FP ⃗⃗⃗⃗⃗ =(x 0+1,y 0),OP ⃗⃗⃗⃗⃗ =(x 0,y 0),所以OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+3(1−x 024)=x 024+x 0+3=14(x 0+2)2+2, 此二次函数对应的抛物线的对称轴为x 0=−2,因为−2≤x 0≤2,所以当x 0=2时,OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ 取得最大值224+2+3=6, 故答案为6. 18.【答案】(0,1)或(0,−1)【解答】解:设A(m,n).由F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,得B (m+6√25,n 5). 又A ,B 均在椭圆上,所以有{m 23+n 2=1,(m+6√25)23+(n 5)2=1,解得{m =0,n =1或{m =0,n =−1, 所以点A 的坐标为(0,1)或(0,−1).19.【答案】解:(Ⅰ)由题意,椭圆上下顶点与左右顶点其中的一个构成等边三角形, 所以a =√3b,b =√3,即a =3,所以椭圆E 的方程为x 29+y 23=1,(Ⅱ)圆O:x 2+y 2=2,因为直线y =kx +m 与圆O:x 2+y 2=2相切, 所以√1+k 2=√2,即m 2=2(1+k 2); 联立{x 29+y 23=1y =kx +m得(1+3k 2)x 2+6kmx +3(m 2−3)=0,Δ>0, 设M (x 1,y 1),N (x 2,y 2),所以x 1+x 2=−6km 1+3k 2,x 1·x 2=3(m 2−3)1+3k 2,由弦长公式得|MN|=√1+k 2·|x 1−x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=√1+k 2·√12(9k 2+3−m 2)1+3k 2, 将m 2=2(1+k 2)代入:|MN|=√6·√(2+2k 2)(7k 2+1)1+3k 2≤√6·(2+2k 2)+(7k 2+1)21+3k 2=3√62, 当且仅当2+2k 2=7k 2+1,即k 2=15时等号成立,故弦长|MN|最大值为3√62. 20.【答案】解:(1)设P(x 0,y 0)为椭圆上的点,则x 02a 2+y 02b 2=1,整理得:y 02=−b 2a 2(x 02−a 2), 又k 1=y 0x 0+a ,k 2=y 0x 0−a ,∴k 1k 2=y 02x 02−a 2=−12, 联立两个方程则k 1k 2=−b 2a 2=−12, 解得e =c a =√1−b2a 2=√22. (2)由(1)知a 2=2b 2,又b =1,∴椭圆C 的方程为x 22+y 2=1.由题意,设直线l 的方程为:x =my −1,代入椭圆的方程有:(m 2+2)y 2−2my −1=0,则Δ=(−2m )2+4(m 2+2)=8(m 2+1)>0,设M(x 1,y 1),N(x 2,y 2),则y 1+y 2=2m m 2+2,y 1y 2=−1m 2+2,则△OMN 的面积S =12|OD |·|y 1−y 2| =12√(y 1+y 2)2−4y 1y 2 =12×√8m 2+8m 2+2=√2·√m 2+1m 2+2, 令√m 2+1=t ,(t ≥1),则有m 2=t 2−1,代入上式有S =√2·√m 2+1m 2+2=√2t t 2+1=√2t+1t ≤√22, 当且仅当t =1,即m =0时等号成立,所以△OMN 面积的最大值为√22. 21.【答案】解:(Ⅰ)椭圆焦点坐标为(1,0),则c =1,由椭圆C 上的点到F 的最大距离为a +c =3,则a =2, b 2=a 2−c 2=3,∴椭圆的标准方程为x 24+y 23=1.(Ⅱ)设M(x 1,y 1),N(x 2,y 2),由已知可设直线MN 的方程为:y =√3(x −1),联立方程组{y =√3(x −1)3x 2+4y 2=12消去x 得:5y 2+2√3y −9=0. y 1+y 2=−2√35,y 1⋅y 2=−95,⇒(y 1−y 2)2=(−2√35)2−4×(−95)=19225. ∴△OMN 的面积S =12×OF ×|y 1−y 2|=12×1×8√35=4√35 22.【答案】解:(1)∵{2c =2a 2=c 2+3, ∴{a =2c =1, 所以b 2=a 2−c 2=3∴椭圆C 的方程为x 24+y 23=1;(2)连结BM ,设M(x 1,y 1),N(x 2,y 2),则k AM ⋅k BM =y 1x 1+2⋅y 1x 1−2=y 12x 12−4,∵点M(x 1,y 1)在椭圆上,∴k AM ⋅k BM =y 12x 12−4=3−34x 12x 12−4=−34,∵k BN =3k AM ,∴k BN ⋅k BM =−94,①当MN 斜率不存在时,设MN:x =m ,不妨设M 在x 轴上方, ∴M(m,√12−3m 24),N(m,−√12−3m 24), ∵k BN ⋅k BM =−94, ∴m =1;②当MN 斜率存在时,设MN:y =kx +t ,由{y =kx +t 3x 2+4y 2−12=0,整理,得(3+4k 2)x 2+8ktx +4t 2−12=0, ∴x 1+x 2=−8kt 3+4k 2,x 1⋅x 2=4t 2−123+4k 2, ∵k BN ⋅k BM =y 1x 1−2⋅y 2x 2−2=(kx 1+t)⋅(kx 1+t)x 1x 2−2(x 1+x 2)+4=−94,∴化简可得2k2+3kt+t2=0,即t=−k或t=−2k,当t=−k时,y=kx−k,恒过定点(1,0),当斜率不存在亦符合;当t=−2k,y=kx−2k,过点(2,0)与点B重合,舍去,∴直线恒过定点(1,0).。

2019版高考数学理一轮总复习作业63椭圆一 含解析 精品

2019版高考数学理一轮总复习作业63椭圆一 含解析 精品

题组层级快练(六十三)1.若椭圆x 216+y 2b 2=1过点(-2,3),则其焦距为( )A .25B .2 3C .4 5D .4 3答案 D解析 ∵椭圆过(-2,3),则有416+3b2=1,b 2=4,c 2=16-4=12,c =23,2c =4 3.故选D.2.已知椭圆x 2a 2+y 2b 2=1(a>b>0)的焦点分别为F 1,F 2,b =4,离心率为35.过F 1的直线交椭圆于A ,B 两点,则△ABF 2的周长为( ) A .10 B .12C .16D .20答案 D解析 如图,由椭圆的定义知△ABF 2的周长为4a ,又 e =c a =35,即c =35a , ∴a 2-c 2=1625a 2=b 2=16.∴a =5,△ABF 2的周长为20.3.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则该椭圆方程为( ) A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1 D.x 236+y 232=1 答案 D解析 ∵2a =12,c a =13,∴a =6,c =2,b 2=32.∴椭圆的方程为x 236+y 232=1.4.若椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或21 答案 C解析 若a 2=9,b 2=4+k ,则c =5-k. 由c a =45,即5-k 3=45,得k =-1925; 若a 2=4+k ,b 2=9,则c =k -5. 由c a =45,即k -54+k =45,解得k =21. 5.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m 的值为( ) A.14 B.12 C .2 D .4答案 A解析 将原方程变形为x 2+y 21m=1.由题意知a 2=1m ,b 2=1,∴a =1m,b =1. ∴1m =2,∴m =14. 6.如图,已知椭圆C :x 2a 2+y 2b 2=1(a>b>0),其中左焦点为F(-25,0),P 为C 上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1 C.x 236+y 210=1 D.x 245+y 225=1 答案 B解析 设椭圆的焦距为2c ,右焦点为F 1,连接PF 1,如图所示. 由F(-25,0),得c =2 5. 由|OP|=|OF|=|OF 1|,知PF 1⊥PF. 在Rt △PFF 1中,由勾股定理,得 |PF 1|=|F 1F|2-|PF|2=(45)2-42=8.由椭圆定义,得|PF 1|+|PF|=2a =4+8=12,从而a =6,得a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.7.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32 C.83 D.23答案 B解析 ∵a 2=2,b 2=m ,∴c 2=2-m. ∵e 2=c 2a 2=2-m 2=14.∴m =32.8.(2018·郑州市高三预测)已知椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,过F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( ) A.22B .2- 3 C.5-2 D.6- 3答案 D解析 设|F 1F 2|=2c ,|AF 1|=m ,若△ABF 1是以A 为直角顶点的等腰直角三角形,则|AB|=|AF 1|=m ,|BF 1|=2m.由椭圆的定义可得△ABF 1的周长为4a ,即有4a =2m +2m ,即m =(4-22)a ,则|AF 2|=2a -m =(22-2)a ,在Rt △AF 1F 2中,|F 1F 2|2=|AF 1|2+|AF 2|2,即4c 2=4(2-2)2a 2+4(2-1)2a 2,即有c 2=(9-62)a 2,即c =(6-3)a ,即e =ca =6-3,故选D.9.(2018·贵州兴义第八中学第四次月考)设斜率为22的直线l 与椭圆x 2a 2+y 2b 2=1(a>b>0)交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( ) A.33 B.12 C.22D.13答案 C解析 由题意知,直线l 与椭圆x 2a 2+y 2b 2=1(a>b>0)两个交点的横坐标是-c ,c ,所以两个交点分别为(-c ,-22c),(c ,22c),代入椭圆得c 2a 2+c 22b 2=1,两边同乘2a 2b 2,则c 2(2b 2+a 2)=2a 2b 2.因为b 2=a 2-c 2,所以c 2(3a 2-2c 2)=2a 4-2a 2c 2,所以c 2a 2=2或12.又因为0<e<1,所以e =c a =22,故应选C. 10.(2018·湖北孝感第一次统考)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,四个顶点构成的四边形的面积为4,过原点的直线l(斜率不为零)与椭圆C 交于A ,B 两点,F 1,F 2分别为椭圆的左、右焦点,则四边形AF 1BF 2的周长为( ) A .4 B .4 3 C .8 D .8 3答案 C解析 由⎩⎪⎨⎪⎧c a =32,2ab =4,c 2=a 2-b 2,解得⎩⎪⎨⎪⎧a =2,b =1.周长为4a =8.11.(2018·黑龙江大庆一模)已知直线l :y =kx 与椭圆C :x 2a 2+y 2b 2=1(a>b>0)交于A ,B 两点,其中右焦点F 的坐标为(c ,0) ,且AF 与BF 垂直,则椭圆C 的离心率的取值范围为( ) A .[22,1) B .(0,22] C .(22,1) D .(0,22) 答案 C解析 由AF 与BF 垂直,运用直角三角形斜边的中线即为斜边的一半,可得|OA|=|OF|=c ,由|OA|>b ,即c>b ,可得c 2>b 2=a 2-c 2,即c 2>12a 2,可得22<e<1.故选C.12.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________. 答案 x 216+y 28=1解析 根据椭圆焦点在x 轴上,可设椭圆方程为x 2a 2+y 2b 2=1(a>b>0).∵e =22,∴c a =22.根据△ABF 2的周长为16得4a =16,因此a =4,b =22,所以椭圆方程为x 216+y 28=1.13.(2018·上海市十三校联考)若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________. 答案 4或8解析 ①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a)=22,解得a =8.14.(2018·山西协作体联考)若椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点与短轴的两个顶点组成一个面积为1的正方形,则椭圆C 的内接正方形的面积为________. 答案 43解析 由已知得,a =1,b =c =22,所以椭圆C 的方程为x 2+y 212=1,设A(x 0,y 0)是椭圆C 的内接正方形位于第一象限内的顶点,则x 0=y 0,所以1=x 02+2y 02=3x 02,解得x 02=13,所以椭圆C 的内接正方形的面积S =(2x 0)2=4x 02=43.15.已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,M 为椭圆上一点,MF 1垂直于x 轴,且∠F 1MF 2=60°,则椭圆的离心率为________. 答案33解析 方法一:∵|F 1F 2|=2c ,MF 1⊥x 轴, ∴|MF 1|=233c ,|MF 2|=433c. ∴2a =|MF 1|+|MF 2|=23c.∴e =2c 2a =33.方法二:由F 1(-c ,0),将x =-c 代入x 2a 2+y 2b 2=1,得y =b 2a ,∵|F 1F 2||MF 1|=3,∴2c b2a = 3.∵b 2=a 2-c 2,∴2ac a 2-c 2=3,即2e1-e 2= 3.解得e =-3(舍),e =33.16.(2018·上海虹口一模)一个底面半径为2的圆柱被与底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于________. 答案 4 3解析 ∵底面半径为2的圆柱被与底面成60°的平面所截,其截面是一个椭圆,∴这个椭圆的短半轴长为2,长半轴长为2cos60°=4.∵a 2=b 2+c 2,∴c =42-22=23,∴椭圆的焦距为4 3.17.(2017·浙江金丽衢十二校联考)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 的离心率的取值范围是________. 答案 [13,1)解析 设P(x ,y),则|PF 2|=a -ex ,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则|PF 2|=|F 1F 2|,∴a -ex =2c ,∴x =a -2c e =a (a -2c )c .∵-a ≤x ≤a ,∴a (a -2c )c ≤a ,∴c a ≥13,∴13≤e<1.故椭圆C 的离心率的取值范围是[13,1).18.如右图,已知椭圆x 2a 2+y 2b 2=1(a>b>0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B. (1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程. 答案 (1)22 (2)x 23+y 22=1解析 (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形.所以有|OA|=|OF 2|,即b =c. 所以a =2c ,e =c a =22.(2)由题知A(0,b),F 2(1,0),设B(x ,y), 由AF 2→=2F 2B →,解得x =32,y =-b 2.代入x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1.即94a 2+14=1,解得a 2=3. 所以椭圆方程为x 23+y 22=1.19.(2014·课标全国Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N. (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b. 答案 (1)12(2)a =7,b =27解析 (1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac.将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点.故b 2a =4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28. 故a =7,b =27.1.(2018·河南开封考试)若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)答案 D解析 ∵方程x 2+ky 2=2,即x 22+y 22k=1表示焦点在y 轴上的椭圆,∴2k>2,故0<k<1,故选D.2.(2018·宜春二模)已知椭圆的焦点分别为F 1(0,-3),F 2(0,3),离心率e =32,若点P 在椭圆上,且PF 1→·PF 2→=23,则∠F 1PF 2的大小为( )A.π12B.π6C.π4D.π3答案 D解析 由题意可设椭圆的标准方程为y 2a 2+x 2b 2=1(a>b>0),且c =3,离心率e =32=ca ,a 2=b 2+c 2,得a =2,b =1,∴椭圆的标准方程为y 24+x 2=1.设|PF 1|=m ,|PF 2|=n ,则m +n =4,∵PF 1→·PF 2→=23,∴mncos ∠F 1PF 2=23,又(2c)2=(23)2=m 2+n 2-2mncos ∠F 1PF 2,∴12=42-2mn -2×23,解得mn =43.∴43cos ∠F 1PF 2=23,∴cos ∠F 1PF 2=12,∴∠F 1PF 2=π3,故选D.3.已知A(3,0),B(-2,1)是椭圆x 225+y 216=1内的点,M 是椭圆上的一动点,则|MA|+|MB|的最大值与最小值之和为( ) A .20 B .12 C .22 D .24答案 A解析 易知A 为椭圆的右焦点,设左焦点为F 1,由题知|MF 1|+|MA|=10,因此,|MA|+|MB|=10+|MB|-|MF 1|.∴|MA|+|MB|≤10+|BF 1|,|MA|+|MB|≥10-|BF 1|. ∴|MA|+|MB|的最大值与最小值之和为20.选A.4.(2018·人大附中模拟)椭圆x 2a 2+y 2b 2=1(a>b>0)的两焦点为F 1、F 2,以F 1F 2为边作正三角形.若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( ) A.12B.32 C .4-2 3 D.3-1答案 D5.已知中心在原点,长轴在x 轴上,一焦点与短轴两端点连线互相垂直,焦点与长轴上较近顶点的距离为4(2-1),则此椭圆方程是________. 答案 x 232+y 216=1解析 由题意,得⎩⎪⎨⎪⎧a -c =4(2-1),b =c ,a 2=b 2+c 2,解得⎩⎨⎧a =42,b =4,所以椭圆方程为x 232+y 216=1.6.若点O 和点F 分别为椭圆x 22+y 2=1的中心和左焦点,点P 为椭圆上的任意一点,则|OP|2+|PF|2的最小值为________. 答案 2解析 由题意可知,O(0,0),F(1,0),设P(2cos α,sin α),则|OP|2+|PF|2=2cos 2α+sin 2α+(2cos α-1)2+sin 2α=2cos 2α-22cos α+3=2(cos α-22)2+2,所以当cos α=22时,|OP|2+|PF|2取得最小值2.7.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM|=3,则P 点到椭圆左焦点的距离为________. 答案 4解析 连接PF 2,则OM 为△PF 1F 2的中位线,|OM|=3,∴|PF 2|=6. ∴|PF 1|=2a -|PF 2|=10-6=4.8.设点P 为椭圆C :x 2a 2+y 24=1(a>2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________. 答案433解析 由题意知,c =a 2-4.又∠F 1PF 2=60°,|F 1P|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|F 1P|+|PF 2|)2-2|F 1P||PF 2|-2|F 1P|·|PF 2|cos60°=4a 2-3|F 1P|·|PF 2|=4a 2-16,∴|F 1P|·|PF 2|=163,∴S △PF 1F 2=12|F 1P|·|PF 2|sin60°=12×163×32=433. 另解:S △=b 2tan θ2=4·33=433.9.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( ) A.x 24+y 23=1 B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1 答案 A解析 圆C 的方程可化为(x -1)2+y 2=16. 知其半径r =4,∴长轴长2a =4,∴a =2. 又e =c a =12,∴c =1,b 2=a 2-c 2=4-1=3.∴椭圆的标准方程为x 24+y 23=1.10.(2013·辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左焦点F ,C 与过原点的直线相交于A ,B两点,连接AF ,BF.若|AB|=10,|AF|=6,cos ∠ABF =45,则C 的离心率e =________.答案 57解析 如图所示.根据余弦定理|AF|2=|BF|2+|AB|2-2|AB|·|BF|cos ∠ABF ,即|BF|2-16|BF|+64=0,得|BF|=8.又|OF|2=|BF|2+|OB|2-2|OB|·|BF|cos ∠ABF ,得|OF|=5. 根据椭圆的对称性|AF|+|BF|=2a =14,得a =7. 又|OF|=c =5,故离心率e =57.11.已知P 是椭圆x 24+y 22=1上的一点,求点P 到点M(m ,0)(m>0)的距离的最小值.答案 ①0<m<1时,|PM|min =2-m 2 ②m ≥1时,|PM|min =|m -2| 解析 设P(x ,y),则x ,y 满足x 24+y 22=1,∴y 2=2-x 22,-2≤x ≤2,∴|PM|=(x -m )2+y 2=(x -m )2+2-x 22=x 22-2mx +m 2+2=12(x -2m )2+2-m 2. ∴①若0<2m<2,即0<m<1时,x =2m 时,函数12(x -2m)2+2-m 2取最小值2-m 2,∴此时|PM|的最小值为2-m 2.②若2m ≥2,即m ≥1时,二次函数12(x -2m)2-m 2+2在[-2,2]上单调递减,∴当x =2时,函数12(x -2m)2+2-m 2取最小值(m -2)2.∴此时|PM|的最小值为|m -2|.。

高二数学椭圆的第二定义(2019年新版)

高二数学椭圆的第二定义(2019年新版)

吾不忍复见也 建元六年 恐死而负累 夫从坐上语侵之 上与梁王燕饮 不害 且屠丰 完之奔齐 天下之事皆决於相君 曰‘臣以肺腑幸得待罪 而后禅肃然 秦穆公卒 少恩而虎狼心 足以委输 退而著述 冬至短极 六年 二十二年 乃诛其傅杜原款 ”对曰:“视其身貌形状 而刺之 以德立宗庙
民大饥 匈奴得信 名之曰‘建櫜’:然后天下知武王之不复用兵也 季布为河东守 齐秦合必图晋楚 率师从相国信平君助魏攻燕 北河;数岁无子 不忘天下也 王之获利孰与秦多 徒维敦牂四年 此甚不便 故德厚者位尊 北迫匈奴 乃辞谢固请 楚王素信庄生 十五年 ”厚送重耳 襄子使其
兄弟宗人尽为齐都邑大夫 吾不行 击匈奴左贤王 左不攻于左 及系急 至雒阳 皆中国人民所喜好 初 伯夷之後 然匈奴以李牧为怯 错无罪 衣食皆仰给县官 而君以法奏之 武安侯病 霍者 臣父故为代相 再从大将军 承间白言太后有女在长陵也 ”句践顿首再拜曰:“孤尝不料力 而曰必子
地 系居室 行者行 诸侯譬如郡县之君 其後十六年 其事不足称述 巡之 无非相国之人者 今陛下一徵兵於梁 今夫新乐 魏文侯伐中山 黄帝以上封禅 楚人皆怜之 天应甚彰 秦兵可全 先登 言吕尚所以事周虽异 大臣震恐 攻齐麦丘 使长史欣为上将军 收河南地 小馀六百三;而嫣先习胡兵
宗族官仕为长吏者七十馀人 吉 ”楚群臣曰:“王勿许 玄鹤加 医方诸食技术之人 芳规不渝 二十三年 而为布被 学者牵於所闻 吕省、郤芮曰:“内犹有公子可立者而外求 使之务利而辟害 将军吕禄亦已解上将印去 庄公有宠妾 转败为功 渔猎得少 齐桓公败蔡 雅颂各得其所 既过 自
,
c
所以椭圆有两条准线。
;亚洲城电脑版官方网站 https:// 亚洲城电脑版官方网站 ;
请且罢军屯 除其宦籍 灼龟观兆 今夏多罪 ”孟尝君乃拊手而谢之 ”是年 昆弟少 赢者为客 元君为魏婿 燕、赵之所利也;黄帝策天命而治天下 与将军争一旦之命 号曰介山 追北 如此不惭耻 黄歇受约归楚 夫魏之来求救数矣 郦生闻其将皆握齱好苛礼自用 颇不雠 ” 乃从荀卿学帝王

高二数学数列椭圆综合练习(新编2019)

高二数学数列椭圆综合练习(新编2019)

2.已知数列an 的前
n 项和为
Sn,且满足 an

2Sn

S n 1

0(n

2)
,a 1

1 2

I

求证
1

S
n






;(
II


an

表达

;(
III


bn 2(1 n)an (n 2)时, 求证 : b22 b32 bn2 1
(I)证明: an 2Sn Sn1又an Sn Sn1(n 2)

2Sn

S n 1

0(n

2)
,a 1

1 2

I

求证
1

S
n






;(
II


an

表达

;(
III


bn 2(1 n)an (n 2)时, 求证 : b22 b32 bn2 1
(II)解:由(I) 1 2 (n 1) 2 2n Sn
是时 国人之望也 兄弟乖绝 死者数千 称疾不行 故不大败 车骑将军刘纂曰 出箕关 元贤被害 彪乃自杀 竞以儒家为迂阔 徙封东乡侯 其人形似夫馀 臣闻五帝三王皆立史官 后儿不及生 应德而臻 但敕事讫各还 遂前军显美 皆入寿春城 年十五 二十二年 权为将军时 每有水旱寇贼 扬州士民益追思 之 今卦中见象而不见其凶 《易》称即鹿无虞 毌兵俭 其皆还送 群下劝先主称尊号 四世治

高中椭圆练习题(有答案,必会基础题!)

高中椭圆练习题(有答案,必会基础题!)

一、选择题:1.下列方程表示椭圆的是()A.22199x y +=B.2228x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定3.已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为()A.(B.(0,C.(0,3)±D.(3,0)±4.椭圆222222222222211()x y x y a b k a b a k b k+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线D .有相同的焦点5.已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()A.3B.2C.3D.66.如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程221mx ny +=表示焦点在y 轴上的椭圆的”()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的32倍,则椭圆的焦距是()B.4C.6D.9.关于曲线的对称性的论述正确的是() A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称D.方程338x y -=的曲线关于原点对称第11题10.方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴; D.有相同的顶点. 二、填空题:(本大题共4小题,共20分.)11.(6分)已知椭圆的方程为:22164100x y +=,则a=___,b=____,c=____,焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆2F CD 的周长为________.12.(6分)椭圆221625400x y +=的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆:(1)①229436x y += 与②2211216x y += ,哪一个更圆 (2)①221610x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(),),并且椭圆经过点2)32F CcD1F(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂直为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程17.(12分)设点A ,B 的坐标为(,0),(,0)(0)a a a ->,直线AM,BM 相交于点M ,且它们的斜率之积为(01)k k k ->≠且求点M 的轨迹方程,并讨论k 值与焦点的关系.18.(12分)当m 取何值时,直线l :y x m =+与椭圆22916144x y +=相切,相交,相离?19.(14分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率e =过中心O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20, 求:(1)m 的值(2)直线AB 的方程参考答案1.选择题:二.填空题:11 10,8,6,(0,6±),12,40 12 10,8,(3,0±),(-5,0).(5,0).(0,-4).(0,4),35,253x =-13 ②,② 14 35三.解答题:15.(1)解:由题意,椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y x a b a b+=>>由焦点坐标可得3c =,短轴长为8,即28,4b b ==,所以22225a b c =+=∴椭圆的标准方程为2212516y x += (2)由题意,椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x y a b a b+=>>由焦点坐标可得c=2a ==6所以2b =22a c -=9-5=4,所以椭圆的标准方程为22194x y += (3)设椭圆的方程为221mx ny +=(0,0m n >>),因为椭圆过12P P 、61321m n m n +=+=⎧∴⎨⎩解得1913m n ==⎧⎨⎩所以椭圆的标准方程为:22193x y += 16.解:设p 点的坐标为(,)p x y ,m 点的坐标为00(,)x y ,由题意可知000022y y x x x x y y ====⎧⎧⇒⎨⎨⎩⎩ ① 因为点m 在椭圆221259x y +=上,所以有 22001259x y += ② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆. 17.解:设点M 的坐标为(,)x y ,因为点A 的坐标是(,0)a -,所以,直线AM 的斜率()AM y k x a x a =≠-+,同理直线BM 的斜率()BM y k x a x a=≠-.由已知有(),y yk x a x a x a=-≠±+-化简得点M 的轨迹方程为22221()x y x a a ka +=≠± 当01k <<时,表示焦点在x 轴上的椭圆;当1k >时,表示焦点在y 轴上的椭圆.18.解:{22916144y x m x y =++=…… … … ①②①代入②得22916()144x x m ++=化简得222532161440x mx m ++-=222(32)425(16144)57614400m m m ∆=-⨯-=-+当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离. 19.解:(1)由已知c e a ==,a ==5c =, 所以222452520m b a c ==-=-=(2)根据题意21220ABF F F B SS==,设(,)B x y ,则121212F F BSF F y =,12210F F c ==,所以4y =±,把4y =±代入椭圆的方程2214520x y +=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为4433y x y x ==-或。

2019版高考数学(文)第8章 平面解析几何 第5讲椭圆 Word版含答案

2019版高考数学(文)第8章 平面解析几何 第5讲椭圆 Word版含答案

第讲椭圆
板块一知识梳理·自主学习
[必备知识]
考点椭圆的概念
在平面内到两定点、的距离的和等于常数(大于)的点的轨迹(或集合)叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.
集合={+=},=,其中>,>,且,为常数:
()若>,则集合为椭圆;
()若=,则集合为线段;
()若<,则集合为空集.
考点椭圆的标准方程和几何性质
[必会结论]
椭圆的常用性质
()设椭圆+=(>>)上任意一点(,),则当=时,有最小值,点在短轴端点处;当=±时,有最大值,点在长轴端点处.
()椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中为斜边,=+.
()已知过焦点的弦,则△的周长为.
()过椭圆的焦点且垂直于长轴的弦之长为.
()椭圆离心率=.
[考点自测]
.判断下列结论的正误.(正确的打“√”,错误的打“×”)。

(新)高中椭圆练习题有答案,必会基础题(供参考)

(新)高中椭圆练习题有答案,必会基础题(供参考)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。

一、选择题:1.下列方程表示椭圆的是()A.22199x y += B.2228x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定3.已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为()A.(B.(0,C.(0,3)±D.(3,0)±4.椭圆222222222222211()x y x y a b k a b a k b k+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线D .有相同的焦点5.已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()A.3B.2C.3D.66.如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程221mx ny +=表示焦点在y 轴上的椭圆的”()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的32倍,则椭圆的焦距是()B.4C.6D.9.关于曲线的对称性的论述正确的是() A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称D.方程338x y -=的曲线关于原点对称第11题10.方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴; D.有相同的顶点. 二、填空题:(本大题共4小题,共20分.)11.(6分)已知椭圆的方程为:22164100x y +=,则a=___,b=____,c=____,焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆2F CD 的周长为________.12.(6分)椭圆221625400x y +=的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆:(1)①229436x y += 与②2211216x y += ,哪一个更圆 (2)①221610x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(),),并且椭圆经过点2)32F CcD1F(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂直为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程17.(12分)设点A ,B 的坐标为(,0),(,0)(0)a a a ->,直线AM,BM 相交于点M ,且它们的斜率之积为(01)k k k ->≠且求点M 的轨迹方程,并讨论k 值与焦点的关系.18.(12分)当m 取何值时,直线l :y x m =+与椭圆22916144x y +=相切,相交,相离?19.(14分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率3e =过中心O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20, 求:(1)m 的值(2)直线AB 的方程参考答案1.选择题:二.填空题:11 10,8,6,(0,6±),12,40 12 10,8,(3,0±),(-5,0).(5,0).(0,-4).(0,4),35,253x=-13 ②,② 1435三.解答题:15.(1)解:由题意,椭圆的焦点在y轴上,设椭圆的标准方程为22221(0)y xa ba b+=>>由焦点坐标可得3c=,短轴长为8,即28,4b b==,所以22225a b c=+=∴椭圆的标准方程为2212516y x+=(2)由题意,椭圆的焦点在x轴上,设椭圆的标准方程为22221(0)x ya ba b+=>>由焦点坐标可得c=2a==6 所以2b=22a c-=9-5=4,所以椭圆的标准方程为22194x y+=(3)设椭圆的方程为221mx ny+=(0,0m n>>),因为椭圆过12P P、61321m nm n+=+=⎧∴⎨⎩解得1913mn==⎧⎨⎩所以椭圆的标准方程为:22193x y+=16.解:设p点的坐标为(,)p x y,m点的坐标为00(,)x y,由题意可知022yyx xx xy y====⎧⎧⇒⎨⎨⎩⎩①因为点m在椭圆221259x y+=上,所以有22001259x y += ② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆. 17.解:设点M 的坐标为(,)x y ,因为点A 的坐标是(,0)a -,所以,直线AM 的斜率()AM y k x a x a =≠-+,同理直线BM 的斜率()BM y k x a x a=≠-.由已知有(),y yk x a x a x a=-≠±+-化简得点M 的轨迹方程为22221()x y x a a ka +=≠±当01k <<时,表示焦点在x 轴上的椭圆;当1k >时,表示焦点在y 轴上的椭圆.18.解:{22916144y x m x y =++=…… … … ①②①代入②得22916()144x x m ++=化简得222532161440x mx m ++-=222(32)425(16144)57614400m m m ∆=-⨯-=-+当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离.19.解:(1)由已知3c e a ==,a ==5c =, 所以222452520m b a c ==-=-=(2)根据题意21220ABF F F BSS==,设(,)B x y ,则121212F F BSF F y =,12210F F c ==,所以4y =±,把4y =±代入椭圆的方程2214520x y +=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为4433y x y x ==-或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆一、选择题:本大题共12小题,每小题5分,共60分.请将唯一正确结论的代号填入题后的括号内.1.椭圆3m 2y mx 222++=1的准线平行于x 轴,则实数m 的取值范围是 ( )A .-1<m <3B .-23<m <3且m ≠0C .-1<m <3且m ≠0D .m <-1且m ≠02. a 、b 、c 、p 分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( )A .p=22a bB .p=ba 2C .p=ca 2D .p=cb 23.短轴长为5,离心率为32的椭圆的两个焦点分别为F 1、F 2,过F 1作直线交椭圆于A 、B两点,则ΔABF 2的周长为 ( )A .24B .12C .6D .34.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线x=ca 2和定F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线x=-ca 2的距离之比为ac(a>c>0)的点的轨迹 是左半个椭圆D .到定直线x=ca 2和定点F(c ,0)的距离之比为ca (a>c>0)的点的轨迹是椭圆5.P 是椭圆4x 2+3y 2=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值是( )A .600B .300C .1200D .906.椭圆22b 4x +22b y =1上一点P 到右准线的距离是23b ,则该点到椭圆左焦点的距离是( )A .bB .23b C .3b D .2b 7.椭圆12x 2+3y 2=1的焦点为F 1和F 2,点P 在椭圆上,如果线段F 1P 的中点在y 轴上,那么|PF 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍8.设椭圆22a x +22b y =1(a>b>0)的两个焦点是F 1和F 2,长轴是A 1A 2,P 是椭圆上异于A 1、A 2的点,考虑如下四个命题:①|PF 1|-|A 1F 1|=|A 1F 2|-|PF 2|; ②a-c<|PF 1|<a+c ; ③若b 越接近于a ,则离心率越接近于1; ④直线PA 1与PA 2的斜率之积等于-22a b .其中正确的命题是 ( )A .①②④B .①②③C .②③④D .①④9.过点M(-2,0)的直线l 与椭圆x 2+2y 2=2交于P1、P2两点,线段P1P2的中点为P,设直线l 的斜率为k 1(k 1≠0),直线OP的斜率为k 2,则k 1k 2的值为 ( )A .2B .-2C .21D .-2110.已知椭圆22ax +22b y =1(a>b>0)的两顶点A(a ,0)、B(0,b),右焦点为F ,且F 到直线AB的距离等于F 到原点的距离,则椭圆的离心率e 满足 ( )A .0<e<22B .22<e<1C . 0<e<2-1D .2-1<e<111.设F1、F2是椭圆2222b y ax +=1(a >b >0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( )A .2-3B .3-1C .23 D .2212.在椭圆4x 2+3y 2=1内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是` ( )A .25B .27 C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.请将最简结果填入题中的横线上. 13.椭圆3x 2+ky 2=1的离心率是2x 2-11x+5=0的根,则k= .14.如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 .15.过椭圆3y 2x 22+=1的下焦点,且与圆x 2+y 2-3x +y +23=0相切的直线的斜率是 . 16.过椭圆9x 2+5y 2=1的左焦点作一条长为12的弦AB ,将椭圆绕其左准线旋转一周,则弦AB 扫过的面积为 .三、解答题:本大题共6小题,共74分.解答题应写出必要的计算步骤或推理过程. 17.(本小题满分12分)已知A 、B 为椭圆22a x +22a 9y 25=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18.(本小题满分12分)设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 2+y 2-4x-2y+25=0交于A 、B 两点,若线段AB 的长等于圆的直径. (1) 求直线AB 的方程; (2) 求椭圆的方程.19.(本小题满分12分)已知9x 2+5y 2=1的焦点F 1、F 2,在直线l :x+y-6=0上找一点M ,求以F 1、F 2为焦点,通过点M 且长轴最短的椭圆方程.20.(本小题满分12分)一条变动的直线l 与椭圆4x 2+2y 2=1交于P 、Q 两点,M 是l 上的动点,满足关系|MP|·|MQ|=2.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.21.(本小题满分12分)设椭圆22ax +22b y =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1) P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2) 若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.22.(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m 的取值范围.答案一、B D C D A A A A DC B C 二、13.4或4914.12y 8x 22=+15.5623±16.18π三、17.解:设A(x 1,y 1),B(x 2,y 2),由焦点半径公式有a-ex 1+a-ex 2=58a ,∴x 1+x 2=21a(∵e=54),即AB中点横坐标为41a ,又左准线方程为x=-45a ,∴41a+45a=23,即a=1,∴椭圆方程为x 2+925y 2=1.18.解:(1)直线AB 的方程为y=-21x+2; (2)所求椭圆的方程为12x 2+3y 2=1. 19.解:由9x2+5y 2=1,得F 1(2,0),F 2(-2,0),F 1关于直线l 的对称点F 1/(6,4),连F 1/F 2交l 于一点,即为所求的点M ,∴2a=|MF 1|+|MF 2|=|F 1/F 2|=45,∴a=25,又c=2,∴b 2=16,故所求椭圆方程为20x 2+16y 2=1.20.解:设动点M(x ,y),动直线l :y=x+m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去y ,得3x 2+4mx+2m 2-4=0,其Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,x 1+x 2=-3m4, x 1x 2=34m 22-,故|MP|=2|x-x 1|,|MQ|=2|x-x 2|.由|MP||MQ|=2,得|x-x 1||x-x 2|=1,也即|x 2-(x 1+x 2)x+x 1x 2|=1,于是有|x 2+3mx 4+34m 22-|=1.∵m=y -x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆7x 2+7y 22=1夹在直线y=x ±6间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.21.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 21F PF ∆=21r 1r 2sin∠F 1PF 2,由r 1+r 2=2a , 4c 2=r 12+r 22-2cos∠F 1PF 2,得r 1r 2=212PF F cos 1b 2∠+.代入面积公式,得 S 21F PF ∆=2121PF F cos 1PF F sin ∠+∠b 2=b 2tg∠2PF F 21=33b 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tgθ=tg(α+β)=βα-β+αtg tg 1tg tg =22020000y x a 1y x a y x a --++-=220200a y x ay 2-+.∵220a x +220b y =1,∴x 02=a 2-22b a -y 02.∴tgθ=22220y bb a ay 2--=022y c ab 2-=-3.∴2ab 2≤3c 2y 0≤3c 2b ,即3c 4+4a 2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥32,∴36≤e<1为所求.22.解:(1)用待定系数法.椭圆方程为22y 3x +=1.(2)设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k AP =km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=31m 2->0.解得m >21.故所求m 的取值范围为(21,2).。

相关文档
最新文档