8.转录产物的加工
转录后加工名词解释
转录后加工名词解释
转录后加工是指在基因组中进行转录的过程后,对转录产物(RNA分子)进行进一步的修饰和加工的过程。
转录是指在DNA模板上合成RNA分子的过程,而转录后加工则是在RNA分子合成完成后对其进行一系列的修饰和处理。
转录后加工的目的是为了产生成熟的RNA分子,使其能够发挥特定的功能。
在转录后加工过程中,RNA分子经历剪接、修饰和运输等多个步骤,以形成成熟的RNA分子。
剪接是转录后加工中最重要的步骤之一。
在剪接过程中,RNA 分子的内含子(非编码区域)会被剪除,而外显子(编码区域)则会被保留下来。
这样一来,通过剪接,一个基因可以产生多个不同的成熟RNA分子,从而扩大了基因的功能和多样性。
除了剪接,转录后加工还包括其他的修饰过程。
例如,RNA分子可能会经历5'端帽子的添加和3'端的聚腺苷酸尾巴的加入,这些修饰可以保护RNA分子免受降解,并有助于其在细胞内的稳定性和转运过程中的识别。
此外,转录后加工还可以包括RNA编辑、互补RNA合成和核糖体扫描等过程。
RNA编辑是指在转录后,RNA分子中的碱基序列可以发生改变,从而导致RNA分子的信息内容发生变化。
互补RNA合成是指利用RNA分子作为模板合成互补的DNA分子。
核糖体扫描是指RNA分子被核糖体识别并翻译成蛋白质的过程。
总的来说,转录后加工是一系列对转录产物进行修饰和加工的过程,通过这些过程,RNA分子可以获得特定的功能和稳定性,从而发挥其在细胞中的重要作用。
第8章 转录后加工
4、拼接(splicing)
Ø 大多数的真核生物基因是断裂基因;
Ø 其中编码序列称为外显子(exon),外显子之间的 介入序列称为内含子(intron);
Ø 少数真核生物基因(如组蛋白、干扰素)是连续的;
Ø 高等真核生物的基因中多数内含子比外显子长得多, 而低等真核生物(如酵母)的基因中内含子比较短而 且少见;
Ø 有些生物的rRNA前体含有内含子,需要拼接;
p.205
Ø 哺乳动物的18S, 28S, 5.8S rRNA gene 组成一个 转录单位,由RNA pol I 转录产生45S的前体分子;
Ø 5S rRNA gene 与不转录区域组成转录单位, 由RNA pol III转录;
small nucleolar RNA(snoRNA)
Ø 高度精确; Ø 依赖于多种顺式作用元件和反式作用因子; Ø 共转录事件;
顺式元件1
Ø 内含子具有一致的保守序列,即5’拼接点为 GU,3’拼接点为AG,称为BreathnathChambon规则,也称GU/GT-AG规则。
顺式元件2
为什么只有mRNA被加帽?
Ø 只有RNA聚合酶 II 合成的转录产物(mRNA、 部分snRNA)才有帽子结构;
Ø 因为加帽酶只能与RNA聚合酶 II 的CTD结构 域结合;而CTD是RNA聚合酶II 特有的。
Ø 加帽酶与CTD的磷酸化形式(延伸型)结合。 Ø 转录产物一旦从RNA聚合酶II中显露出来,就
可以与加帽酶接触。
2、3’端加尾
Ø 真核生物的大多数mRNA及其前体在3’端有约 250 nt 的连续的AMP。 Ø poly(A) 由poly(A) polymerase(PAP)添加; Ø mRNA进入细胞质后,其poly(A)可以被更新 : 不断地被RNase降解,再由细胞质中的PAP重新 合成。
生物化学题库带答案
单项选择题240道多项选择题62道判断题176道简答题21道分析题11道【单项选择题240道】1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?BA.2.00g B.2.50g C.6.40g D.3.00g E.6.25g2.下列含有两个羧基的氨基酸是:EA.精氨酸B.赖氨酸C.甘氨酸D.色氨酸E.谷氨酸3.维持蛋白质二级结构的主要化学键是:DA.盐键B.疏水键C.肽键D.氢键E.二硫键4.关于蛋白质分子三级结构的描述,其中错误的是:BA.天然蛋白质分子均有的这种结构B.具有三级结构的多肽链都具有生物学活性C.三级结构的稳定性主要是次级键维系D.亲水基团聚集在三级结构的表面bioooE.决定盘曲折叠的因素是氨基酸残基5.具有四级结构的蛋白质特征是:EA.分子中必定含有辅基B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成C.每条多肽链都具有独立的生物学活性D.依赖肽键维系四级结构的稳定性E.由两条或两条以上具在三级结构的多肽链组成6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:CA.溶液pH值大于pIB.溶液pH值小于pIC.溶液pH值等于pID.溶液pH值等于7.4E.在水溶液中7.蛋白质变性是由于:DA.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解8.变性蛋白质的主要特点是:DA.粘度下降B.溶解度增加C.不易被蛋白酶水解D.生物学活性丧失E.容易被盐析出现沉淀9.蛋白质分子组成中不含有下列哪种氨基酸? EA.半胱氨酸B.蛋氨酸C.胱氨酸D.丝氨酸E.瓜氨酸10.维系蛋白质一级结构的化学键主要是 ( D )。
A.盐键B.二硫键C.疏水键D.肽键E.氢键11.蛋白质变性不包括( D )。
A.氢键断裂B.盐键断裂C.疏水键破坏D.肽键断裂E.二硫键断裂12.蛋白质空间构象主要取决于( A )。
A.氨基酸的排列顺序B.次级键的维系力C. 温度、pH值和离子强度等D.链间二硫键E.链内二硫键13.蛋白质变性是由于( E )。
第8章 RNA转录后的加工
4-硫尿苷
次黄嘌呤核苷(肌苷)
1-甲基鸟苷
N6 -异戊烯基腺苷
假尿嘧啶核苷
二氢尿苷
真核tRNA内含子的特点:
• 位置相同,都在反密码 子环的下游,内含子和 反密码子配对形成茎环 • 外显子和内含子交界处 无保守序列 • 不同tRNA的内含子长度 和序列各异 • 内含子的剪切是依靠 RNA酶异体催化(自身 不是核酶)
mRNA
蛋白质合成模板
RNA的加工 rRNA和tRNA:不论原核或真核生物的rRNA和tRNA都是以初级 转录本形式被合成的,然后再加工成为成熟的RNA分子。
mRNA: 原核生物的mRNA却不需加工,仍为初级转录本的形式。
真核生物pre-mRNA要经过复杂的加工历程,包括加帽、 加尾和内含子的剪接等。
1、在5’端加帽(cap)) 场所是核内
帽子0:m7 G ppp X 单细胞生物(如酵母) 帽子1:m7 G ppp Xm 多细胞生物,主要形式 帽子2:m7 G ppp XmpYm 占10-15%
三种帽子的 共同位置 在帽子1中 可被甲基化
帽子1
m7Gppp
鸟甘酸转移酶
帽子2
剪接前加帽,剪接后加帽 剪接前加帽
类似的加工过程也可以在某些噬菌体的多顺反子mRNA中见到。例 如,大肠杆菌噬菌体T7的早期基因转录出一条长的多顺反子mRNA, 经RNaseIII切割成5个单独的mRNA和一段5′端前导序列。mRNA的 切割对其中某些早期蛋白质的合成是必要的。推测可能是由于较 长的 mRNA产生二级结构,会阻止有关编码序列的翻译。这种RNA 二级结构(可能还有三级结构)与其功能的调控关系在多种情况 下均可看到,并不仅限于翻译起始的调控。通过 RNA 链的裂解, 改变了RNA的二级结构,从而影响它的功能。
分子生物学名词解释
分子生物学名词解释1.ABC模型:即控制花形态发生的模型。
该模型把四轮花器官同时发生作为基本前提,强调花形态突变体产生不同花器官的生理位置变化。
该模型中正常花的四轮结构的形成是由三组基因A、B、C共同作用完成的,每一轮花器官特征的决定分别依赖于A、B、C三组基因中的一组或两组基因的正常表达。
A组基因控制萼片、花瓣的发育,B组基因控制花瓣、雄蕊的发育,C组基因控制雄蕊、心皮的发育。
A、C组基因互相拮抗,抑制对方在自身所控制的区域中表达,如其中任何一组或更多的基因发生突变而丧失功能,花的形态就出现异常。
2.C值反常现象(C value paradox):也称C值谬误。
指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些较低等的生物C值却很大,如一些两栖动物的C值甚至比哺乳动物还大。
3.DNA的半保留复制(semi-conservative replication):DNA在复制过程中每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。
因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。
4.DNA的半不连续复制(semi-discontinuous repliction):DNA复制过程中前导链的复制是连续的,而另一条链,即后随链的复制是中断的、不连续的。
5.GU-AG法则(GU-AG rule):多数细胞核mRNA前体中内含子的5′边界序列为GU,3′边界序列为AG。
因此,GU表示供体衔接点的5′端,AG代表接纳衔接点的3′端序列。
习惯上,把这种保守序列模式称为GU-AG法则。
6.RACE(rapid amlification of cDNA ends,cDNA末端的快速扩增):是利用PCR技术在已知部分cDNA序列的基础上特异性克隆其5′端或3′端缺失序列的方法。
分子生物学总复习期末考试总复习
分子生物学课程重点,以及一份真题。
1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。
在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。
这些蛋白质在维持染色体结构中起着重要作用。
(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B 介于两者之间。
H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。
一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。
(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。
DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
查阅考试酷 _ 生物学类生物化1
1.1. 组成人体蛋白质的氨基酸(除甘氨酸外)均为()A. L-α-氨基酸 B. D-α-氨基酸C. L-β-氨基酸D. D-β-氨基酸E. D或L-α-氨基酸2. 氨基酸在等电点时,应具有的特点是()A. 带正电 B.不带负电 C. 不带正电D.净电荷为零,在电场中不泳动 E. 既不带正电也不带负电3. 蛋白质一级结构中的主要化学键是:( )A. 氢键 B. 盐键 C. 肽键D. 疏水键E. 范德华引力4. 蛋白质溶液的稳定因素是()A. 蛋白质溶液的粘度大 B.蛋白质分子在溶液中有布朗运动 C. 蛋白质分子表面带有水化膜和同种电荷 D. 蛋白质溶液有分子扩散现象 E. 蛋白质分子带有正电荷5.蛋白质紫外吸收的最大波长是()A.250nm B. 260nm C. 270nm D. 280nm E. 290nm6. 核酸中核苷酸之间的连接方式是:()A. 2′,3′-磷酸二酯键 B. 3′,5′-磷酸二酯键 C. 2′,5′-磷酸二酯键 D. 糖苷键 E. 氢键7. 关于Waston-Crick对DNA结构的论述正确的是:()A. 是一个三链螺旋结构B. 双股链的走向是反向平行的C. 嘌呤和嘌呤配对,嘧啶和嘧啶配对D. 碱基之间共价结合E. 磷酸戊糖主链位于螺旋内侧8. 有关DNA变性的论述何者是正确的?()A. Tm是DNA开始变性的温度 B. Tm是DNA完全变性的温度C. Tm是DNA变性达到1/2(50%)时的温度D. DAN碱基组成是G+C所占的克分子比越低,Tm越高E. DAN碱基组成是G+C所占的克分子比越高,Tm越低9. 关于酶的最适温度下列哪项是正确的?()A. 是酶的特征性常数 B. 是指反应速度等于50%Vmax 时的温度C. 是酶促反应速度最快时的温度 D. 是一个固定值与其他因素无关E. 与反应时间无关10.DNA复制之初,参与从超螺旋结构解开双股链的酶或因子是:()A.解链酶B.拓扑异构酶I C.DNA结合蛋白D.引发前体E.拓扑异构酶Ⅱ11.关于真核生物DNA复制与原核生物相比,下列说法错误的是:()A.引物长度较短B.冈崎片段长度较短C.复制速度较慢D.复制起始点只有一个E.由DNA聚合α及δ催化核内DNA的合成12.关于真核生物DNA聚合酶的说法错误的是:()A.DNA polα与引发酶共同参与引发作用B.DNA polδ催化链的生成C.DNA polβ催化线粒体DNA的生成D.PCNA参与DNA polδ的催化作用E.真核生物DNApol有α、β、γ、δ和ε5种13.在紫外线照射对DNA分子的损伤中最常见形成的二聚体是:()A.G-C B.C-T C.T-T D.T-U E.U-C14.关于反转录酶的叙述错误的是:()A.作用物为四种dNTP B.催化RNA 的水解反应C.合成方向3′→5′ D.催化以RNA为模板进行DNA合成E.可形成DNA—RNA杂交体中间产物15.辨认DNA复制起始点主要依靠的酶是:()A.DNA聚合酶B.DNA连接酶C.引物酶D.拓扑异构酶E.解链酶16.对于RNA聚合酶的叙述,不正确的是:()A.由核心酶和σ因子构成 B.核心酶由α2ββ′组成C.全酶与核心酶的差别在于β亚单位的存在D.全酶包括σ因子 E.σ因子仅与转录起动有关17. 以下对mRNA的转录后加工的描述错误的是:()A.mRNA前体需在5′端加m7GpppNmp的帽子 B.mRNA前体需进行剪接作用C.mRNA前体需在3′端加多聚U的尾D.mRNA前体需进行甲基化修饰E.某些mRNA前体需要进行编辑加工18. 成熟的真核生物mRNA5′末端具有:()A.聚A帽子 B.m7UpppNmPC.m7CpppNmPD.m7ApppNmPE.m7GpppNmP19. 外显子是指:() A.DNA链中的间隔区 B.被翻译的编码序列 C.不被翻译的序列 D.不被转录的序列 E.以上都不是20. 在蛋白质生物合成中催化氨基酸之间形成肽键的酶是:() A. 氨基酸合成酶B. 转肽酶C.羧基肽酶D. 氨基肽酶E. 氨基酸连接酶21.下列关于肽链延伸的叙述哪项不正确?()A.核糖体向mRNA3′端每移动一个密码子距离肽链便延伸一个氨基酸残基B.受大亚基上的转肽酶催化C.活化的氨基酸进入A位 D. 在进位、移位步骤中需GTP供能E.肽链合成从C 端→N端延伸22. 属于必需脂肪酸的是:()A.软脂酸(棕榈酸)B.硬脂酸C.油酸D.亚油酸E.月桂酸23. 脂肪动员的关键酶是:() A. 甘油三酯酶 B. 甘油二酯酶C. 甘油一酯酶D. 激素敏感性三酰甘油脂肪酶E. 脂蛋白脂肪酶24. 16碳软脂酸彻底氧化生成H2O和CO2时净产生ATP数为:()A. 106 B. 108C. 129D. 131E. 12025. 脂酰CoA β-氧化反应的正确顺序是:()A.脱氢、再脱氢、加水、硫解B.硫解、脱氢、加水、再脱氢C.脱氢、加水、再脱氢、硫解D.脱氢、脱水、再脱氢、硫解E.加水、脱氢、再硫解、再脱氢26. 糖类的生理功能有:() A. 提供能量 B. 构成蛋白聚糖和糖蛋白的组成成分C. 构成细胞膜组成成分D. 构成体内多种重要的生物活性物质,如血型物质E. 以上都对27. 下列不属于糖酵解关键酶的是: A. 已糖激酶 B. 葡萄糖激酶 C. 磷酸甘油酸激酶 D. 6-磷酸果糖激酶-1 E. 丙酮酸激酶28. 食物蛋白质的互补作用是指:()A.糖和蛋白质混合食用,以提高食物的生理价值作用B.脂肪和蛋白质混合食用,以提高食物的生理价值作用C.几种生理价值较低的蛋白质混合食用,以提高食物的营养作用D.糖、蛋白质、脂肪及维生素混合食用,以提高食物的营养作用E.糖和脂肪替代蛋白质的作用29. 下列哪组氨基酸,是成人必需氨基酸? ()A.蛋氨酸、赖氨酸、色氨酸、缬氨酸B.苯丙氨酸、赖氨酸、甘氨酸、组氨酸C.苏氨酸、蛋氨酸、丝氨酸、色氨酸D.亮氨酸、脯氨酸、半胱氨酸、酪氨酸E.缬氨酸、谷氨酸、苏氨酸、异亮氨酸30. 体内合成非必需氨基酸的主要途径是:()A. 转氨基 B. 联合脱氨基作用 C. 非氧化脱氨 D. 嘌呤核苷酸循环 E. 脱水脱氨31.人体内嘌呤核苷酸分解的终产物是:()A.尿素B.肌酸C.肌酸酐D.尿酸E.丙氨酸32. 下列氨基酸中,哪个既是嘌呤环又是嘧啶环生物合成的直接前体(原料)?()A.一碳单位B.PRPP C.甘氨酸D.天冬氨酸E.谷氨酸33. 酶化学修饰调节的最主要方式是:()A.甲基化与去甲基化B.乙酰化与去乙酰化C.磷酸化与去磷酸化D.聚合与解聚E.酶蛋白的合成与降解34. 糖类、脂类、氨基酸氧化分解时,进入三羧酸循环的主要物质是:()A.异柠檬酸B.丙酮酸C.α-酮酸D.α-酮戊二酸E.乙酰CoA35. 在胞浆中进行的和能量代谢有关的代谢是:( ) A. 三羧酸循环 B. 脂肪酸氧化 C. 电子传递 D. 糖酵解 E. 氧化磷酸化36.苯丙酮尿症(PKU)是因为细胞缺乏下列哪种酶?:() A. 苯丙氨酸羟化酶 B. 酪氨酸转氨酶 C.酪氨酸羟化酶 D. 苯丙氨酸转氨酶 E. 酪氨酸酶37. 1分子乙酰辅酶A经三羧酸循环和氧化磷酸化共可生成几分子ATP?:() A.2B.4C.8D.10E.1638. 在磷酸戊糖途径中具有重要生理意义的两个代谢产物是:()A. 5-磷酸核酮糖,CO2 B. 5-磷酸核糖,NADPH+H+ C. 3-磷酸甘油醛,6-磷酸果糖 D. 6-磷酸葡萄糖,6-磷酸葡萄糖酸内酯 E. 6-磷酸葡萄糖酸,5-磷酸核酮糖39. 在氨基酸代谢库中,游离氨基酸含量最高的是:()A. 肝脏 B. 肾脏 C. 脑 D. 肌肉 E. 血液40 关于管家基因的叙述,不正确的是()A.这些基因产物对生命全过程都是必需的B.在一个生物个体的几乎所有细胞中持续表达C.在个体各个生长阶段几乎全部组织中持续表达D.在生物个体的某一生长阶段持续表达E.只受启动序列与RNA聚合酶相互作用的影响41. 大多数基因表达调控基本环节是发生在:() A. 转录水平B. 复制水平 C. 翻译水平D. 翻译后水平 E. 转录起始42. 真核基因结构并不具备的典型特征是:()A.断裂基因B.多顺反子转录产物C.单顺反子转录产物D.重复序列E.转录产物的剪接加工43. 关于病毒癌基因的叙述错误的是:( )A.又称为原癌细胞B.主要存在于RNA病毒基因中C.在体外能引起细胞转化D.感染宿主细胞能随机整合于宿主细胞基因组E.感染宿主细胞能引起恶性转化44. 下列可以导致原癌基因激活的机制是()A.转录因子与RNA结合 B.p53蛋白诱导细胞凋亡 C.获得启动子和增强子 D.抑癌基因的过表达 E.基因同源重组45. 下列关于生长因子的叙述,错误的是()A.其化学本质属于多肽 B.主要以旁分泌和自分泌方式起作用 C.其受体定位于胞核中 D.具有调节细胞生长与增殖功能 E.广泛存在于机体内各种组织46. 基因工程的基本过程不包括:()A.限制酶的切割 B.重组体的筛选C.重组体的序列分析D.载体与目的基因的连接E. DNA重组体导入受菌体47. 下列关于限制性内切酶的叙述哪一项是错误的()A.它能识别DNA特定的碱基顺序,并在特定的位点切断DNAB.切割点附近的碱基顺序一般呈回文结构C.是重组DNA的重要工具酶D.它能专一降解经甲基化修饰的DNAE.主要从细菌中获得48. 关于重组DNA技术的叙述,正确的是:()A. 质粒、大肠杆菌DNA常作为克隆载体 B. DNA解链酶是主要工具酶之一C. DNA重组体是指目的片段与载体的连接物D. 利用逆转录酶完成外源基因与载体的并接E. 进入细胞内的重组DNA均可表达目标蛋白49. 用来鉴定DNA的技术是:()A. Southern blot B. Northern blotC. Western blotD. 免疫印迹E. 离子交换层析50. 下列关于维生素D的叙述,正确的有()A.属于水溶性维生素B.与巨幼红细胞性贫血发生有关C.作为辅酶参与糖有氧氧化D.调节体内钙、磷代谢E.构成视觉细胞内的感光物质51. 脂溶性维生素叙述正确的是:()A.可以供给机体能量B.与辅酶或辅基有关C.容易被消化道吸收D.过多或过少都可能引起疾病E.包括维生素A、C、D、E、K52. 在NAD+和NADP+分子中含有的维生素是:()A.VitB12 B.VitB6C.VitB2 D.VitB1 E.VitPP53. 能与胞内受体结合的信息物质是:()A. 蛋白质类激素 B.类固醇激素 C.胰岛素 D. 肽类激素 E. 干扰素54. 哪一项不是细胞内传递信息的第二信使()A. cAMP B. 甘油一酯 C. IP3 D. DG E. cGMP55. 与七个跨膜受体偶联的蛋白质是()A.蛋白激酶A B. 蛋白激酶CC. 腺苷酸环化酶D. 酪氨酸蛋白激酶E. 异源三聚体结构的G蛋白56. 血浆清蛋白的功能应除外:()A. 运输 B.免疫功能 C. 缓冲作用 D. 营养作用 E. 维持血浆胶体渗透压57. 成熟红细胞中不能进行的代谢途径是:()A. 糖酵解 B. 三羧酸循环C. 磷酸戊糖途径D. 2,3-二磷酸甘油支路E. 以上都是58. 合成血红素的基本原料是:()A.珠蛋白、Fe2+ B.琥珀酰CoA、Fe2+ C.琥珀酰CoA、甘氨酸、Fe2+D.乙酰CoA、Fe2+ E.乙酰CoA、甘氨酸、Fe2+59.下列哪一项不属于肝脏的功能?()A.贮存糖原和维生素B.合成血清白蛋白C.合成消化酶D.合成尿素E.进行生物转化60. 生物转化的第二相反应,最常结合反应是:()A.葡萄糖醛酸结合B.乙酰基结合C.硫酸结合D.谷胱甘肽结合E.甲基结合[60分]A1-10ADCCDBBCCE 11-20 DCCCCCCEBB 21-30 EDDACECCAB 31-40DDCEDADBDD 41-50EBACCCDCAD 51-60DCBBEBBCCA2.二、问答题每题5分,共30分1. 何谓酶原激活?酶原激活的生理意义是什么?2. 简述遗传密码的特点。
第十一、二章细胞核与染色质、核糖体
细胞生物学章节习题-第十一、十二章一、选择题1、以下哪个特征是活性染色质的标志?(D )A. H3 N端第9个赖氨酸的甲基化B. H3 N端第27个赖氨酸的甲基化C. 有大量的组蛋白H1结合D. 具有DNase I超敏感位点2、每个核小体基本单位包括多少个碱基(B )。
A. 100bpB. 200bpC. 300bpD. 400bp3、关于核孔复合体的运输错误的是( B )A. 分为主动运输和被动运输B. 主动运输和被动运输都需要核定位序列C. 主动运输的有效孔径比被动运输大D. 小GTP酶Ran在核质间穿梭4、下面那个有关核仁的描述是错误的?(C )。
A. 核仁的主要功能之一是参与核糖体的生物合成B. rDNA定位于核仁区内C. 在细胞内的位置通常是固定的D. 核仁中的核酸部分主要是rRNA基因及其转录产物。
5、核纤层蛋白(lamin)是(A )A. 一个具有多成员的蛋白家族B. 核纤层蛋白表达并不具有组织特异性C. 核纤层蛋白具有激酶活性,可以直接磷酸化MPFD. 核纤层蛋白参与细胞凋亡过程E. 以上答案都不对6、下面哪些关于核仁的描述是错误的?(CD )(多选)A. 核仁的主要功能之一是参与核糖体的生物合成B. rDNA定位于核仁区C. 细胞在G2期,核仁消失D. 细胞在M期末和S期重新组织核仁7、下列特性使端粒酶不同于其他的DNA聚合酶?(AD )A. 该酶带有自身的模板B. 从5’到3’方向合成DNAC. 端粒酶对热稳定D. 端粒酶的一个亚基是RNA分子8、以下哪种RNA转录产物的加工方式可导致翻译后产生氨基酸序列不同的蛋白质(C )A. RNA 5’端加帽B. RNA 3’端聚腺苷酸化C. RNA的可变剪切D. RNA 的细胞质定位9、在核糖体中执行催化功能的生物大分子是(C )A. 蛋白质B. DNAC. RNAD. 糖类10、维持细胞核正常形状与大小的结构是(C )A. 核膜B. 核孔复合体C. 核纤层D. 核小体11、利用染色体的功能元件可构建人造染色体。
第七章转录产物的加工修饰及转运降解
类
内
内含子本身的某个腺苷酸的 2`-OH作为亲核基因攻击内含 子5`端的磷酸二酯键
含 2`,5`-磷酸二酯键 子
的
自
RNA剪接产物
我
与3`末端相连
剪
上游外显子的3`-OH作亲核基
套索结构中的腺苷酸带 有3个磷酸二酯键
接
团攻击内子3`位核苷酸上的磷 酸二酯键,使套索结构完全解离
过
程
完成剪接的RNA
Note:
4.2.1 细菌mRNA的降解 4.2.2 真核生物mRNA的降解
mRNA is degraded by exo- and endo- nucleases
4.2.1 细菌mRNA的降解
细菌mRNA的降解总的 方向为5`→ 3`;
降解由两部分组成:核 酸内切酶的切割,以及核 酸外切酶对这些片段从3` → 5`方向的降解。
内含子可以阻止mRNA的出核,因为它们与 剪接装置联系在一起。
Spicing is required for mRNA export
The EJC (exon junction complex) binds to RNA by recognizing the splicing complex.
4.2 mRNA的降解
Splicing releases a mitochondrial group II intron in the form of a stable lariat.
3.3.3 内含子的不同剪接方式
(1)可变剪接 (2)顺式剪接和反式剪接
(1)可变剪接 (alternative splicing )
tRNA splicing has separate cleavage and ligation stages
分子生物学试题库
第2章染色体与D N A名词解释原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守; 当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤;半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制;填空题3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子;4.引起DNA损伤的因素有自发因素、物理因素、化学因素;5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白;6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶;7.在真核生物中DNA复制的主要酶是DNA聚合酶δ;在原核生物中是DNA聚合酶Ⅲ;8.端粒酶是端粒酶是含一段RNA的逆转录酶;9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复;简述DNA复制的过程DNA的复制过程可被分为3个阶段,即复制的起始、延伸和终止;每个DNA复制的独立单元主要包括复制起始位点和终止位点;DNA复制的起始包括预引发和引发两个阶段;在预引发阶段,DNA解旋解链,形成复制叉,引发体组装;在引发阶段,在引发酶的催化下以DNA链为模板合成一段短的RNA引物;复制时DNA链的延伸由DNA 聚合酶催化,以亲代DNA链为模板,引发体移动,从5′→3′方向聚合子代DNA链;当子链延伸到达终止位点是,DNA复制就终止了,切除RNA引物,填补缺口,在DNA连接酶的催化下将相邻的冈崎片段连接起来形成完整的DNA长链;试述真原核生物的DNA复制的特点的不同之处①真核生物染色体有多个复制起点,多复制眼,呈双向复制,多复制子;原核生物的染色体只有一个复制起点,单复制子也呈双向复制;②真核生物冈崎片段长约200bp比原核生物略短;真核生物DNA复制速度比原核慢,速度为1000~3000bp/min仅为原核生物的1/20~1/50;③真核生物复制的终止在端粒处,原核生物的复制叉相遇时即终止;④真核生物染色体在全部复制完之前起点不再重新开始复制;而在快速生长的原核生物染色体DNA 复制中,起点可以连续发动复制;真核生物快速生长时,往往采用更多的复制起点;⑤真核生物有多种DNA聚合酶,DNA聚合酶δ是真正的复制酶,在PCNA存在下有持续的合成能力;PCNA称为增殖细胞核抗原,相当于大肠杆菌DNA聚合酶Ⅲ的β-夹子,RFC蛋白相当于夹子装配器;原核生物的DNA聚合酶有三种DNA聚合酶ⅢDNA的真正复制酶:多亚基酶,含十种亚基,该酶DNA合成的持续能力强;⑥真核生物线性染色体两端有端粒结构,它是由许多成串的重短复序列组成,端粒功能是稳定染色体末段结构,防止染色体间的末端连接,并可补偿滞后链5’-末段在消除RNA引物后造成的空缺,使染色体保持一定长度;端粒酶是含一段RNA的逆转录酶;⑦RPA:真核生物的单链结合蛋白;RNaseH1和MF-1切除RNA引物,DNA聚合酶ε填补缺口;简述半保留复制的生物学意义DNA的复制过程以大肠杆菌为例复制起始:1、拓扑异构酶解开超螺旋;2、Dna A蛋白识别并在ATP存在下结合于四个9bp的重复序列;3、在类组蛋白HU、ATP参与下, Dan A蛋白变性13个bp的重复序列,形成开链复合物;4 、Dna B借助于水解ATP产生的能量在Dna C的帮助下沿5’→3’方向移动,解开DNA双链,形成前引发复合物;5、单链结合蛋白结合于单链;6、引物合成酶Dna G蛋白开始合成RNA引物;链的延长冈崎片段的合成:在DNA聚合酶Ш的催化下,以四种5’ -脱氧核苷三磷酸为底物,在RNA引物的3’端以磷酸二酯键连接上脱氧核糖核苷酸并释放出焦磷酸;DNA链的延伸同时进行前导链和滞后链的合成;两条链方向相反;6、PCR的基本原理PCR是在试管中进行的DNA复制反应,基本原理是依据细胞内DNA半保留复制的机理,以及体外DNA 分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以促使双链DNA变成单链,单链DNA与人工合成的引物退火,然后耐热DNA聚合酶以dNTP为原料使引物沿着单链模板延伸为双链DNA;PCR全过程每一步的转换是通过温度的改变来控制的;需要重复进行DNA模板解链、引物与模板DNA结合、DNA聚合酶催化新生DNA的合成,即高温变性、低温退火、中温延伸3个步骤构成PCR反应的一个循环,此循环的反复进行,就可使目的DNA得以迅速扩增;DNA模板变性:模板双链DNA 单链DNA,94℃;退火:引物+单链DNA 杂交链,引物的Tm值;引物的延伸:温度至70 ℃左右, Taq DNA聚合酶以4种dNTP为原料,以目的DNA为模板,催化以引物3’末端为起点的5’→3’DNA链延伸反应,形成新生DNA链;新合成的引物延伸链经过变性后又可作为下一轮循环反应的模板PCR,就是如此反复循环,使目的DNA得到高效快速扩增;第三章启动子:是一段位于结构基因5,端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性;指RNA聚合酶识别、结合和开始转录的一段特定的DNA序列;增强子:能强化转录起始的序列称为增强子;转录:以DNA为模板,按照碱基配对原则合成RNA,即将DNA所含的遗传信息传给RNA,形成一条与DNA链互补的RNA的过程;RNA的编辑:是某些RNA,特别是mRNA的一种加工方式,它导致了DNA所编码的遗传信息的改变;外显子Exon :真核细胞基因DNA中的编码序列,这些序列被转录成RNA并进而翻译为蛋白质;内含子Intron:真核细胞基因DNA中的间插序列,这些序列被转录成RNA,但随即被剪除而不翻译;复制子:生物体的复制单位称为复制子replicon ,是在同一个复制起点控制下的一段DNA序列;转录单元:是一段启动子开始至终止子结束的DNA序列;转录起点:是与新生RNA链的第一个核苷酸相对应的DNA链上的碱基,通常为一个嘌呤;转录开始时模板上的第一个碱基,在原核中常为A或G,而且位置固定;填空1转录的基本过程包括:模板识别,转录起始,转录的延伸,转录的终止;2基因表达包括:转录和翻译两个阶段;3RNA的编辑方式:碱基突变,尿甘酸的缺失和添加;4在原核生物中,-35区与-10区之间的距离大约是16~19bp5帽子结构的功能:〔1〕在翻译中起识别作用〔2〕使mRNA免遭核苷酸的破坏6原核生物只有一种RNA聚合酶而真核生物有三种,每一种都有其特定的功能;聚合酶Ⅰ合成rRNA,聚合酶Ⅱ合成mRNA,聚合酶Ⅲ合成tRNA和5s rRNA;三种聚合酶都是具有多亚基的大的蛋白复合体;7 转录因子通常具有两个独立的结构域:一个结合DNA,一个激活转录;8 在真核细胞mRNA的修饰中,“帽子”结构由甲基组成,“尾”由多聚腺嘌呤组成;9原核生物的绝大部分起启动子都存在共同的序列,即位于-10bp处的区和-35bp处的区,他们都是RNA聚合酶与启动子结合的位点,能与σ因子相互识别而具高度亲和性;真核生物中,在转录起始位点上游-25—-35bp处有区和位于-70--80bp处的区;简答题1增强子的特点〔1〕有远距离效应〔2〕无方向性〔3〕顺势调节〔4〕无物种和基因的特异性〔5〕具有组织的特异性〔6〕有相位性,其作用与DNA的构象有关〔7〕有的增强子可以对外部信号产生反应;2比较DNA复制和转录的异同点相同点:都以DNA链作为模板,合成方向均为5,端到3,端,聚合反应均遵循碱基配对原则,通过核苷酸之间形成的3,,5,—磷酸二酯键使核苷酸键延长;不同点:复制转录模板两条链均被复制模板链转录不对称转录原料Dntp NTP酶DNA聚合酶RNA聚合酶产物子代双链DNA半保留复制mRNA tRNA rRNA配对方式A-T G-C A-U A-T G-C引物RNA引物不需要引物DNA复制与转录的异同相同点:都需要模板都以三磷酸核苷酸为底物NTP或dNTP合成方向都是5→’3’不同点转录不需引物;只转录DNA分子中的一个片段称为转录单位或操纵子,operon;双链DNA中只有一条链具有转录活性称为模板链;哪个基因被转录与特定的时间、空间、生理状态有关;RNA聚合酶无校对功能;原核生物与真核生物mRNA的比较1、原核生物mRNA的半衰期短;2、许多原核生物mRNA以多顺反子形式存在;3、原核生物5’端无帽子结构,3’或只有短的polyA;4、真核生物mRNA5’端有帽子结构,5、绝大多数真核生物mRNA3’具有polyA尾巴,是转录后加上的,是mRNA从核到质转移所必需的形式,提高mRNA的稳定性;大肠杆菌的转录过程:1、识别阶段:RNA聚合酶在σ亚基的引导下结合于启动子上;2、DNA双链局部解开;3、起始阶段:在模板链上通过碱基配对合成最初RNA链;4、延伸阶段:核心酶向前移动,RNA链不断生长;5、终止阶段:RNA聚合酶到达终止子;6、RNA和RNA聚合酶从DNA上脱落;论述题1 真核生物转录的前体hnRNA如何加工为成熟的mRNA真核生物mRNA的结构组成:5,端存在帽子结构,3,端通常具有polyA尾巴,无内含子,部分碱基发生甲基化;①5,端加帽:当RNA聚合酶Ⅱ聚合的转录产物达到25碱基长时,在其5,端加上一个以5,→3,方向相连的7—甲基鸟苷帽,防止5,核苷酸外切酶的攻击,有利于剪接、转运和翻译的进行;②3,端加尾:很多真核生物的hnRNA的3,端经过剪切后再加上多聚A残基即polyA尾巴,这有助于整个分子的稳定;③剪接:在真核生物的mRNA加工过程中,内含子序列被切除,两侧的外显子片段连接;剪接反应在核内进行,需要内含子有5,—GU,AU—3,以及一段分支点序列;其过程是:内含子先以一个具尾的环状分子或套索状分子形式被删除,然后被降解,剪接包括snRNP与保守序列结合,形成剪接体,在其内发生剪接与连接反应;④编辑;⑤甲基化修饰:当序列为5,—RRACX—3,时会在第6位N原子位置发生甲基化;2概括细菌细胞的转录过程转录是通过RNA聚合酶的作用,以一条DNA链为模板产生一条单链RNA过程;步骤如下:⑴与RNA聚合酶全酶的结合:一个RNA聚合酶全酶分子与待转录的DNA编码序列上游的启动子序列松弛的结合;⑵起始:RNA聚合酶往下游移动了几个核苷酸到达启动子的另一段短序列—Pribnow框,紧密地与DNA 结合;DNA上的启动子区域解链,RNA便从Pribnow框下游的几个核苷酸处开始合成,通常是DNA的反义链作为模板,合成几个核苷酸后,δ因子被释放并循环使用,以下步骤不再需要δ因子;⑶延伸:RNA聚合酶核心酶沿着DNA模板移动,使DNA解链,与DNA模板的下一碱基互补核苷三磷酸聚合到链上;RNA聚合酶继续在DNA上移动,RNA链从模板链被释放出来,DNA双螺旋重新形成;⑷当所有编码序列被转录后,RNA聚合酶移动一个终止序列,即终止子;转录复合体解体,RNA聚合酶和新形成的RNA从DNA模板上脱落下来;3、复杂转录单位的原始转录产物的加工方式有几种分别是什么1剪、利用多个5’端转录起始为点或接位点产生不同的蛋白质;2、利用多个加polyA位点和不同的剪接方式产生不同的蛋白质;3、虽无剪接,但有多个转录起始位点或加polyA位点的基因;第四章.SD序列:在原核生物mRNA起始密码AUG上游,存在4~9个富含嘌呤碱的一致性序列,如-AGGAGG-,称为S-D序列;位于原核生物起始密码子上游7-12个核苷酸处的保守区,该序列与16SrRNA3’端反向互补;又称为核蛋白体结合位点ribosomal binding site,RBS正转录调控:负转录调控:填空题1.tRNA的种类有:起始tRNA和延伸tRNA,同工tRNA,校正tRNA;2. tRNA的二级结构为三叶草型,三级结构为倒L型;tRNA结构3.原核生物蛋白质合成的起始tRNA是甲酰甲硫氨酰—tRNAfMet-tRNA fMet,它携带的氨基酸是甲酰甲硫氨酸fMet,而真核生物蛋白质合成的起始tRNA是甲硫氨酰—tRNAMet-tRNA Met,它携带的氨基酸是甲硫氨酸Met;4.新生肽链每增加一个氨基酸单位都要经过AA-tRNA与核糖体的结合,肽键形成,移位三步反应;5.核糖体的作用位点有:A位点、P位点、E位点;5.在真核生物中蛋白质合成起始时先形成起始因子和起始tRNA复合物,再和40S亚基形成40S起始复合物;6.氨酰tRNA合成酶既能识别氨基酸,又能识别相应的tRNA;7.多肽合成的起始密码子是AUG,而UAA,UAG,UGA是终止密码子;8.遗传密码的特点包括连续性,简并性,摆动性,普遍性与特殊性;9.核酸复制时,DNA聚合酶沿模板链3’→5’方向移动;转录时,RNA聚合酶沿模板链3’→5’方向移动;翻译时,核糖体沿模板链5’→3’方向移动;10.原核生物蛋白质合成形成起始复合物时,其mRNA先与核糖体的30S亚基结合,然后再与结合起始因子和GTP的甲酰甲硫氨酰—tRNA结合,形成30S起始复合物,然后再与50S形成70S起始复合物;简答题:1.简述核糖体的结构及功能特点:答:核糖体的结构:①真核生物:由60S大亚基和40S小亚基组成的80S的核糖体;②原核生物:由50S 大亚基和30S小亚基组成的70S的核糖体功能特点:合成蛋白质 ;在单个核糖体上,包括至少5个功能活性中心,在蛋白质合成过程中,各有专一的识别作用和功能:mRNA的结合部位——小亚基 ,结合或接受AA-tRNA的部位——大亚基A位,结合或接受肽基tRNA部位——大亚基,肽基转移部位——大亚基P位,形成肽键部位转肽酶中心——大亚基E 位;2.简述氨基酸的活化过程答:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反应由氨酰tRNA合成酶催化;活化分两步:①活化:aa + ATP+ E→氨基酰-AMP释放出 PPi②转移:氨基酰-AMP转移到 tRNA 并释放出 AMP;3、论述蛋白质的翻译过程;答:蛋白质的翻译即合成过程可分为四个阶段:氨基酸的活化、肽链合成的起始、延伸和终止;①氨基酸的活化:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反应由氨酰tRNA合成酶催化,最终氨基酸连接在tRNA的3’端合成氨酰- tRNA;②肽链合成的起始:核蛋白体大小亚基分离 ,mRNA在小亚基上定位结合,起始氨基酰tRNA与小亚基结合,核蛋白体大亚基结合;③肽链的延伸:肽链的延长是在核蛋白体上连续性循环式进行,每次循环增加一个氨基酸,分为以下三步:一进位:根据mRNA下一组遗传密码指导,使相应氨基酰-tRNA进入核蛋白体A位;二成肽:肽酰转移酶将相邻的两个氨基酸相连形成肽键,该过程不需要能量的输入;三转位:移位酶利用GTP水解释放的能量使核糖体沿mRNA移动一个密码子,释放出空载的tRNA并将新生肽链运至P位点;③肽链合成的的终止与释放:释放因子识别并与终止密码子结合,水解P位上多肽链与tRNA之间的二脂键,接着,新生肽链和tRNA从核糖体上释放,核糖体大、小亚基解体,蛋白质合成结束;4、原核生物翻译的起始过程1核糖体大小亚基分离230s小亚基通过SD序列与mRNA模板相结合3在IF-2和GTP的帮助下fMet-tRNAfMet进入小亚基的P位,tRNA的反密码子与mRNA上密码子配对; 4带有tRNA、mRNA和三个翻译起始因子的小亚基起始复合物与50s的大亚基结合,GTP水解释放翻译起始因子;5、以大肠杆菌为例简述蛋白质合成的过程从以下四个方面详细论述1氨基酸的活化:2肽链合成的起始:3肽链的延生:4肽链合成的终止:第六章乳糖操纵子模型内容1Z、Y、A基因产物由同一条多顺反子mRNA分子所编码;2乳糖操纵子mRNA分子的启动区P位于阻遏基因I与操纵区O之间,不能单独起始半乳糖苷酶和透过酶基因的高效表达;3乳糖操纵子的操纵区是DNA上的一小段序列仅为26bp,是阻遏物的结合位点;4当阻遏物与操纵区相结合时,lacmRNA的转录起始受到抑制;5诱导物通过与阻遏物结合,改变其三维构象,使之不能与操纵区相结合,诱发lac mRNA的合成;乳糖操纵子lac operon的结构1、结构基因1lacZ:编码b -半乳糖苷酶使乳糖水解2lacY:编码b -半乳糖苷透过酶使b -半乳糖苷透过细胞壁、质膜进入细胞内3lacA:编码b -半乳糖苷乙酰转移酶将乙酰基转移到b -半乳糖苷上2、调节基因regulatory gene1概念:其产物参与调控其他结构基因表达的基因2特点:a、可在结构基因群附近、也可远离结构基因b、不仅对同一条DNA链上的结构基因起作用,而且能对不同DNA链上的结构基因起作用3调控蛋白:类型:a、阻遏蛋白repressive protein与操纵元件结合后能减弱或阻止所调控基因转录的调控蛋白b、激活蛋白activating protein:与操纵元件结合后能增强或启动所调控基因转录的调控蛋白3、操纵元件operator1与启动子邻近或与启动子部分序列重叠2具有回文结构,能形成十字形结构;3与不同构像的蛋白质结合,可以分别起阻遏或激活基因表达的作用4、启动子promoter是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列;1-10序列--- Pribnow盒:TATAAT;2-35bp序列:TTGACA操纵子至少有一个启动子,一般在第一个结构基因5’上游,控制整个结构基因群的转录5、终止子terminator是给予RNA聚合酶转录终止信号的DNA序列1不依赖ρ因子的终止子2依赖ρ因子的终止子在一个操纵元中至少在结构基因群最后一个基因的后面有一个终止子大肠杆菌乳糖操纵子lactose operon包括3个结构基因:Z、Y和A,以及启动子、控制子和阻遏子等;转录的调控是在启动区和操纵区进行的;LacI——阻抑蛋白, LacZ——β-糖苷酶,LacY——透性酶,LacA——转乙酰基酶;三种酶的功能:①. β-半乳糖酶:将乳糖分解成半乳糖和葡萄糖②. 渗透酶:增加糖的渗透,易于摄取乳糖和半乳糖③. 转乙酰酶:β-半乳糖转变成乙酰半乳糖lac 操纵子小结通常情况葡萄糖供应正常阻遏蛋白与操纵序列结合,基因不转录;细胞外的乳糖通过透性酶吸收到细胞内;细胞内的β-半乳糖苷酶将乳糖转变为异乳糖;异乳糖结合到乳糖阻抑物上使之从操纵序列上脱离,聚合酶迅速开始lacZYA基因的转录;这就是负控诱导;然而,还需要细菌生长系统中缺少葡萄糖,使cAMP含量增加,才有足够量的cAMP与CRP结合形成CRP-cAMP复合物结合于Plac上游;使DNA双螺旋发生弯曲,转录才可以有效地进行;组氨酸操纵子:与His降解代谢有关的两组酶类被称为hut酶histidine utilizing enzyme,控制这些酶合成的操纵子被称为hut operon;由一个多重调节的操纵子控制,有两个启动子,两个操纵区及两个正调控蛋白;转录后调控一、翻译起始的调控遗传信息的翻译起始于mRNA上的核糖体结合位点RBS——起始密子AUG上游的一段非翻译区;在RBS中有SD序列,与核糖体16S rRNA的3’端互补配对,促使核糖体与mRNA相结合;RBS的结合强度取决于SD序列的结构及与AUG的距离;SD与AUG相距一般以4~10核苷酸为佳,9核苷酸最佳;二、mRNA稳定性对转录水平的影响所有细胞都有一系列核酸酶,用来清除无用的mRNA;一个典型的mRNA半衰期为2-3min;mRNA分子被降解的可能性取决于其二级结构;SD序列的微小变化,往往会导致表达效率成百上千倍的差异,这是由于核苷酸的变化改变了形成mRNA 5’端二级结构的自由能,影响了30S亚基与mRNA的结合,从而造成了蛋白质合成效率上的差异;三、蛋白质的调控作用细菌中有些mRNA结合蛋白可激活靶基因的翻译;相反,mRNA特异性抑制蛋白则通过与核糖体竞争性结合mRNA分子来抑制翻译的起始;大肠杆菌中的核糖体蛋白就存在翻译抑制现象;四、反义RNA的调节作用RNA调节是原核基因表达转录后调节的另一种重要机制;细菌相应环境压力的改变,会产生一些非编码小RNA分子,能与mRNA中的特定序列配对并改变其构象,导致翻译过程的开启或关闭等作用;第七八章操纵子operon:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区包括启动子和操纵基因以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子;在原核生物中,若干结构基因可串联在一起,其表达受到同一调控系统的调控,这种基因的组织形式称为操纵子;反式作用因子trans-acting factor:能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质;弱化子:在trp mRNA 5’端有一个长162bp的mRNA片段被称为前导区,其中123~150位碱基序列如果缺失,trp基因表达可提高6-10倍;mRNA合成起始以后,除非培养基中完全没有色氨酸,转录总是在这个区域终止,产生一个仅有140个核苷酸的RNA分子,终止trp基因转录;这个区域被称为弱化子,该区mRNA 可通过自我配对形成茎-环结构;顺式作用元件cis-acting element影响自身基因表达活性的非编码DNA序列;断裂基因splite gene:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因;基因的分子生物学定义:产生一条多肽链或功能RNA所必需的全部核苷酸序列;基因表达的时间特异性:基因表达的空间特异性:填空题1、真核生物中反式作用因子的DNA结合结构域有:螺旋-转角-螺旋,碱性-螺旋-环-螺旋,锌指,碱性-亮氨酸拉链,同源域蛋白;2、转录调节因子按功能可以分为:基本转录因子和特异转录因子;3、真核生物有3类RNA聚合酶,负责转录rRNA基因的RNA聚合酶是:RNA聚合酶I4、典型的原核启动子的四个特征是:转录起始位点,原核基因转录起始位点通常是嘌呤,-10区,-35区;5、乳糖操纵子的结构结构基因有:lacZ,lacY,lacA;问答题1、乳糖操纵子的作用机制;答:1乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z,Y,A三个结构基因,分别编码半乳糖苷酶,透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I;2阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶;所以,乳糖操纵子的这种调控机制为可诱导的负调控; 3CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶;4协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调,互相制约;2、原核和真核生物基因表达调控的比较;答:相同点:都具有转录水平的调控和转录后水平的调控,并且也以转录水平的调控最为重要;真核结构基因的上游和下游也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否控制着基因是否转录不同点:原核的染色质是裸露的DNA,而真核的染色质则是由DNA与组蛋白紧密结合形成的核小体;原核中染色质的结构对基因的表达没有明显的调控作用,而在真核中这种作用是明显的;在原核基因转录的调控中,既有激活物的调控,也有阻遏物的调控,二者等同重要;在真核生物中虽然也有正调控成分和负调控成分,但迄今已知的主要是正调控;原核基因转录和翻译是偶联的,而真核生物的转录和翻译不是偶联的, RNA在细胞核中合成,只有经转运穿过核膜,到达细胞质后,才能被翻译成蛋白质;使得真核基因的表达有多种转录的调控机制;原核生物细胞内基因表达基本一致,且对于外界环境条件变化的反应也基本相同;真核生物大都是多细胞的复杂有机体,在个体发育中由一个受精卵逐步分化形成不同的细胞类型和各种组织,分化是不同基因表达的结果,在不同发育阶段和不同细胞类型中,基因的时空表达受到严密的调控;32、真核生物转录后水平的调控机制1、5,端加帽和3,端多聚腺苷酸化的调控意义:5,端加帽和3,端多聚腺苷酸化是保持mRNA稳定的一个重要因素,它至少保证mRNA在转录过程中不被降解;2、mRNA选择性剪接对基因表达调控的作用3、mRNA运输的控制4、典型的DNA重组实验通常包含哪些步骤1提取供体生物的目的基因或称外源基因,酶接连接到另一DNA分子上克隆载体,形成一个新的重组DNA分子;2将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化;3对那些吸收了重组DNA的受体细胞进行筛选和鉴定;4对含有重组DNA的细胞进行大量培养,检测外援基因是否表达;。
转录后的加工与修饰
第二节RNA转录后的加工与修饰不论原核或真核生物的rRNAs都是以更为复杂的初级转录本形式被合成的,然后再加工成为成熟的RNA 分子。
然而绝大多数原核生物转录和翻译是同时进行的,随着mRNA开始的DNA上合成,核蛋白体即附着在mRNA上并以其为模板进行蛋白质的合成,因此原核细胞的mRNA并无特殊的转录后加工过程,相反,真核生物转录和翻译在时间和空间上是分天的,刚转录出来的mRNA是分子很大的前体,即核内不均一RNA。
hnRNA 分子中大约只有10%的部分转变成成熟的mRNA,其余部分将在转录后的加工过程中被降解掉。
(一)mRNA的加工修饰原核生物中转录生成的mRNA为多顺反子,即几个结构基因,利用共同的启动子和共同终止信号经转录生成一条mRNA,所以此mRNA分子编码几种不同的蛋白质。
例如乳糖操纵子上的Z、Y及A基因,转录生成的mRNA可翻译生成三种酶,即半乳糖苷酶,透过酶和乙酰基转移酶。
原核生物中没有核模,所以转录与翻译是连续进行的,往往转录还未完成,翻译已经开始了,因此原核生物中转录生成的mRNA没有特殊的转录后加工修饰过程。
真核生物转录生成的mRNA为单顺反子,即一个mRNA分子只为一种蛋白质分子编码。
真核生物mRNA的加工修饰,主要包括对5’端和3’端的修饰以及对中间部分进行剪接。
1.在5’端加帽成熟的真核生物mRNA,其结构的5’端都有一个m7G-PPNmN结构,该结构被称为甲基鸟苷的帽子。
如图17-9所示。
鸟苷通过5’-5’焦磷酸键与初级转录物的5’端相连。
当鸟苷上第7位碳原子被甲基化形成m7G-PPNmN时,此时形成的帽子被称为“帽0”,如果附m7G-PPNmN外,这个核糖的第“2”号碳上也甲基化,形成m7G-PPNm,称为“帽1”,如果5’末端N1和N2中的两个核糖均甲基化,成为m7G-PPNmPNm2,称为“帽2”。
从真核生物帽子结构形成的复杂可以看出,生物进化程度越高,其帽子结构越复杂。
细胞生物学智慧树知到答案章节测试2023年江西师范大学
第一章测试1.下列生物中属于原核生物的一组是()。
A:绿藻和根瘤菌B:水绵和紫菜C:蓝藻和硝化细菌D:蓝藻和酵母菌答案:C2.在英国引起疯牛病的病原体是()。
A:立克次体B:支原体C:朊病毒D:RNA病毒答案:C3.以下哪一种描述不属于细胞的基本特征?()。
A:细胞具有细胞核和线粒B:细胞能够自行增殖C:细胞拥有一套遗传机制D:细胞能对刺激产生反应答案:A4.有关原核细胞与真核细胞的比较,下列说法错误的是()。
A:真核细胞内有一个较复杂的骨架体系,原核细胞内并没有明显的骨架系统B:现有资料表明真核细胞由原核细胞进化而来,自然界真核细胞的个体数量比原核细胞多C:真核细胞内膜系统分化,内部结构和功能的区域化和专一化,各自行使不同的功能D:真核细胞基因表达有严格的时空关系,并具有多层次的调控答案:B5.由于细菌细胞中没有内膜系统,所以细菌质膜兼有内膜的许多功能,如:具有线粒体的呼吸作用,具有内质网的分泌作用,具有核膜的保护遗传物质的作用。
()A:对B:错答案:B6.细胞内的生物大分子是指蛋白质、脂类和DNA等。
()A:对B:错答案:B7.器官的大小主要取决于细胞的数量,与细胞数量成正比,而与细胞大小无关。
()A:对B:错答案:A第二章测试1.光学显微镜最容易观察到的细胞器或细胞结构是()。
A:线粒体B:内质网C:细胞核D:微管答案:C2.冰冻蚀刻技术主要用于()。
A:电子显微镜B:光学显微镜C:原子力显微镜D:激光共聚焦显微镜答案:A3.以下哪些技术一般不用于分离活细胞?()A:超速离心B:细胞电泳C:差速离心D:流式细胞术答案:AC4.建立分泌单克隆抗体的杂交瘤细胞是通过下列哪种技术构建的()?A:基因转移B:病毒转化C:核移植D:细胞融合答案:D5.正常细胞培养的培养基中常需加入血清,主要是因为血清中含有()。
A:生长因子B:氨基酸C:核酸D:维生素答案:A6.适于观察培养瓶中活细胞的显微镜是()。
真核生物转录后的加工
其5´端有一保守序列:3´CAUUCAU-5´。 这一序列可 与内含子5´端的边界序列互补 结合。
U2与分枝点配对
U6 snRNA既能与U4配对 也能与U2配对
U6与mRNA 5´端配对
3、剪接机制(简化)
第一次转酯--左外显子、 内含子剪切套索
第二次转酯--外显子连接、 套索状内含子释放
2、 帽子结构的生物学功能
① 使mRNA免受核酸酶的降解,增加mRNA的稳定性;
② 有助于mRNA越过核膜,进入细胞质;
③被蛋白质起始因子识别,使 mRNA 能与核糖体小亚基
结合并开始合成蛋白质。
(二)3´-端加上多聚腺苷酸尾巴(polyA)
几乎所有真核生物成熟的 mRNA末端都有一串约250个 腺嘌呤核苷酸尾巴。它们并 非模板 DNA 编码,而是在转 录完成时由 poly (A) 多聚酶 合成。加尾位置不在转录物 的最末端,而是在接近末端 的内部位点。在切除 mRNA 3' 末端的一段序列后,再加 上多聚腺苷酸。 加尾是在核内完成 ,先于 mRNA 中 段 的 剪 接 , 和 转 录终止同时进行。
② 协助mRNA从细胞核向细胞质转运。
③作为核糖体的识别信号,使 mRNA分子有效翻译。 ④ 对基因的表达调控有重要作用。
(三)mRNA的内部甲基化
真核生物mRNA分子中有许多甲基化的碱基; 具体的甲基化位点还不太清楚; 主要是:N6-甲基腺嘌呤(m6A); 推测可能为mRNA的剪切提供信号。
转录后加工的主要方式:
加帽(Capping) 加尾(Tailing) 剪接(Splicing ) 碱基修饰(Bases modification) 编辑(Editing )
Pre-RNA
酶工程(第三版)知识要点
1、酶的定义与分类定义:酶是具有生物催化功能的生物大分子。
分类:蛋白类酶(P酶)和核酸类酶(R酶)2、生物催化剂的特点①易失活(温和性):酶是由细胞产生的生物大分子,凡能使生物大分子变性的因素,如高温、强碱、强酸、重金属盐等都能使酶失去催化活性。
②高效性:反应速度是无酶催化/普通人造催化剂催化反应速度的106——1016倍。
且无副反应③专一性:酶对催化的反应和反应物(底物)有严格的选择性,只能催化一种或一类反应,作用于一种或一类物质,而一般催化剂没有这样严格的选择性。
绝对专一性:一种酶只能催化一种底物进行一种反应,甚至只能作用于异构体的一种(立体异构专一性)相对专一性:一种酶能够催化一类结构相似的底物进行某种相同类型的反应。
④可调节性:(1)酶浓度的可调性(诱导或抑制酶的合成; 调节酶的降解)(2)通过激素调节酶活性(与细胞膜或细胞内受体相结合)(3)反馈抑制调节酶活性(如终端产物抑制)(4)抑制剂和激活剂对酶活性影响(5)别构调控、酶原的激活、共价修饰、同工酶等3、米氏常数Km的意义Km值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。
意义:①Km是酶的特性常数:与pH 、温度、离子强度、酶及底物种类有关,与酶浓度无关,可以鉴定酶。
②可以判断酶的专一性和天然底物。
1/Km近似表示酶对底物的亲和力:1/Km越大、亲和力越大—— Km较小者为主要底物③根据Km:判断某[s]时v与Vmax的关系判断抑制剂的类型④ Km可帮助判断某代谢反应的方向和途径催化可逆反应的酶对正/逆两向底物Km不同4、可逆抑制作用分类、特点(书)P8(1).不可逆抑制作用:抑制剂与酶的必需基团以共价键结合而引起酶活力丧失,不能用透析、超滤等物理方法除去抑制剂而使酶复活。
分为非专一性不可逆抑制剂,和专一性不可逆抑制剂。
很多为剧毒物质,如重金属、有机磷、有机汞、有机砷、氰化物、青霉素、毒鼠强等。
(2)、可逆抑制作用:抑制剂与酶以非共价键结合而引起酶活力降低或丧失,能用物理方法除去抑制剂而使酶复活。
2012分子生物学复习题目
分子生物学考试的题型:1、名词解释2、判断题3、选择题4、问答题分子生物学复习题名词解释基因组学:研究基因组的结构、功能及表达产物的学科。
基因组的产物不仅是蛋白质,还有许多复杂功能的RNA。
包括三个不同的亚领域,即结构基因组学、功能基因组学和比较基因组学。
蛋白质组学:蛋白质组学是指某一基因组在某一特定细胞、特定时间内所表达的全部蛋白质的集合体,以及所有蛋白质修饰后的各种形态。
生物信息学:广义的生物信息学是对生物信息的获取、加工、储存、分配、分析和解读,并综合运用数学、计算科学和生物学等工具,达到理解数据中的生物学含义的目标。
狭义的概念是以基因组DNA序列分析为源头,找出全基因组序列中所代表的蛋白质和RNA基因的编码区,并阐明编码区和非编码区的序列信息实质,同时归纳、整理出与全基因组遗传信息表达及其调控相关的转录谱和蛋白质谱的数据。
C值:生物种的一个特征是一个单倍体基因组的全部DNA含量总是相对恒定的。
通常称为该物种的C值。
C值矛盾:C-值矛盾(C Value Paradox)是指真核生物中DNA含量的反常现象。
基因家族:基因家族(gene family)是真核生物基因组中来源相同,结构相似,功能相关的一组基因。
超基因家族:DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。
基因簇:基因簇(gene cluster)是指基因家族中的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。
Alu序列: 人基因组约有50万~70万份拷贝,Alu I序列长282个核苷酸,由两个同源但略有差别的亚基组成。
断裂基因:在真核生物基因组中,基因是不连续的,在基因的编码区域内部含有大量的不编码序列,从而打断了对应于蛋白质的氨基酸序列。
这种不连续的基因又称断裂基因或割裂基因。
外显子:断裂基因中编码的序列称为外显子(exon),即基因中对应于信使RNA序列的区域。
内含子:断裂基因中不编码的间隔序列称为内含子(intron),内含子是在信使RNA被转录后的剪接加工中去除的区域。
分子生物学复习资料-绝对重点
分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。
是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。
二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。
2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。
均为真核生物基因中的转录调控序列。
顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA 聚合酶、转录因子、转录激活因子、抑制因子。
3VNTR / STR—可变数目串联重复序列 / 短串联重复。
均为非编码区的串联重复序列。
前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。
(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。
病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。
正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。
当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。
第1 页/共16 页5 ORF / UTR—展开阅读框 / 非翻译区。
均指在mRNA中的核苷酸序列。
前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参加翻译起始调控,为前者的多肽链序列信息改变为多肽链所必须。
分子生物学08RNA转录后加工(精)
第八章转录后加工概念:基因转录的直接产物被称为初级转录物。
初级转录物一般是无功能的,它们在细胞内必须经历一些结构和化学的变化即所谓的转录后加工以后才会有功能。
转录后加工可能是 RNA 的功能所必需的,也可能提供基因表达调控的一种手段。
⇔RNA 所能经历的后加工方式可达 10种以上, 但后加工反应的本质要么是增减一些核苷酸序列, 要么是修饰某些特定的核苷酸。
原核细胞 mRNA 前体的后加工⇔在细菌, mRNA 很少有后加工。
但某些噬菌体 mRNA 会发生最简单的剪切反应,将一个多顺反子切割成单顺反子, 也有某些噬菌体的 mRNA 需要经过相对复杂的剪接反应才能成熟 (如 T4噬菌体编码的胸苷酸合酶。
真核细胞 mRNA 前体的后加工*加工形式1 5′ -端 = 加帽2 3′ -端 = 加尾3 内部 = 剪接4 内部 =甲基化5 编码区 =编辑加帽过程及帽子的性质和类型、帽子的功能P190-192为什么只有只有 mRNA 和某些snRNA加帽 ? P192加尾尾巴的功能和性质加尾反应所需要的顺式作用元件P193图8-6加尾反应所需要的反式作用因子:CPSF,CFI,CF2,PABP核酶的概念:是指本质为 RNA 或以 RNA 为主含有蛋白质辅基的一类具有催化功能的物质。
GT-AG 法则及其剪切模式重点:细胞核mRNA前体拼接的机理索马套结构剪切体的成分:选择剪接反式剪接Ⅱ类内含子的剪接结构特点(1 边界序列为5′ ↓GUGCG……YnAG↓ ;(2 有 6个茎环结构; 有分支点顺序(branch-point seguence (3 ORFⅡ类内含子的剪接机制• 无需鸟苷的辅助,但需镁离子的存在。
• 分枝点 A 的2′ -OH 对5′端交界处的磷酸二酯键发动亲核进攻,产生了套索(lariat 结构; • 切下的外显子 1其3′ -OH 继续对内含子3′ 端的交界序列进行亲核进攻,同时释放出套索状的内含子。
(精选)《转录及转录后加工》PPT课件
RNA聚合酶——
二、真核生物的RNA聚合酶
真核生物的RNA聚合酶
种类
Ⅰ
Ⅱ
Ⅲ
定位 转录产物
核仁 45s-rRNA
对鹅膏蕈碱反应 耐受
核质 hnRNA U1-13snRNA (U6除外) 极敏感
核质
5s-rRNA,tRNA, U6snRNA, 非UsnRNA 中度敏感
11
转录模板
• DNA分子上转录出RNA的区段,称为结构基因 (structural gene)。
T T T A C A…N17…T A T G T T · N6 · A…
T T G A T A…N16…T A T A A T · N7 · A…
C T G A C G…N18…T A C T G T · N6 · A…
TTGACA
38 36 29 37 37 28
TATAAT
40 25 30 41 29 44
16
调控序列
结构基因
5 3
RNA-pol
3 5
RNA聚合酶结合模板DNA的部位, 称为启动子(promoter)。
17
RNA聚合 酶保护法
18
RNA聚合酶保护区 结构基因
5
3
3
5
5
3
-50 -40 -30 -20 -10 1 10
3
5
-35 区
TTGACA AA C T G T
RNA-pol辨认位点 (recognition site)
7
RNA聚合酶——
大肠杆菌RNA聚合酶组分
亚基
分子量
36512 150618 155613 70263
功能
决定哪些基因被转录 催化功能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2 真核生物tRNA前体的转录后加工 8.2.1 真核生物tRNA前体的结构特点 真核生物tRNA基因的结构与原核生物有两个较大的差异。 (1) 基因排列 tRNA基因数目比原核生物多,E.coil约有 60个tRNA基因,果蝇有750个,酵母有320~400个,爪蟾约 8000个。真核生物的tRNA基因成簇排列,基因之间有一定间 隔。各tRNA基因作为独立单位转录, tRNA前体是单顺反子的。 (2) 内含子结构 真核生物tRNA基因有内含子,其前体必 须经过剪接。内含子的特点是: ① 长度和序列没有共同性,16~46个核苷酸。 ② 位于反密码子的下游(即在3‘-端一侧)。 ③ 内含子和外显子间的边界没有保守序列,其内含子的剪 接方式不符合一般规律。真核生物tRNA前体中内含子的精确 切除信号是tRNA分子高度保守的二级结构,而不是内含子的 保守序列,剪接需要RNase的参与。
RNA processing
mature RNA.
8.1
原核生物RNA的转录后加工
在原核生物中,rRNA的基因与某些 tRNA的基因组成混合操纵子,其余tRNA基 因也成簇存在,并与编码蛋白质的基因组成 操纵子。它们在形成多顺反子转录物后,经 切割成为rRNA和tRNA的前体,然后进一步 加工成熟。除了少数例外,原核生物的 mRNA一经转录,通常都立即进行翻译,一 般不进行转录后的加工。
哺乳类动物的18S、5.8S和28S rRNA基因转录产生45S rRNA前体 酵母的17S、5.8S和26S rRNA基因的转录产物为37S的 rRNA前体。
新手产物 新生的rRNA前体与蛋白质结合,形 成巨大的前体核糖核蛋白(pre-rRNP)颗粒。 剪切过程 核仁、多个步骤 无内含子 大多数真核生物rRNA基因 有些rRNA基因有内含子,但转录产物中的内含 子可自体催化切除,或不转录内含子序列。例如, 果蝇的285个rRNA基因中有约1/3含有内含子,但都 不转录。四膜虫(Tetrahymena)的核rRNA基因和酵母 线粒体的rRNA基因含有内含子,它们的转录产物可 自体催化切除内含子序列。 机制: snoRNA指导的核苷酸修饰,以及snoRNA 与rRNA前体形成的特定立体结构为参与切割的 RNase提供了识别位点。
8.1.1.1
tRNA 3'-端的成熟
tRNA前体分子的3'-端是在多种RNase的共同参与下逐 步加工成熟的,在离体条件下,这些酶是RNase P、RNase F、 RNase D、RNase BN、RNase T、RNase PH、RNase II和多 核苷酸磷酸化酶(polynucleotide, PNPase)。 (1) 切割 首先由内切核酸酶RNase P将tRNA前体分子 水解成为3'-端和5'-端仍含有额外核苷酸的tRNA片段,随后, 由内切核酸酶RNase F对tRNA前体靠近3'-端处进行逐步切割。 研究发现,RNase PH和RNase T对tRNA前体分子3'-端的正确 剪接和成熟十分重要。 (2) 修剪 外切核酸酶RNase D从前体3'-端再逐个切去附 加序列,这个酶具有严格的选择性,它能识别整个tRNA分 子的结构,是tRNA的3'-端成熟酶。
8.1.2 原核生物rRNA前体的加工 E.coli有rrnA~rrnG共7个rRNA转录单位 分散在基因组中,每个转录单位由16S rRNA、 23S rRNA、5S rRNA以及tRNA的基因组成。 它们在染色体上并不紧密连锁,但每个rRNA 的排列和序列十分保守。tRNA基因在操纵子 中的数量、种类和位置都不固定,或在16S rRNA和23S rRNA之间的间隔序列中,或在5S rRNA的3'-端之后。所有的转录单位都含有两 个启动子,P1在16S rRNA基因的转录起点上 游150~300bp处,P2在P1下游110bp处。
8.2.3 在3'-端添加-CCA
真核生物中所有tRNA前体分子均缺乏3'-端的CCA-OH结构,必须在tRNA核苷酸转移酶催化下, 由CTP和ATP提供胞苷酸和腺苷酸,添加3'-端的CCA-OH结构。
8.2.4
核苷酸的修饰
tRNA分子中稀有核苷酸很多,有多种酶参与 tRNA分子核苷酸修饰,主要是多种tRNA甲基化酶, 催化tRNA分子特定位置上的甲基化,例如A → m7A, G55 → m7G55等。此外还有一些其它类型的酶,如 催化合成tRNAΔ2-异戊烯的tRNA异戊烯转移酶,催化 S4U以及含硫嘧啶化合物合成的tRNA硫转移酶等。
真核生物的tRNA加工
酵母tRNATyr加工为例
①转录产物前体具有特征 茎环结构的二级结构 ②RNAaseP D内切酶识别 二级结构,并切除5’端16nt 前导区和3’ 端额外的2nt ③ tRNA核苷酸转移酶将5’CCA-3’序列添加到3’端, 形成成熟的3’端 ④内切酶切除14nt的内含子,再将两分子片段连接
图8-1为原核生物rRNA前体加工的示意图,图中1所指的是 RNase III的水解位置,2所指的是RNase P的水解位置,3所指的 是RNase E的水解位置。
前体rRNA的加工过程
① 转录产物内部碱基配对折叠形成茎环结构
②茎环结构与蛋白复合,形成 RNPs
③特定碱基的甲基化(S-腺苷甲硫氨酸,SAM)
Cytoplasm Nucleus or Nucleolus
primary transcript
Removal of nucleotides addition of nucleotides to the 5’- or 3’- ends modification of certain nucleotides
熟的mRNA,之后再各自进行翻译。?
某些噬菌体多顺反子mRNA也有类似的加工过程,如大肠 杆菌T7噬菌体早期转录区的6个基因,转录生成一条多顺反子的 mRNA前体,前体分子内每个mRNA之间分别形成茎环结构。 由RNase III对茎结构内不配对的小突环进行酶切,将前体分子 酶切成为6个成熟的mRNA,再进行各自的翻译。研究发现,这 种由茎环结构调控的RNA加工有一定的普遍性。
8.3 真核生物rRNA前体的转录后加工 8.3.1 rRNA基因的结构 rRNA基因在基因组内成串重复数百次,转录 区与非转录区交替 每个rRNA基因由16S~18S, 5.8S和26S~28S rRNA基因组成一个转录单位,彼此被间隔区分开, 经RNA pol I转录产生一个长的rRNA前体。
8.1.1
原核生物tRNA前体的加工
原核生物的tRNA基因以多顺反子(polycistron)的形式被转录,转录产物都是很长 的前体分子。通常由多个相同tRNA基因或 不同的tRNA串联排列,或与rRNA的基因, 或与编码蛋白质的基因组成混合转录单位。 tRNA前体必须经过切割和核苷酸的修饰, 才能成为有功能的成熟分子。源自原核生物rRNA前体的加工
16S
23S
tRNA
5S
tRNA
rRNA基因的初级转录物为30S的 rRNA前体分子,其Mr 为2.1×106,约6500nt,5'-端为pppA。由于原核生物rRNA前 体的加工一般与转录同时进行,因此不易得到完整的前体。 rRNA前体的加工主要由RNase III负责,从RNase III缺陷型 的E.coli中可分离得到30S rRNA前体(P30)。RNase III是一种 负责RNA加工的内切核酸酶,它的识别部位是特定的RNA 双螺旋区。比较不同rRNA前体分子序列时发现,其间隔序 列很相似,且23S rRNA和16S rRNA各自的5'-端与3'-端可形 成茎环结构。RNase III在茎部错位两个2bp的位点切割,产 生16S rRNA的前体P16(17S),和23S rRNA的前体P23(25S)。 5S rRNA的前体P5在RNase E作用下产生,RNase E可识别P5 两端形成的茎环结构。随后,P5、P16和P23两端的多余序 列需被核酸酶切除。
8.3.2 rRNA前体的核苷酸修饰 8.3.2.1 snoRNA的结构 已发现上百种snoRNA存在于核仁内,长约87~275nt,能 与核仁纤维蛋白或自身免疫抗原等结合,生成核仁小分子核糖 核蛋白体(snoRNP)。snoRNP可指导rRNA中核糖和碱基的修饰, 参与rRNA前体的剪切。 在指导核苷酸修饰的过程中,snoRNA分子内与rRNA互补 的序列片段,以高密集的方式复盖于rRNA分子的保守区域上。 新生的rRNA被加工修饰以后,在RNA解旋酶作用下,snoRNA 从rRNA解离下来,再与新生的rRNA前体结合,周而复始地参 与rRNA前体的加工,其作用具有分子伴侣的特征。 snoRNA分为两类。一类是C盒/D盒snoRNA,可借助互补序 列识别rRNA前体中进行甲基化和切割的位点,C盒的序列为 UGAUGA,D盒为CUGA。另一类是H盒/ACA盒snoRNA,含H 盒(ANANNA)和ACA盒,能识别假尿苷酸(ψ)化位点。
(3) 添加3‘-端CCA 已知所有成熟tRNA分子的 3’-端都有CCA-OH结构,这是氨基酸接受部位的特 有结构。细菌有两类不同的tRNA前体,I型前体分 子的附加序列被切除后,即显露出自身所具有的3‘端CCA-OH结构。II型前体分子自身没有3’-端的 CCA结构,其成熟分子的CCA-OH结构是在切除3‘端附加序列后,在tRNA核苷酰转移酶的作用下,逐 个添加上去的。 tRNA + CTP → tRNA-C + PPi tRNA-C + CTP → tRNA-CC + PPi tRNA-CC + ATP → tRNA-CCA-OH + PPi
④酶的剪切,首先 RNaseⅢ剪切释放出16S、23S前体分
子, RNaseE剪切释放出5S前体分子;随后 RNase M16、M23 、 M5分别在其前体分子末端进一步剪切, 最终释放成熟的rRNA分子