第五章图像复原讲解

合集下载

第五章-图像复原

第五章-图像复原

空间域法和频率域法。 重点介绍线性复原方法 方法 空间域法主要是对图像的灰度进行处理;
频率域法主要是滤波。
概述
图像在形成、记录、处理和传输过程中,由于成像 系统、记录设备、传输介质和处理方法的不完善, 会导致图像质量下降。这一过程称为图像的退化。
图像的复原就是要尽可能恢复退化图像的本来面目, 它是沿图像降质的逆向过程进行。典型的图像复原 是根据图像退化的先验知识建立一个退化模型,以 此模型为基础,采用各种逆退化处理方法进行恢复, 使图像质量得到改善。
概述
技术 特点
图像增强
图像复原
* 不考虑图像降质的原因,只将 * 要考虑图像降质的原因,建
图像中感兴趣的特征有选择地突出 立“降质模型“。
(增强),而衰减其不需要的特征。 * 要建立评价复原好坏的客观
* 改善后的图像不一定要去逼近 标准。
原图像。
*客观过程
*主观过程
主要 提高图像的可懂度 目的
提高图像的逼真度
瑞利密度曲线距原点的位移和其密度 图像的基本形状向右变形。瑞利密度 对于近似偏移的直方图十分适用 .
伽马噪声
pz
ab
b
z b1
1!
e
az
0
a>0,b为正整数
z0 z0
均值: b / a
方差:
2 b / a2
伽马噪声在激光成像中 有些应用 .
指数分布噪声
pz
aeaz
z0
0 z 0
最小值滤波器
使用序列中起始位置的数值,得出最小值滤波器, 由下式给出:
fˆ(x, y) min g(s,t) (s,t )Sxy
这种滤波器对发现图像中的最暗点非常有用。 作为最小值操作的结果,它可以用来消除 “盐”噪声。

数字图像处理 第五章_图像复原与重建

数字图像处理 第五章_图像复原与重建
第五章பைடு நூலகம்图 像 复 原 与 重 建
1.退化模型
2.代数恢复方法 3.频率域恢复方法 4.几何校正 5.图像重建
数字图像处理
电子信息与自动化学院
1
第五章
图像复原与重建
什么是图像复原? 什么是图像重建? 数字图像如何进行几何变换(缩放、旋转等)
数字图像处理
电子信息与自动化学院
2
5.1 退化模型
g Hf
g、f都是M维列向量,H是M×M阶矩阵,矩阵中的每一行 元素均相同,只是每行以循环方式右移一位,因此矩阵H 是循环矩阵。循环矩阵相加或相乘得到的还是循环矩阵。
数字图像处理 电子信息与自动化学院
18
5.1.2 退化的数学模型
二维离散模型 设输入的数字图像f(x, y)大小为A×B,点扩展函数h(x, y)被均 匀采样为C×D大小。为避免交叠误差,仍用添零扩展的方法, 将它们扩展成M=A+C-1和N=B+D-1个元素的周期函数。
数字图像处理
电子信息与自动化学院
12
5.1.2 退化的数学模型
退化的数学模型
f (x, y) n (x, y)
h(x,y)
g (x, y)
在时域
g ( x, y) f ( x, y) * h( x, y) n( x, y)




f ( , )h( x , y )dd n( x, y)
二维离散退化模型同样可以表示为:
g Hf
式中,g、 f是MN×1维列向量,H是MN×MN维矩阵。其方法 是将g(x, y)和f(x, y)中的元素排成列向量。
数字图像处理 电子信息与自动化学院

第5章 图像复原(08) 数字图像处理课件

第5章 图像复原(08) 数字图像处理课件
第五章 图 像 复
第五章 图 像 复 原
5.1 图像退化与复原模型 5.2 无约束图像复原 5.3 有约束图像复原 5.4 图像的几何校正
第五章 图 像 复
第五章 图 像 复
第五章 图 像 复
➢图像复原的主要任务: 图像复原是利用退化现象的某种先验知识,建
立退化现象的数学模型,再根据模型进行反向的推 演运算,以恢复原来的景物图像。
只考虑线性和空间不变系统模型。
第五章 图 像 复
设h(x, y)为该退化系统的点扩展函数, 或叫系统的 冲激响应函数。
g ( x ,y ) f( x ,y ) * h ( x ,y ) n ( x ,y )
在频域上
G ( u ,v ) F ( u ,v ) H ( u ,v ) N ( u ,v ) (5.9)
第五章 图 像 复
克服不稳定性方法:
• 有约束图像复原;
• 采用限定恢复转移函数最大值的方法;可利用噪声 一般在高频范围衰减速度较慢, 而信号的频谱随频率 升高下降较快的性质,在复原时, 只限制在频谱坐标 离原点不太远的有限区域内运行,而且关心的也是信 噪比高的那些频率位置。
第五章 图 像 复
实际上,为了避免H(u, v)值太小,一种改进方法是 在H(u, v)=0的那些频谱点及其附近,人为地设置H-1(u, v)的值,使得在这些频谱点附近N(u, v)/H(u, v)不会对 (fˆ u, v)产生太大的影响。
|n ||2 |n T n |g | H f ˆ|2 |( g H f ˆ ) T ( g H f ˆ )
(5.65)
第五章 图 像 复
式(5.65)的极小值为
L(fˆ)||gHfˆ|2|
(5.64)

第5章_图像复原

第5章_图像复原


f ( x, y )
考虑系统受到噪声n(x,y)的影响,对于线性 移不变系统,退化模型数学表达式为:
g ( x, y) f ( x, y) * h( x, y) n( x, y)
图像 f(x,y)
退化或降质 系统h(x,y)
降质图像 g(x,y)
噪声信号 n(x,y)
5.1.1连续图像退化的数学模型
y dd
f , hx , y dd
费雷德霍姆积 分

f ( x, y ) * h ( x, y )
线性系统H可由其冲激响应来表征
经过理想线性移不变系统,输出保持不变
循环卷积写成矩阵形式: g=Hf
H是M×M的矩阵。
he (1) he (2) he (0) h (1) he (0) he (1) e H he (2) he (1) he (0) he ( M 1) he ( M 2) he ( M 3)


C是与湍流性质有关的常数。
5.1.3离散图像退化的数学模型 一、一维离散情况退化模型
g x f x hx
设f(x)、h(x)分别具有A个和B个采样点。
离散循环卷积是针对周期函数定义的,避免 离散循环卷积的周期性序列之间发生相互重叠现 象(卷绕效应),分别对f(x)、h(x)进行填0延伸 成M=A+B-1的周期函数。
F u, exp j 2 (ux0 (t ) y0 (t )dt
0
T
F u, exp j 2 (ux0 (t ) y0 (t )dt
0
T

H u, exp j 2 ux0 t y0 (t )dt

第五讲 图像复原

第五讲 图像复原

这种方法要求知道成像系统的表达式H。
输出退化图像g
复原输出图像f
从理论上分析,由于无约束复原的处理方法仅涉及代数运算,因 此该方法简单易行.但由于该方法依赖于矩阵H的逆矩阵,因此 该方法有一定的局限性.若H矩阵奇异,则H-1不存在,这时就无 法通过 对图像进行复原.H矩阵不 存在时这种现象称为无约束复原方法的奇异性.
(2)光学散焦
J ( d ) 1 H (u , v )
d
(u 2 v 2 )1/ 2
d 是散焦点扩展函数的直径 ,J1(•) 是第一类
贝塞尔函数。
(3)照相机与景物相对运动
设T为快门时间,x0(t),y0(t)是位移的x分量 和y分量
H (u, v) exp j 2 (ux0 (t ) vy0 (t )dt
3. 什么是图像复原?
所谓图像复原就是在研究图像退化原因的基 础上,以退化图像为依据,根据一定的先验知识设 计一种算法,补偿退化过程造成的失真, 以便获 得未经干扰退化的原始图像或原始图像的最优估 值,从而改善图像质量的一种方法。 图像复原是图像退化的逆过程。 典型的图像复原方法是根据图像退化的先验 知识建立一个退化模型,并以此模型为基础,采 用滤波等手段进行处理,使得复原后的图像符合 一定的准则,达到改善图像质量的目的。
根据上述模型,在不考虑噪声情况下,图像退化过 程可表示为:
g ( x, y) H f ( x, y)
考虑系统噪声的影响时,退化模型为:
g ( x, y) H f ( x, y) n( x, y)
为了刻画成像系统的特征,通常将成像系统看成是一个线 性系统,据此推导出物体输入和图像输出之间的数学表达式, 从而建立成像系统的退化模型,并在此基础上研究图像复原技 术。

图像复原及应用(第五章)

图像复原及应用(第五章)

(a) 输入图像; (b)高斯噪声污染图像;(c) 用均值滤波结果
均值滤波-示例
(d) 几何均值滤波(e)Q=-1.5的逆谐波滤波 (f) Q=1.5滤波的结果
顺序统计滤波
1.中值滤波
其中,其中,g为输入图像, s(x,y)为滤波窗口。 修正后的阿尔法均值滤波器
1 ˆ f ( x, y ) [max g ( s, t ) min g ( s, t )] 2 ( s ,t )S xy ( s ,t )S xy

g ( x, y )


f ( , ) h ( x , y ) d d n ( x , y )
f ( x, y ) h( x, y ) n( x, y )
G (u , v ) F (u , v ) H (u , v ) N (u , v )
由此可见,图像复原实际上就是已知g(x,y)从上式求 f(x,y)。进行图像处理关键的问题是寻求降质系统在 空间域上的冲激函数。
离散模型
M 1 N 1 m 0 n 0
g e ( x, y ) f e ( x, y )he ( x m, y n) ne ( x, y)
把上式写为矩阵形式,
综合上两式,对于线性空间不变系统,退化图像为:
g ( x, y )




f ( , ) h ( x , y ) d d
f ( x, y ) h( x, y )
退化的数学模型
利用二维冲激函数,f(x,y)可表示为点源函数的卷
积:
f ( x, y )
g ( x, y) f [ x x0 (t ), y y0 (t )]dt

医学图像处理 第五章 图像复原

医学图像处理 第五章 图像复原
第5章 图像退化与复原
5.1 图像退化
• 退化:图像质量的变坏叫做退化。
改善图像质量的方法: 图像增强和图像复原
图像增强:图像增强是指按特定的需要突
出一幅图像中的某些信息,同时消弱或去 除某些不需要的信息的处理方法。经处理 后的图像更适合于人的视觉特性或机器的 识别系统。
图像复原:利用退化现象的某种先验知

用卷积形式表示:
g ( x, y )





f ( , )h( x , y )d d f ( x, y) * h( x, y )
考虑噪声的情况下,连续图像的退化模型 为:
g ( x, y)





f ( , )h( x , y )dd n( x, y)
识,建立退化现象的数学模型,再根据模 型进行反向的推演运算,以恢复原来的景 物图像。
图像增强和图像复原的区别: 图像增强:不考虑图像降质的原因,只将图 像中感兴趣的特征有选择的突出,而衰减 其不需要的特征,故改善后的图像不一定 要去逼近原图像。 图像复原:它需要了解图像降质的原因,一 般要根据图像降质过程的某些先验知识, 建立“降质模型”,再用降质模型,按照 某种处理方法,恢复或重建原来的图像。

• 所以:
g ( x, y ) H f ( x, y ) H f ( , ) ( x , y )dd
在线性和空间不变系统的情况下, 退化算子H 具有如下性质: (1)线性:设f1(x,y)和f2(x,y)为两幅输入图像, k1和k2为常数, 则 :
输出为:
M 1 m 0
ge ( x) f e ( x) he ( x) f e (m)he ( x m)

chap05 图像复原

chap05  图像复原

H
j
图像复原
5.2 退化模型的建立
5.2.2 图像退化模型
离散模型; g Hf n
上述线性空间不变退化模型表明,在给定了g(x, y),并且知 道退化系统的点扩展函数h(x, y)和噪声分布n(x, y)的情况下,可
因而造成图像质量下降 镜头聚焦不准产生的散焦模糊 携带遥感仪器的飞机或卫星运动的不稳定,以及地球 自转等因素引起的照片几何失真 射线辐射、大气湍流等造成的照片畸变 拍摄时,相机与景物间的相对运动产生的运动模糊 底片感光、图像显示时会造成记录显示失真 成像系统中始终存在的噪声干扰
即H矩阵由M×M 个大小为N×N的 子矩阵组成, 称 为分块循环矩阵。
Hj(j=0, 1, 2,…, M-1)为子矩阵,大小为N×N, 其表达式为
he ( j ,0 ) h e ( j , N 1) h e ( j , N 2 ) h e ( j ,1) h e ( j ,1) he ( j ,0 ) h e ( j , N 1) h e ( j , 0 ) h e ( j , N 1) h e ( j , N 2 ) h e ( j , N 3 ) h e ( j , 0 ) 其推导过程;
T
g g e ( 0 , 0 ), g e ( 0 ,1), , g e ( 0 , N 1), g e (1, 0 ), g e (1,1), , g e (1, N 1), 第 0 行元素 第 1 行元素 g e ( M 1, 0 ), g e ( M 1,1), , g e ( M 1, N 1) 第 M 1 行元素

数字图像处理图像复原PPT课件

数字图像处理图像复原PPT课件


五 章
4. 中点滤波器
-
图 像 复 原 简 介
36
-
5.4.2 顺序统计滤波器

五 5. 修正后的阿尔法均值滤波器
章 图 像 复 原 简 介
mn-1,
37
-
5.4.3 自适应滤波器

五 • 自适应滤波器
章 图 像 复 原 简 介
38
5.4.3 自适应滤波器

五 章
1. 自适应、局部噪声消除滤波器
介 复原始图像的最优估值。
√图像复原技术可以使用空间域或频率域滤波器
实现。
7
5.2 图像退化/复原过程的模型
第 五 章

-


原 √ f(x,y)表示一幅输入图像
简 介
√ g(x,y)是f(x,y)产生的一幅退化图像 √ H表示退化函数
√ η(x,y )表示外加噪声
√给定g(x,y),关于退化函数H的一些知识和外加噪声项
g(x, y)


由于冲激的傅立叶变换为常数A,可得:


H(u,v) G(u,v)
A
64
第5章图像复原
退化函数
第 五 章

-





冲激特性的退化估计
(a) 一个亮脉冲
(b) 图像化的(退化的)冲激
65
第5章图像复原
5.6.2 退化函数
(3) 模型估计法 第
五 章
建立退化模型,模型要把引起退化的环境因素考虑在内.
15
-
5.3.1一些重要噪声的概率密度函数 (PDF)

五 4. 指数分布噪声

数字图象处理 第5章 图像复原

数字图象处理 第5章 图像复原

(注①:若a(x),b(x) 为m维列向量,X为n维列
d daT dbT T 向量,那么: (a b) b a dX dX dX
注②:
dX T I dX
dX I T dX

ˆ 那么: f H 1 g
ˆ 若H已知,则可根据上式求出 f 。
2.2逆滤波(频域恢复方法)

ˆ 可以证明,对 f H 1 g 两边分别取傅立叶变换,
1.2 图像的退化模型
图像的退化和恢复模型如下图所示。
n( x, y )
f ( x, y )
h( x, y)

g ( x,Байду номын сангаасy )
图像的退化由系统特性和噪声两部分引起。在这个 模型中,图像退化过程被模型化为一个作用在输入 图像f(x,y)上的系统H。它与一个加性噪声n(x,y)的 联合作用导致产生退化图像g(x,y)。
1.2 图像的退化模型
h( 2) h(1) h(0) h(1) h(0) h ( 2) h( 2) h(1) h(0) H h( 2) h(1) h(0) h( 2) h(1) h(0) h( 2) h(1) h(0)
其中未列出的元素均为零。
其中H为MN×MN维矩阵。
1.2 图像的退化模型
每个Hi是由扩展函数he(x,y)的第i行循环构成
he (i,0) h (i,1) Hi e he (i, N 1) he (i, N 1) he (i,0) he (i, N 2) he (i,1) he (i,2) he (i,0)
1.2 图像的退化模型
考虑到噪声,将延拓为M×N的噪声项加上,上式变为:

图像复原及应用(第五章)

图像复原及应用(第五章)

fˆ ( x,
y)
1 mn
d
gr
(s,t )S
(s,t)
中值滤波示例
(a)椒盐噪声污染的图像
目前方法:1)估计方法,适用于对图像
缺乏已知信息的情况,对退化过程(模 糊和噪声)建立模型,进行描述,寻找 一种去除或削弱其影响的过程。
2)检测方法,适用于对于原始图像已有足够的已知信 息,对原始图像建立一个数学模型并根据它对退化图 像进行拟合,如,已知图像中仅含有确定大小的圆形 物体(星辰、颗粒、细胞等) 3)实验法,寻找不同的方法,不断逼近最佳结果
图像复原分类
图像恢复技术的分类:
(1)在给定退化模型条件下,分为无约束和有约束两 大类;
(2)根据是否需要外界干预,分为自动和交互两大类; (3)根据处理所在域,分为频域和空域两大类。
5.1图像退化的原因
成象系统的象差、畸变、带宽有限等造成图像图像失真; 由于成象器件拍摄姿态和扫描非线性引起的图像几何失
均值滤波-示例
(d) 几何均值滤波(e)Q=-1.5的逆谐波滤波 (f) Q=1.5滤波的结果
顺序统计滤波
1.中值滤波
fˆ(x, y) 1 [maxg(s,t) ming(s,t)]
2
( s ,t
其中,其中,g为输入图像,
)S
xy
(s,t )Sxy
s(x,y)为滤波窗口。
修正后的阿尔法均值滤波器
为在x和y方向上运动的变化分量,t表示运动时间。记 录介质的总曝光量是在快门打开到关闭这段时间的积 分。则模糊后的图像为:
T
g(x, y) 0 f [x x0 (t), y y0 (t)]dt
5.2 只存在噪声的复原:空间域滤波
定义:

第5章图像复原计算机图像处理课件

第5章图像复原计算机图像处理课件
E{[ f ( x, y) f ( x, y)]2 } = min
式中,E{ }为数学期望算子。


f ( x, y ) 之间的均方
下面通过用MATLAB程序实例来完成由于运动造成的图像 模糊和去除模糊的实现。
在下面的MATLAB程序中用到了以下3个函数。
1. 预先定义的空间滤波函数
H=fspecial(type,parameters) type:表示滤波器的类型。fspecial返回指定滤波器的单 位冲激响应。当type为motion,fspecial返回运动滤 波器的单位冲激响应(PSF点扩散函数)。
Wnr1=deconvwnr(MF,PSF);
%用Wiener滤波消除运动模糊的图像
figure(3);imshow(wnr1);
3. 具有维纳滤波的deconvwnr函数
J=deconvwnr(g, PSF,NSR) 或 J=deconvwnr(g,PSF,NCORR,ICORR) g是退化的原图像,J是去模糊复原图RR和 ICORR表示噪声和原始图像的自相关函数。
频域复原方法
其它复原方法
人机交互式
在实际中,经常会遇到运动模糊图像的复原问题。如 在飞机、汽车等运动物体上所拍摄的照片,摄取镜头在曝
光瞬间的偏移会产生匀速直线运动的模糊。一般采用维纳
滤波复原方法来解决。
维纳(Wiener)滤波,也就是最小二乘滤波,它是 使原始图像f(x,y)及其恢复图像 误差最小的复原方法。即
具体用MATLAB程序设计的思路是:
1.首先使用fspecial函数创建一个运动模糊的H;
2. 然后调用imfilter函数,并使用H对原始图像进行卷积操作, 由此得到一幅模糊的图像; 3.再用Wiener滤波消除运动模糊,使图像得到复原。

数字图像处理与分析 第5章 图像复原ppt课件

数字图像处理与分析 第5章 图像复原ppt课件
运动方向 也可由图像的频谱估计出来
.
5.4.1 模糊模型
2.由图像中的点或线估计(后验知识)
1)原始景物中有一清晰的点或点光源。由所成的像得到退化 系统的PSF 2)原始景物中确定一条线,成像,由直线产生模糊,根据模 糊可以测定在于边缘垂直方向上的PSF断面曲线,得出一维 PSF,如果PSF对称,旋转一维PSF得到二维PSF
有效方法:针对特定条件,用特定模型处理
.
5.2.2 离散的退化模型
对于图像降质过程进行数学建模
MN
y(i,j) h(i,j;k,l)f(k,l)n(i,j) k1l1
f(i, j):原始图像 y(i, j):降质图像 h(i, j; k, l):点扩散函数 图像为M×N维 假设为空间移不变h(i, j; k, l),则:
.
5.4.2 水平匀速直线运动引起模糊的复原
a) 原始图像
b) 模糊图像
c) 复原图像
M N
y ( i ,j) h ( i k ,j l)f( k ,l) n ( i ,j) h ( i ,j) f( i ,j) n ( i ,j) k 1 l 1
.
5.3 图像复原的方法
寻找滤波传递函数,通过频域图像滤波得到 复原图像的傅立叶变换,再求反变换,得到 复原图像
非约束还原 有约束还原 非线性约束还原
原因
维纳滤波是基于平稳随机过程模型,且假设退化模 型为线性空间不变系统的原因,这与实际情况存在 一定差距。另外,最小均方误差准则与人的视觉准 则不一定匹配
.
5.3.2 约束还原法
最大平滑复原
准则:以函数平滑为基础
1)使函数的二阶导数为最小。二阶导数是突出图像边缘、
轮廓约束条件:

第5章医学图像的复原

第5章医学图像的复原
医学图像处理—图像的复原
34
©广东药学院医药信息工程学院图像处理教研室
维纳滤波
讨论: 1 (1)无噪声: (u , v) P 。 H (u , v ) ( 2)有噪声:在H (u , v ) 很小时, P (u , v) H (u , v)
*
S ff (u , v) S nn (u , v)
G(u, v) F (u, v) H (u, v)
F (u, v) G(u, v) / H (u, v) f ( x, y) F 1[G(u, v) / H (u, v)]
医学图像处理—图像的复原
29
©广东药学院医药信息工程学院图像处理教研室
逆滤波
1 令P(u, v) , 它是H (u, v)之逆, H (u, v) 代表恢复滤波器的转移 函数。
©广东药学院医药信息工程学院图像处理教研室
医学图像处理—图像的复原
25
©广东药学院医药信息工程学院图像处理教研室
医学图像处理—图像的复原
26
©广东药学院医药信息工程学院图像处理教研室
因为不同原因产生的噪音的分布是不同,可以通 过分析图片中噪音的分布得到产生这些噪音的参 数,然后进行逆运算进行图像复原。 eg:维纳滤波要知道噪声的谱密度 约束最小平方滤波要知道噪声的方差
补充:图像的几何变换
医学图像处理—图像的复原
38
©广东药学院医药信息工程学院图像处理教研室
图像的几何变换
图像的几何变换包括了图像的形状变换和图像的位 置变换。
图像的形状变换是指图像的放大、缩小与错切。 图像的位置变换是指图像的平移、镜像与旋转。 图像的仿射变换描述。 图像的几何变换不改变像素的 值,只改变像素的位置。 医学图像处理—图像的复原
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 图像退化的数学模型
1.退化模型示意图
n ( x, y )
f ( x, y )
H
g ( x, y )
其中H为退化过程,n(x, y)为加性噪声(统计特性已知)。 2. 系统H的基本定义 就一般而言,系统是某些元件或部件以某种方式构造而成的整体。系统 本身所具有的某些特性就构成了通过系统的输入信号与输出信号的某种联系。 系统的分类可有:线性系统和非线性系统,时变系统和非时变系统,集总参 数系统和分布参数系统,连续系统和离散系统。 1)线性系统:是具有均匀性和相加性的系统 2)时不变系统:满足各个参数不随时间变化。 3)空间不变系统:满足H [ f ( x a , y b )] g ( x a , y b )
推广到2-D 扩展:
f ( x, y ) f e ( x, y ) 0 h( x, y ) x ≤ A 1 A ≤ x ≤ M 1 0 ≤ x ≤ C 1
和 或 和
0 ≤ y ≤ B 1 B ≤ y ≤ N 1 0 ≤ y ≤ D 1 D ≤ y ≤ N 1
行周期扩展为周期为M ≥ A + B – 1。
f ( x) fe ( x) 0
0 ≤ x ≤ A 1 A≤ x ≤ M 1
h( x ) he ( x ) 0
0 ≤ x ≤ B 1 B ≤ x ≤ M 1
那么它们的时域离散卷积可定义为下式:
g e ( x)
V2 SNR 10 log10 s V2 n
灰度对比度 C SNR ob 噪声均方差
2
2
信噪比, 狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用 分贝数表示。设备的信噪比越高表明它产生的杂音越少。
由于的h(x,y)的周期性,使得[H]成为一个块循环矩阵。每一 块如下所示:
he (i,0) he (i,1) Hi h (i, N 1) e
he (i, N 1) he (i,0) he (i, N 2)

he (i,1) he (i,2) he (i,0)
此式说明,如果系统H对冲激函数的响应为已知,则对任意输入的响应可 用上式求得,即,线性系统H完全可以由冲激响应来表征。图像中冲激响应
也称为点扩散函数。
在有噪音的情况下:
4.离散函数的退化模型 对和进行均匀取样后,就可引伸出离散函数的退化模型。用一维的来 说明。如果f (x)和h(x)周期分别A和B的序列,为避免卷积周期重叠需要对它们进
M 1 m 0
f e (m)he ( x m)
x 0, 1, , M 1
显然,上式也是具有周期M的序列。 如果用矩阵来表示上述离散退化模型,可写成下式之形式:
用矩阵形式表示
g e (0) he (0) g e (1) he (1) g Hf g ( M 1) h ( M 1) e e he ( 1) he (0) he ( M 2) he ( M 1) he ( M 2) he (0) f e ( 0) f e (1) f ( M 1) e
如果 如果 其他
za z b
4)噪声的形成 高斯噪声:电子噪声、弱光照/温度条件下的传感器噪声 瑞利分布:深度成像、超声波图像 指数和Gamma分布:激光成像 椒盐噪声:快速瞬变、误切换 周期噪声:图像采集过程中的电子或电磁干扰
图像中噪声的概率密度函数举例1:
原图
图像和其直方图
图像中噪声的概率密度函数举例2:
根据周期性:he(x) = he(x+M)
he ( M 1) he (0) h (1) he (0) e H he ( M 1) he ( M 2)
he (1) he (2) he (0)
由于的h(x)周期性,使得[H]成为一个循环矩阵。
ˆ) J ( f ˆ) 0 2H ' ( g Hf ˆ f
ˆ H 'g H ' Hf
ˆ (H ' H ) 1 H ' g f
因为 H 是一方阵,并且设 H
-1
存在,则可求得

f
:
ˆ H 1 ( H ' ) 1 H ' g H 1 g f
这种方法要求知道成象系统的表达式H。 2)有约束复原方法 在最小二乘方复原处理中,为了在数学上更容易处理,常常附加某 种约束条件。 例如,可以令 Q 为 f 的线性算子,那么,最小二乘方复原问题可看 ˆ 2 的函数,服从约束条件 2 × 成是使形式为 Q × ˆ 2 的最小化 f n g H f 问题。而这种有附加条件的极值问题可用拉格朗日乘数法来处理。
相同点:改进输入图象的视觉质量 。
不同点:图象增强目的是取得较好的视觉结果(不考虑退化原因); 图象 恢复根据相应的退化模型和知识重建或恢复原始的图象(考虑退化原因) 。
2. 图象退化的原因 图象退化指由场景得到的图象没能完全地反映场景的真实内容,产生了 失真等问题。其原因是多方面的。如:
透镜象差/色差
2

2 5/ 6

]
其中,C是与湍流性质有关的常数。 (2)光学散焦转移函数:
H (u, v) J1 (d )
d
(u 2 v 2 )1/ 2
其中,d是散焦点扩展函数的直径, J1(•) 是第一类贝塞尔函数。
(3)照相机与景物相对运动 设T为快门时间,x0(t),y0(t)是位移的x分量和y分量。
5.退化参数的估计 退化参数的估计包括噪声估计和点扩展函数的估计。下面主要介绍点扩 散函数的估计。 1)运用先验知识估计 大气湍流、光学系统散焦、照相机与景物相对运动等,根据导致模糊的 物理过程(先验知识)来确定h(x,y)或H(u,v)。 (1) 长时间曝光下大气湍流造成的转移函数:
H (u, v) exp[c u v
实际上,大部分系统是非线性和空间变化的,但以这样的模型处理起 来困难很大,一般都简化为线性的非时变和非空间变化的近似模型进行处 理。这样近似的优点是使线性系统理论中的许多理论可以直接用来解决图 象复原问题。 3.连续函数的退化模型 设系统H对坐标为(a,b)处的冲激函数(x-a,y-b)的冲激响应为h(x,a,y,b), 则
C ≤ x ≤ M 1 或
则退化过程为:
g e ( x, y )
M 1 N 1 m 0 n 0
f e (m, n)he ( x m, y n)
H M 1 H0 H M 2
x 0, 1, , M 1 y 0, 1, , N 1
H0 H1 g Hf n H M 1
H M 1 H0 H M 2

H1 f e (0) ne (0) H2 f e (1) ne (1) f ( MN 1) n ( MN 1) H0 e e
(2) 均匀噪声
1 /(b a) 如果 a ≤ z ≤ b p( z ) 其他 0
其均值和方差为:
( a b) / 2
2 (b a ) 2 / 12
(3) 脉冲噪声 噪声脉冲可以是正的或负的,一 般假设a和b。都是“饱和”值双极性脉 冲噪声也称椒盐噪声。
Pa p ( z ) Pb 0
数字图像处理
(Digital Image Processing)
第五章
• • • • • 5.1 5.2 5.3 5.4 5.5
图像复原
退化及噪声 图像退化的数学模型 无约束恢复 有约束恢复 交互式恢复
5.1 退化及噪声
1. 图象复原的概念
1)图像复原的定义 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原, 是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退 化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素 的噪声。 图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化 的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引 起退化。 在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。 其次,处理既可在空间域,也可在频域进行。 2)图象恢复与图象增强的异同
原图
图像和其直方图
图像中噪声的概率密度函数举例3:
图像中的周期噪声
5)噪声参数估计
(1) 周期噪声的参数估计 一般可以通过图像的频谱进行估计;特殊情况下可以直接从图像中 噪声分量的周期性进行推断(简单情形)。 (2) 一般噪声参数的估计 可以根据所采用的传感器类型进行噪声分布的部分推断;通常通过 特定的成像安排进行估计当只有已采集到的图像时,一般通过图像中的 平滑区域进行PDF参数的估计。如下图:
H1 f e (0) ne (0) H2 f e (1) ne (1) f ( MN 1) n ( MN 1) H0 e e
H0 H1 g Hf n H M 1
聚焦不准(失焦,限制了图象锐度) 模糊(限制频谱宽度)
噪声(是一个统计过程)
抖动(机械、电子) 3. 图象复原方法分类 按采用的技术可分为:无约束和有约束 按采用的策略可分为:自动和交互 按采用的处理所在域可分为:频域和空域
图像退化举例1:
图像退化举例2:
4.噪声及其特性 噪声是最常见的退化因素之一,对信号来说,噪声是一种外部干扰。 但噪声本身也是一种信号(携带了噪声源的信息)。 1)关于噪声的度量 人们常只关心噪声的强度 ,可用信噪比(signal-to-noise ratio,SNR)、 能量比(电压平方比) 等来描述。分别表示为:
相关文档
最新文档