医学统计学知识点梳理
医学统计学知识点汇总(精华)
医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。
2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。
A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。
3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。
3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。
2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。
一是统计报表,二是经常性工作记录,三是专题调查或专题实验。
C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。
变异(variation):同质基础上的各观察单位间的差异。
变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。
变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。
医学统计学基础知识
概率推断是按一定的概率用样本信息推 断总体的特征,即统计推断含有一定概 率。
小概率事件:P<0.05(或0.01)
小概率事件原理:即小概率事件在一次 抽样中一般认为不会发生。
第二章 计量资料的统计描述
学习目标:
1. 能够了解频数分布表的编制方法及分布图的绘 制,并以此描述资料的频数分布特征。
2. 能够掌握各种集中趋势指标的计算,特点及其 适用条件。
3. 能够掌握各种离散趋势指标的计算,特点及其 适用条件。
4. 能够了解正态分布的概念、特征及应用,掌握 标准正态分布的基本规律。
52
42
49
55
53
51
45
47
47
47
50
48
51
51
53
46
47
57
45
46
51
46
51
47
51
55
47
52
47
48
54
47
54
49
44
53
54
45
48
44
48
42
47
48
50
55
50
53
56
49
50
56
41
53
53
49
44
49
48
45
52
52
46
54
50
44
53
49
47
医科大学医学统计学重点知识总结
第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
医学统计学知识点总结
知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。
2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。
3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。
4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。
5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。
6.统计分析包括统计描述和统计推断。
统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。
7.医学原始资料的类型有:计量资料、计数资料、等级资料。
8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。
9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。
10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。
各属性之间有程度的差别。
等级资料的等级顺序不能任意颠倒。
11.同质:是指所研究的观察对象具有某些相同的性质或特征。
12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。
13.总体是根据研究目的确定的同质研究对象的总体。
样本是总体中具有代表性的一部分个体。
14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。
抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。
16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。
概率的取值为0≤P≤1。
小概率事件是指P≤0.05的随机事件。
17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。
医学统计学知识点汇总
医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。
医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。
以下是医学统计学知识点的一些精华汇总。
1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。
2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。
3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。
4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。
5.参数估计:常用的参数估计方法有点估计和区间估计。
点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。
6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。
常用的假设检验方法有t检验、卡方检验、方差分析等。
7.数据分析:包括描述性统计分析和推断性统计分析。
描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。
8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。
9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。
10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。
11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。
12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。
以上是医学统计学的一些精华知识点的汇总。
医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。
(完整版)医学统计学复习要点
(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。
②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。
③、等级资料,⼜称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。
2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。
③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。
④、样本(sample):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。
⑥、频率(frequency):指的是样本的实际发⽣率。
⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。
⽤⼤写的P表⽰。
3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。
第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。
医学统计知识点整理
医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。
如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。
变异:同质的基础上个体间的差异。
“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。
一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。
表现为数值大小,带有度、量、衡单位。
如身高(cm)、体重(kg)、血红蛋白(g)等。
二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。
分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。
统计推断:是使用样本信息来推断总体特征。
统计推断包括区间估计和假设检验。
第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。
标目:横标目和纵标目。
线条:通常采用三线表和四线表的形式。
没有竖线或斜线。
数字:表内数字一律用阿拉伯数字。
同一指标,小数位数应一致,位次对齐。
无数字用“—”表示。
暂缺用“…”表示。
“0”为确切值。
备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。
一张统计表的备注不宜太多。
二、制表原则1.(7理分布。
【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。
医学统计学重点整理汇总
医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。
3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。
(完整版)医学统计学重点总结
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
医学统计学知识点
医学统计学知识点1.数据类型:医学研究中使用的数据包括定类数据和定量数据。
定类数据是非数值型的数据,例如性别、种族等;定量数据是数值型的数据,例如年龄、体重等。
了解数据类型是分析数据的第一步。
2.数据收集:医学研究中的数据可以通过不同的方式收集,例如问卷调查、实验研究、观察等。
在数据收集过程中,需要注意样本的选择、数据的完整性和准确性。
3.描述统计学:描述统计学包括对数据的整体特征进行描述和总结。
常用的描述统计学方法包括中心趋势度量(例如均值、中位数、众数)、离散程度度量(例如标准差、方差)和数据分布描述等。
4.推断统计学:推断统计学是从样本数据推断总体特征的一种方法。
通过推断统计学,可以根据样本数据的统计量(例如样本均值、样本比例)来推断总体参数的区间估计或假设检验。
5.假设检验:假设检验是根据样本数据对总体参数提出假设,并通过计算概率值来判断是否接受或拒绝该假设。
常用的假设检验方法包括t检验、卡方检验、方差分析等。
6.相关分析:相关分析用于研究两个或多个变量之间的关系。
常见的相关分析方法有皮尔逊相关系数、斯皮尔曼相关系数等。
相关分析可以帮助研究者了解变量之间的线性关系和方向。
7. 回归分析:回归分析用于研究因变量与自变量之间的关系,并可用于预测因变量的数值。
常用的回归分析方法有简单线性回归分析、多元线性回归分析和 logistic 回归分析等。
8. 生存分析:生存分析用于研究时间相关的数据,例如疾病患者的生存时间或事件发生的时间。
生存分析方法包括 Kaplan-Meier 曲线、Cox 比例风险模型等。
9.双盲试验和随机分组:在医学研究中,双盲试验和随机分组是常用的研究设计方法。
双盲试验是指研究中既不知道接受治疗的病人,也不知道给予治疗的医生;随机分组是指将研究对象随机分配到不同的治疗组和对照组。
10.统计软件:为了进行医学统计分析,研究者可以使用专业的统计软件,例如SPSS、SAS、R等。
医学统计学知识点汇总
医学统计学知识点汇总医学统计学是一门关于医学研究中数据收集、数据分析和推理的学科,它对医学领域的决策和实践具有重要的指导作用。
本文将对医学统计学的一些重要知识点进行汇总和介绍。
一、数据类型在医学统计学中,常见的数据类型包括定类(分类)数据和定量(数量)数据。
定类数据表示事物的属性或者类别,如性别、病情分级等;而定量数据表示具体的数量或测量结果,如年龄、血压等。
正确理解和分析数据类型对于进行准确的统计分析是至关重要的。
二、描述统计学描述统计学是对数据进行整理、总结和描述的方法和技术。
常见的描述统计学方法包括中心趋势的度量、离散程度的度量以及数据的分布形态。
1.中心趋势的度量中心趋势是指数据集中的中间位置,常用的度量包括平均值、中位数和众数。
平均值是所有观测值的总和除以观测值的个数,中位数是将数据按升序排列,找出中间位置的数值,众数是出现频率最高的数值。
2.离散程度的度量离散程度是指数据的分散程度,常用的度量包括方差、标准差和极差。
方差是观测值与平均值之差的平方的平均值,标准差是方差的平方根,极差是数据集中最大值与最小值之差。
3.数据的分布形态数据的分布形态可以通过绘制直方图和概率密度曲线来进行可视化。
直方图可以显示数据的频数分布情况,概率密度曲线可以反映数据的分布密度。
三、推论统计学推论统计学是根据样本数据对总体进行推断的方法和技术。
主要包括参数估计和假设检验两个方面。
1.参数估计参数估计是通过样本数据来估计总体参数的值。
常用的参数估计方法包括点估计和区间估计。
点估计是通过样本数据来估计总体参数的唯一值,如样本均值估计总体均值;区间估计是通过样本数据来估计总体参数的范围,如置信区间估计总体均值。
2.假设检验假设检验是用来判断总体参数是否符合某个特定的假设。
它涉及到原假设和备择假设的设定,以及根据样本数据进行统计推断的过程。
常用的假设检验方法包括t检验、卡方检验和方差分析等。
四、相关分析相关分析研究两个或多个变量之间的关系。
医学统计学-知识梳理
均数±2.58标准差: 表示集中位置、离散程度均数±2.58标准误: 表示平均水平、抽样误差大小P75一、标准差的主要作用是估计正常值的范围实际应用中, 估计观察值正常值范围应该用标准差(s), 表示为“Mean ±SD”。
此写法综合表达一组观察值的集中和离散特征的变异情况, 说明样本平均数对观察值的代表性。
s 的大或小说明数据取值的分散或集中。
s与样本均数合用, 主要是在大样本调查研究中, 对正态或近似正态分布的总体正常值范围进行估计。
如果不是为了正常值范围估计, 一般不用。
当数据与正态分布相差很大, 或者虽为正态分布, 但样本容量太小(小于30 或100), 也不宜用估计正常值范围。
二、标准差还可用来计算变异系数(CV)当两组观察值单位不同, 或两均数相差较大时, 不能直接用标准差比较其变异程度的大小, 须用变异系数系数来做比较。
:2.2 标准误的正确使用一、标准误用来衡量抽样误差的大小和了解用样本平均数来推论总体平均数的可靠程度。
在抽样调查中, 往往通过样本平均数来推论总体平均数, 样本标准误适用于正态或近似正态分布的数据, 是主要描述小样本试验中, 样本容量相同的同质的多个样本平均均数间的变异程度的统计量。
即如果多次重复同一个试验, 它们之间的变异程度用。
显然它越小, 样本平均数变异越小, 越稳定, 用样本平均数估计总体均数越可靠。
因此, 为说明它的稳定性、可靠性或通过几个对几组数据进行比较(这是科研论文中最常见的), 应当用描述数据。
实际应用中应该写成“平均数±标准误”或而英文表示为“Mean ±SE”的形式。
二、标准误还可以进行总体平均数的区间估计与点估计(置信区间)。
根据正态分布原理, 与合用还可以给出正态总体平均数的可信区间估计即推论总体平均数的可靠区间, 例如常用(其中t0.05 (n-1) 为样本容量是n的t界值)表示总体均值的95%可信区间, 意指总体平均数有95%的把握在所给范围内。
(完整版)医学统计学知识点汇总
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用x表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
(完整版)医学统计学知识点梳理
医学统计学知识点梳理医学统计学:?是用统计学原理和方法研究生物医学问题的一门学科。
他包括了研究设计、数据收集、整理、分析以及分析结果的正确解释和表达。
统计描述:用统计指标、统计图表对资料的数量特征及分布规律进行客观的描述和表达。
统计推断:在一定的置信度和概率保证下,用样本信息推断总体特征:①参数估计:用样本的指标去推断总体相应的指标②假设检验:由样本的差异推断总体之间是否可能存在的差异同质:一个总体中有许多个体,他们之所以共同成为人们研究的对象,必定存在共性,我们说一些个体处于同一总体,就是指他们大同小异,具有同质性。
总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
变异:在自然状态下,个体间测量结果的差异称为变异(variation)。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。
计数资料亦称定性资料或分类资料。
医学统计学知识点
第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
医学统计学 重点知识总结
名词解释1、一类错误:拒绝了实际上成立的H。
,这类“弃真”的错误称为I型错误或第一类错误。
2、参数和统计量:这些总体的统计指标或特征值称为参数。
由样本所算出的统计指标或特征值称为统计量。
3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。
4、P值:即概率,反映某一事件发生的可能性大小。
5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。
简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。
百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。
2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。
基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。
结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。
2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。
结论:x2检验结果表明,乙疗法比甲疗法好。
3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。
医学统计学知识点
医学统计学知识点医学统计学是医学中的重要分支,通过对医学数据的收集、整理、分析和解释,帮助医生和研究人员更好地理解疾病的发病规律和治疗效果。
下面将介绍一些医学统计学中常见的知识点。
一、数据类型在医学统计学中,数据通常分为定性数据和定量数据两种类型。
定性数据是指具有类别属性的数据,如性别、疾病类型等;定量数据是指可进行加减乘除等运算的数据,如血压、体重等。
二、描述统计学描述统计学是对收集到的数据进行整理、汇总和描述的过程,包括频数分布、中心趋势和离散程度等指标。
通过描述统计学可以更直观地了解疾病的流行病学特征。
三、推断统计学推断统计学是通过对小样本数据进行推断,得出对总体的推断结论。
常见的方法包括假设检验、置信区间估计和方差分析等。
推断统计学在临床研究和药物试验中有重要应用。
四、生存分析生存分析是研究事件发生时间和生存时间的统计方法,常用于临床预后评估和生存曲线绘制。
生存分析可以帮助医生评估疾病的进展速度和治疗效果。
五、因子分析因子分析是研究多个变量之间的关联性和内在结构的统计方法,常用于疾病危险因素的筛选和分类。
通过因子分析可以揭示疾病的复杂发病机制和影响因素。
六、线性回归线性回归是研究两个或多个变量之间线性关系的统计方法,可用于分析疾病风险因素和疗效预测。
线性回归可以帮助医生更好地控制干预措施,提高治疗效果。
综上所述,医学统计学是医学研究和临床实践中不可或缺的工具,掌握相关知识点可以更好地帮助医生理解和解释医学数据,促进疾病防控和治疗水平的提高。
希望本文介绍的医学统计学知识点能够为医学工作者提供参考和帮助。
感谢阅读!。
医学统计学重点知识总结
医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。
定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。
等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。
总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。
概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。
同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。
第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。
【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。
变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。
如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。
2,分析时不能以构成比代替率。
3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。
4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变异系数的特点及相应的用途
没有单位
n?反映标准差占均数的百分比或标准差是均数的几倍
n?可用来比较度量衡单位不同的资料的变异度
?比较均数相差悬殊的资料的变异度
变异指标小结
1.极差较粗,适合于任何分布
2.标准差与均数的单位相同,最常用,适合于近似正态分布
检验效能:1-β称为检验效能(power of test),它是指当两总体确有差别,按规定的检验水准a所能发现该差异的能力。
率(rate)又称频率指标,说明一定时期内某现象发生的频率或强度。
计算公式为:发生某现象的观察单位数/可能发生某现象的观察单位总数*100%,表示方式有:百分率(%)、千分率(‰)等。
②随着样本量的增大,样本均数的变异范围也逐渐变窄。
标准误
标准误越大,样本均数的分布越分散,样本均数与总体均数的差别越大,抽样误差越大,由样本均数估计总体均数的可靠性越小。反之亦然。
标准误反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异。
标准误与标准差成正比,当总体中各观测值变异很小时,样本均数与总体均数的差异小,抽样误差小。
参数估计:指用样本指标值(统计量)估计总体指标值(参数)。
假设检验中P的含义:指从H0规定的总体随机抽得等于及大于(或等于及小于)现有样本获得的检验统计量值的概率。
I?型错误(type I error),指拒绝了实际上成立的H0,这类“弃真”的错误称为I型错误,其概率大小用α表示。
II?型错误(type II error),指接受了实际上不成立的H0,这类“存伪”的误称为II型错误,其概率大小用β表示。
秩次:变量值按照从小到大顺序所编的秩序号称为秩次(rank)。
秩和:各组秩次的合计称为秩和(rank sum),是非参数检验的基本统计量。
直线回归(linear regression)建立一个描述应变量依自变量变化而变化的直线方程,并要求各点与该直线纵向距离的平方和为最小。直线回归是回归分析中最基本、最简单的一种,故又称简单回归(simple regression)。
变异:在自然状态下,个体间测量结果的差异称为变异(variation)。变异是生物医学研究领域普遍存在的现象。严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。计量资料亦称定量资料、测量资料。.其变量值是定量的,表现为数值大小,一般有度量衡单位。
四分位数间距(inter-quartile range)是由第3四分位数和第1四分位数相减计算而得,常与中位数一起使用,描述偏态分布资料的分布特征,较极差稳定。
方差(variance):方差表示一组数据的平均离散情况,由离均差的平方和除以样本个数得到。
标准差(standard deviation)是方差的正平方根,使用的量纲与原量纲相同,适用于近似正态分布的资料,大样本、小样本均可,最为常用。
变异系数(coefficient of variation)用于观察指标单位不同或均数相差较大时两组资料变异程度的比较。用CV表示。计算:标准差/均数*100%
统计推断:通过样本指标来说明总体特征,这种从样本获取有关总体信息的过程称为统计推断(statistical inference)。
抽样误差:由个体变异产生的,抽样造成的样本统计量与总体参数的差异,称为抽样误差(sampling error)。
?②假设检验:由样本的差异推断总体之间是否可能存在的差异
同质:一个总体中有许多个体,他们之所以共同成为人们研究的对象,必定存在共性,我们说一些个体处于同一总体,就是指他们大同小异,具有同质性。
总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。总体可分为有限总体和无限总体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。
回归系数(regression coefficient)即直线的斜率(slope),在直线回归方程中用b表示,b的统计意义为X每增(减)一个单位时,Y平均改变b个单位。
相关系数r:用以描述两个随机变量之间线性相关关系的密切程度与相关方向的统计指标。
二相关概念
医学科研数据统计分析大致分以下4个步骤。
1.1数据整理
中位数(median)Md将一组观察值由小到大排列,n为奇数时取位次居中的变量值;为偶数时,取位次居中的两个变量的平均值。反映一批观察值在位次上的平均水平。
极差(range)亦称全距,即最大值与最小值之差,用于资料的粗略分析,其计算简便但稳定性较差。
百分位数(percentile)是将n个观察值从小到大依次排列,再把它们的位次依次转化为百分位。百分位数的另一个重要用途是确定医学参考值范围。
1.2统计描述
1.3统计推断
1.4结果表达
频数表的制作
求全距R
找到资料中的最大值A和最小值B
计算全距R,
划分组段
确定组数??
确定组距
确定各组段的上下限
下限(lower limit)????上限(upper limit)
第一组段,其下限可取小于最小观察值得数
半开半闭区间?? [ --?,--?)
画表
频数分布表和频数分布图的用途
概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A事件发生的可能性越大。0﹤P(A)﹤1。
频率:在相同的条件下,独立重复做n次试验,事件A出现了m次,则比值m/n称为随机事件A在n次试验中出现的频率(freqency)。当试验重复很多次时P(A)= m/n。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的类别或属性。
(3)等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代表性。所谓有代表性的样本,是指用随机抽样方法获得的样本。
随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。随机抽样是样本具有代表性的保证。
????标准差与原始数据的单位一致,在科技论文报告中,均数与标准差经常被同时用来描述资料的集中趋势与离散趋势。
1.用于计算变异系数
2.用于计算标准误
3.结合均值与正态分布的规律,估计参考值的范围。
变异系数(coefficient of variation)
适用范围
1观察指标单位不同,如身高、体重——不同单位资料
标准误与样本含量的平方根成反比,样本含量越大,抽样误差越小
t分布
同一概率下,自由度越大,|t|越小;
同一自由度下,|t|越大,概率P值越小;
同一自由度下,双侧概率为单侧概率的2倍时,所对应的t界值相等;
3.计算观察单位数不等的几个率的平均率时,不能将几个率直接相加求平均率。
4.要注意其内部构成是否相同。若内部构成不同的资料,应先进行率的标准化后再比。
5.根据样本数据计算的强度相对数,要考虑抽样误差的影响。
中心极限定理central limit theorem
①即使从非正态总体中抽取样本,所得均数分布仍近似呈正态。
非参数统计:针对某些资料的总体分布难以用某种函数式来表达,或者资料的总体分布的函数式是未知的,只知道总体分布是连续型的或离散型的,用于解决这类问题的一种不依赖总体分布的具体形式的统计分析方法。
参数统计:通常要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行估计和检验,称为参数统计(parametric statistics)
标准误及X s:通常将样本统计量的标准差称为标准误(standard error of mean,SEM),它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。
可信区间:按预先给定的概率确定的包含未知总体参数的可能范围。该范围称为总体参数的可信区间(confidence interval,CI)。
揭示频数分布的特征
集中趋势
集中趋势是指一组数据向某一个位置聚集或集中的倾向。
离散趋势
离散趋势反映的是一组数据的分散性和变异度,即各个数据离开集中位置的程度。
便于观察数据的分布类型
正态分布?
集中趋势的指标:均数
离散趋势的指标:标准差
偏态分布
集中趋势的指标:中位数
离散趋势的指标:四分位间距
算术平均数
几何平均数
中位数
符号
X
G
M
含义
各观察值相加除以观察值的个数所得之商。
N各观察值的乘积开n次方所得之根
一组观察值按顺序排列,居中者。
应用条件
正态或近似正态分布
对数正态分布
极偏态或分布不清的资料
计算公式
说明
加权法计算中X值的含义
中位数为百分位数的特例
标准差的意义和用途
1.说明资料的离散趋势(或变异程度),标准差的值越大,说明变异程度越大,均数的代表性越差.
3.变异系数主要用于单位不同或均数相差悬殊资料
4.平均指标和变异指标分别反映资料的不同特征,常配套使用如——正态分布:均数、标准差;偏态分布:中位数、四分位间距
相对数使用应注意的问题
1.根据需要正确选择相对数,常见错误是以构成比代率。
2.分母应当够大。分母小于20时可靠性较差。如果分母太小,宜用绝对数表示。