第四章计算智能(2)-模糊推理1
《模糊推理系统》课件
![《模糊推理系统》课件](https://img.taocdn.com/s3/m/f73b52c185868762caaedd3383c4bb4cf7ecb7dd.png)
模糊推理系统的发展趋势与展望
更广泛的应用领域
随着模糊推理系统的不断发展和完善,其应用领域将越来越广泛, 例如自然语言处理、智能控制等。
与其他机器学习方法的结合
将模糊推理系统与其他机器学习方法相结合,例如与神经网络、支 持向量机等结合,可以进一步提高分类和预测的准确性。
模糊推理系统广泛应用于各种领域, 如控制系统、医疗诊断、智能机器人 等,以解决复杂的问题和不确定性。
模糊推理系统的基本原理
1 2 3
模糊化
将输入的精确值转换为模糊集合,通过隶属度函 数确定每个输入值属于各个模糊集合的程度。
模糊逻辑规则
基于模糊集合和模糊逻辑运算符(如AND、OR 、NOT等),制定模糊逻辑规则,用于推理和决 策。
参考文献
[请在此处插入参考文献]
[请在此处插入参考文献]
[请在此处插入参考文献]
01
03 02
感谢您的观看
THANKS
其他领域
如金融、物流、农业等, 用于解决各种复杂和不确 定性问题。
02
模糊集合与模糊逻辑
模糊集合的定义与性质
模糊集合的定义
模糊集合是经典集合的扩展,它允许元素具有不明确的边界和隶属度。
模糊集合的性质
模糊集合具有连续性、可数性、可加性和可减性等性质,这些性质使得模糊集合能够更好地描述现实世界中的不 确定性。
更好的解释性
随着可解释机器学习的需求增加,如何提高模糊推理系统的解释性 是一个重要的研究方向。
06
总结与参考文献
本报告的主要内容总结
01
02
03
04
05
计算智能 模糊逻辑和模糊推理
![计算智能 模糊逻辑和模糊推理](https://img.taocdn.com/s3/m/f91715cc7f1922791688e827.png)
0 0 0.5 1 0 0.5 0.5 0.5 0.5 0.5 R = 1 1 1 1 1 小大 1 1 1 1 1 1 1 1 1 1
B1 A1 R
小大
0 0 0.5 1 0 0.5 0.5 0.5 0.5 0.5 = 1 0.4 0.2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
语言是人们进行思维和信息交流的重要工具,是一种 符号系统。 语言可分为两种:自然语言和形式语言,通常的计算 机语言是形式语言。 人们日常所用的语言属自然语言。自然语言的突出 特点在于它具有模糊性,如“ 今天是个好天”,“小 王很年轻”等。 在形式逻辑中,推理有直接推理,演绎推理、归纳 推理以及类比推理等形式。在科学研究工作中,最 常用的推理方法是演绎推理中的假言推理。 基本规则是如果已知命题A (即可以分辨真假的陈述 句)蕴含B,即A → B(或A 则B),如今确为A1,则可 得结论为B1。
0.1 0.5 0.5 0.1 1 0.6 0.1 0.1 0.1
0.1 0.4 0.4 0.1 C1 =( A1 B1 )T R 0.1 0.5 1 0.1 0.5 0.5 0.1 0.1 0.1 0.4 0.4 0.1 0.1 C1 0.4 0.5 0.1
(3)模糊条件语句" if A and B then C else D, 则模糊关系 R 为:
T T R = ( A B ) C ( A B ) D
合成:Ci ( Ai Bi )T R
模糊聚类分析
人工智能第四章模糊计算和模糊推理1
![人工智能第四章模糊计算和模糊推理1](https://img.taocdn.com/s3/m/d320d8420640be1e650e52ea551810a6f524c833.png)
人工智能第四章模糊计算和模糊推理1人工智能第四章模糊计算和模糊推理1
模糊计算和模糊推理是人工智能领域中一个新兴的分支,它主要应用
于处理难以定义的不确定系统的计算问题。
模糊计算和模糊推理有助于分
析复杂的非线性系统,建立系统模型,解决不同学科的问题。
模糊推理是利用模糊计算得出的结果作为基础,通过运用模糊逻辑判
断进行决策,从而解决不同学科问题的一种方法。
模糊推理的核心思想是
使用模糊计算将输入信息映射到输出信息,从而形成一个统一的、有序的、易于理解的推理系统。
模糊推理可以用来评估不确实性系统中不同属性的
相关性、可能性以及其他因素,并给出多个可能的输出选择,有效地改善
决策结果的准确性。
模糊计算和模糊推理都可以有效地处理信息中的不确定性,模糊计算
的输入可以是多种格式。
计算智能主要算法概述
![计算智能主要算法概述](https://img.taocdn.com/s3/m/da2106dc49649b6648d747b5.png)
计算智能主要算法概述摘要:本文主要介绍计算智能中的几种算法:模糊计算、遗传算法、蚂蚁算法、微粒群优化算法(pso),详细描述了这几种算法的发展历史、研究内容及在本研究方向最近几年的应用。
关键字:计算智能模糊计算遗传算法蚂蚁算法 pso计算智能是在神经网络、模糊系统、进化计算三大智能算法分支发展相对成熟的基础上,通过各算法之间的有机融合而形成的新的科学算法,是智能理论和技术发展的一个新阶段,广泛应用于工程优化、模式识别、智能控制、网络智能自动化等领域[1]。
本文主要介绍模糊逻辑、遗传算法、蚂蚁算法、微粒群优化算法(pso)。
1 、模糊计算美国系统工程教授扎德于1965年发表的论文《fuzzy sets》首次提出模糊逻辑概念,并引入隶属度和隶属函数来刻画元素与模糊集合之间的关系,标志着模糊数学的诞生。
模糊计算将自然语言通过模糊计算转变为计算机能理解的数学语言,然后用计算机分析、解决问题。
在古典集合中,对于任意一个集合a,论域中的任何一个x,或者属于a,或者不属于a;而在模糊集合中,论域上的元素可以”部分地属于”集合a,并用隶属函数来表示元素属于集合的程度,它的值越大,表明元素属于集合的程度越高,反之,则表明元素属于集合的程度越低。
与经典逻辑中变元”非真即假”不同,模糊逻辑中变元的值可以是[0,1]区间上的任意实数。
要实现模糊计算还必须引入模糊语言及其算子,把含有模糊概念的语言称为模糊语言,模糊语言算子有语气算子、模糊化算子和判定化算子三类,语言算子用于对模糊集合进行修饰。
模糊逻辑是用if-then规则进行模糊逻辑推理,将输入的模糊集通过一定运算对应到特定输出模糊集,模糊推理的结论是通过将实施与规则进行合成运算后得到的。
模糊逻辑能够很好地处理生活中的模糊概念,具有很强的推理能力,在很多领域得以广泛应用研究,如工业控制、模式识别、故障诊断等领域。
但是大多数模糊系统都是利用已有的专家知识,缺乏学习能力,无法自动提取模糊规则和生成隶属度函数,需要与神经网络算法、遗传算法等学习能力强的算法融合来解决。
人工智能领域中的模糊逻辑推理算法
![人工智能领域中的模糊逻辑推理算法](https://img.taocdn.com/s3/m/74fcf85315791711cc7931b765ce050877327562.png)
人工智能领域中的模糊逻辑推理算法人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够智能地表现出类似人类的思维和行为的科学。
在人工智能领域中,模糊逻辑推理算法是一种重要的方法,其可以有效地处理现实世界中存在的不确定性和模糊性问题。
本文将介绍人工智能领域中的模糊逻辑推理算法及其应用。
一、模糊逻辑推理算法概述模糊逻辑推理算法是基于模糊逻辑的推理方法,模糊逻辑是对传统的布尔逻辑的扩展,允许命题的真值在完全为真和完全为假之间存在连续的可能性。
模糊逻辑推理算法通过模糊化输入和输出,使用模糊规则进行推理,最终得到模糊结果。
模糊逻辑推理算法主要包括以下几个步骤:1. 模糊化:将输入的精确值转化为模糊化的值,反映出其模糊性和不确定性。
2. 模糊规则匹配:根据模糊规则库,匹配输入的模糊值和规则库中的规则。
3. 推理:根据匹配到的规则进行推理,得到模糊输出。
4. 解模糊化:将模糊输出转化为精确值,以便进行后续的处理和决策。
二、模糊逻辑推理算法的应用领域1. 专家系统专家系统是一种能够模拟人类专家的思维和行为的计算机程序。
在专家系统中,模糊逻辑推理算法可以用于处理专家知识中存在的模糊性和不确定性,帮助系统作出正确的决策和推理。
2. 模式识别模式识别是通过对事物特征进行抽象和分类,从而识别和理解事物的过程。
在模式识别中,模糊逻辑推理算法可以用于处理存在模糊性和不确定性的模式,提高模式识别的准确性和鲁棒性。
3. 数据挖掘数据挖掘是从大量的数据中发现潜在的、有效的信息,并进行模式的分析和提取的过程。
在数据挖掘中,模糊逻辑推理算法可以用于处理数据中存在的模糊性和不确定性,挖掘出更多有意义的信息。
4. 控制系统控制系统是指对某个对象或过程进行控制的系统。
在控制系统中,模糊逻辑推理算法可以用于处理控制对象的模糊输入和输出,实现对控制系统的智能化控制。
三、模糊逻辑推理算法的发展趋势随着人工智能领域的不断发展,模糊逻辑推理算法也在不断演化和完善。
人工智能本科习题
![人工智能本科习题](https://img.taocdn.com/s3/m/464cd23631126edb6f1a104d.png)
图8.22机械手堆积木规划问题
8-8指出你的过程结构空间求得的图8.23问题的路径,并叙述如何把你在上题中所得结论推广至包括旋转情况。
图8.23一个寻找路径问题
第一章绪论
1-1.什么是人工智能?试从学科和能力两方面加以说明。
1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?
1-3.为什么能够用机器(计算机)模仿人的智能?
1-4.现在人工智能有哪些学派?它们的认知观是什么?
1-5.你认为应从哪些层次对认知行为进行研究?
1-6.人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?
3-16下列语句是一些几何定理,把这些语句表示为基于规则的几何证明系统的产生式规则:
(1)两个全等三角形的各对应角相等。
(2)两个全等三角形的各对应边相等。
(3)各对应边相等的三角形是全等三角形。
(4)等腰三角形的两底角相等。
第四章计算智能(1):神经计算模糊计算
4-1计算智能的含义是什么?它涉及哪些研究分支?
5-2试述遗传算法的基本原理,并说明遗传算法的求解步骤。
5-3如何利用遗传算法求解问题,试举例说明求解过程。
5-4用遗传算法求的最大值
5-5进化策略是如何描述的?
5-6简述进化编程的机理和基本过程,并以四状态机为例说明进化编程的表示。
5-7遗传算法、进化策略和进化编程的关系如何?有何区别?
5-8人工生命是否从1987年开始研究?为什么?
2-10试构造一个描述你的寝室或办公室的框架系统。
第三章搜索推理技术
3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?
3-2试举例比较各种搜索方法的效率。
人工智能模糊推理案例
![人工智能模糊推理案例](https://img.taocdn.com/s3/m/567d0d2a24c52cc58bd63186bceb19e8b8f6ec15.png)
人工智能模糊推理案例一、确定模糊变量在模糊推理中,我们需要确定模糊变量。
这些变量可以是输入变量、输出变量或中间变量。
模糊变量的值称为模糊数,它用一个模糊集合来表示。
例如,假设我们的输入变量是温度,那么我们可以将温度分为“高”、“中”、“低”三个模糊集合,分别用H、M、L表示。
二、建立模糊集合在确定了模糊变量之后,我们需要建立模糊集合。
模糊集合是对该变量的所有可能值的隶属度进行定义的集合。
隶属度是一个介于0和1之间的实数,表示该值属于该集合的程度。
例如,对于温度的三个模糊集合,我们可以定义如下隶属度:●H:当温度大于等于25度时,隶属度为1;当温度小于20度时,隶属度为0;介于20度和25度之间的温度隶属度为线性插值。
●M:当温度在20度到30度之间时,隶属度为1;其它情况隶属度为0。
●L:当温度小于等于15度时,隶属度为1;当温度大于等于20度时,隶属度为0;介于15度和20度之间的温度隶属度为线性插值。
三、确定模糊关系在建立了模糊集合之后,我们需要确定模糊关系。
模糊关系是一个二维的隶属度函数,表示输入变量和输出变量之间的模糊关系。
例如,假设我们的输出变量是风力,那么我们可以定义如下模糊关系:●当温度为H时,风力为强(用S表示)。
●当温度为M时,风力为中(用M表示)。
●当温度为L时,风力为弱(用W表示)。
四、进行模糊推理在确定了模糊变量、建立了模糊集合、确定了模糊关系之后,我们就可以进行模糊推理了。
模糊推理是按照一定的推理规则进行的,例如“IF A THEN B”。
在我们的例子中,我们可以使用如下推理规则:●IF 温度 = H THEN 风力 = S.●IF 温度 = M THEN 风力 = M.●IF 温度 = L THEN 风力 = W.五、反模糊化处理经过模糊推理后,我们得到了一个模糊输出值。
这个值是一个模糊集合,不能直接用于控制风力。
因此,我们需要进行反模糊化处理。
反模糊化处理是将模糊输出值转换为实际数值的过程。
4.1.4 模糊逻辑与模糊推理(1).
![4.1.4 模糊逻辑与模糊推理(1).](https://img.taocdn.com/s3/m/001a99dd4afe04a1b071de8d.png)
4.1.4.2 模糊逻辑
模糊命题
模糊命题具有如下特点:
3)模糊命题的一般形式为“A:e is F”,其中e是模糊 变量,或简称变量;F是某一个模糊概念所对应的模糊 集合。模糊命题的真值就由该变量对模糊集合的隶属 程度来表示。
4.1.4.2 模糊逻辑
模糊逻辑
研究模糊命题的逻辑称为模糊逻辑。其真值 在[0,1]之间连续取值,它是建立在模糊集合 和二值逻辑概念基础上的无限多值逻辑。
+零+负小+负较小+负中+负较大+负大} 语义规则M指模糊子集的隶属函数;
4.1.4 模糊逻辑与模糊推理 4.1.4.1 精确逻辑与精确推理 4.1.4.2 模糊逻辑 4.1.4.3 人工语言与自然(模糊)语言 4.1.4.4 模糊条件语句 4.1.4.5 模糊推理 4.1.4.6 模糊决策
0.7
0.3 0.5 0.7
R
R1T
C
1 0.1
0.3
0.5
1
0.3 0.1
0.5 0.1
1 0.1
0.4 0.4
0.3 0.4 0.4
if A 1 0.4 and B 0.1 0.7 1 , then C 0.3 0.5 1
x1 x2
y1 y2 y3
z1 z2 z3
蕴含的模糊关系(采用Mamdani法)
求解步骤一
R1=A×B 求解步骤二
把R1排成向量R1T ;
求解步骤三
计算R= R1T ×C;
4.1.4.4 模糊条件语句
1
0.7 1 0.3 0.1
R 0.60.7 1 0.3 0.1 0.6 0.6 0.3 0.1
人工智能习题参考答案
![人工智能习题参考答案](https://img.taocdn.com/s3/m/f87c4e0dbd64783e08122b07.png)
• 神经网络主要通过指导式(有师)学习算法和非指导式(无师)学习 算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做 有师学习的一种特例。 • (1)有师学习 • 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入) 间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老 师或导师来提供期望或目标输出信号。有师学习算法的例子包括 Delta规则、广义Delta规则或反向传播算法以及LVQ算法等。 • (2)无师学习 • 无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络 提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征 把输入模式分组聚集。无师学习算法的例子包括Kohonen算法和 Carpenter-Grossberg自适应谐振理论(ART)等。 • (3)强化学习 • 强化(增强)学习是有师学习的特例。它不需要老师给出目标输出。 强化学习算法采用一个“评论员”来评价与给定输入相对应的神经网 络输出的优度(质量因数)。强化学习算法的一个例子是遗传算法 (GA)。
• • • • • • • • • •
• 6-2专家系统由哪些部分构成?各部分的作用为何? • 答: •
• 5-7遗传算法、进化策略和进化编程的关系如何?有何区别? • 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异 等操作以及达尔文适者生存的理论,模拟自然进化过程来寻找所求问 题的解答。 • 进化策略(Evolution Strategies,ES)是一类模仿自然进化原理以求 解参数优化问题的算法。 • 进化编程根据正确预测的符号数来度量适应值。通过变异,为父代群 体中的每个机器状态产生一个子代。父代和子代中最好的部分被选择 生存下来。 • 进化计算的三种算法即遗传算法、进化策略和进化编程都是模拟生物 界自然进化过程而建立的鲁棒性计算机算法。在统一框架下对三种算 法进行比较,可以发现它们有许多相似之处,同时也存在较大的差别。 • 进化策略和进化编程都把变异作为主要搜索算子,而在标准的遗传算 法中,变异只处于次要位置。交叉在遗传算法中起着重要作用,而在 进化编程中却被完全省去,在进化策略中与自适应结合使用,起了很 重要的作用。 • 标准遗传算法和进化编程都强调随机选择机制的重要性,而从进化策 略的角度看,选择(复制)是完全确定的。进化策略和进化编程确定 地把某些个体排除在被选择(复制)之外,而标准遗传算法一般都对 每个个体指定一个非零的选择概率。
人工智能课程教学大纲
![人工智能课程教学大纲](https://img.taocdn.com/s3/m/f09d9b3a591b6bd97f192279168884868762b8fa.png)
《人工智能》课程教学大纲课程代码:H0404X课程名称:人工智能适用专业:计算机科学与技术专业及有关专业课程性质:本科生专业基础课(学位课)主讲教师:中南大学信息科学与工程学院智能系统与智能软件研究所蔡自兴教授总学时:40学时(课堂讲授36学时,实验教学4学时)课程学分:2学分预修课程:离散数学,数据结构一. 教学目的和要求:通过本课程学习,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。
人工智能涉及自主智能系统的设计和分析,与软件系统、物理机器、传感器和驱动器有关,常以机器人或自主飞行器作为例子加以介绍。
一个智能系统必须感知它的环境,与其它Agent和人类交互作用,并作用于环境,以完成指定的任务。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。
这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
此外,人工智能还提供一套工具以解决那些用其它方法难以解决甚至无法解决的问题。
这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。
通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。
二. 课程内容简介人工智能的主要讲授内容如下:1.叙述人工智能和智能系统的概况,列举出人工智能的研究与应用领域。
2.研究传统人工智能的知识表示方法和搜索推理技术,包括状态空间法、问题归约法谓词逻辑法、语义网络法、盲目搜索、启发式搜索、规则演绎算法和产生式系统等。
3.讨论高级知识推理,涉及非单调推理、时序推理、和各种不确定推理方法。
4.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经计算、模糊计算、进化计算和人工生命诸内容。
人工智能原理及应用第4章 不确定性推理方法
![人工智能原理及应用第4章 不确定性推理方法](https://img.taocdn.com/s3/m/94cebd08f242336c1fb95e67.png)
4.2 概率推理
4.2.1 概率的基本性质和计算公式
4.2.1.2 事件间的关系 两个事件A与B可能有以下几种特殊关系: 并事件:对两个事件A与B,如果事件表达的是“事件A与事件B至 少有一个发生”,则称该事件为A与B的并事件,记为AUB。可见, 并事件是由A与B的所有样本点共同构成的事件。 交事件:如果事件表达的是“事件A与事件B同时发生”,则称该 事件为A与B的交事件,记为A∩B。可见,交事件是由既属于A又属 于B的所有样本点构成的事件。 互斥关系:若A与 B不能同时发生,则称A与B互斥,记作AB= Ø 对立关系:若A与B互斥,且必有一个发生,则称A与B对立,又称 A为B的余事件,或B为A的余事件。
并:记C=“A与B中至少有一个发生”,称为事件A与B的并,记
作 C { ห้องสมุดไป่ตู้ A 或 B} 。
差:记C=“A发生而B不发生”,称为事件A与B的差。
求余: ~ A \ A
4.2 概率推理
4.2.1 概率的基本性质和计算公式
4.1.2.3 事件的概率 定义4.5 设Ω为一个随机实验的样本空间,对Ω上的任意事件A,规定 一个实数与之对应且满足以下三条基本性质,记为P(A),称为事件A 发生的概率:
知识
图4-1 不确定性推理
4.1 不确定推理概述
4.1.1 不确定推理的概念
采用不确定性推理是客观问题的需求,其原因包括以下几个方面: (1)所需知识不完备,不精确 (2)所需知识描述模糊 (3)多种原因导致同一结论 (4)解决方案不唯一
4.1 不确定推理概述
4.1.2不确定性推理的基本问题和方法分类
机缘控制
启发式搜索
图4-2 不确定性推理分类
概率方法 主观Bayes方法 可信度方法 证据理论
计算智能--模糊逻辑
![计算智能--模糊逻辑](https://img.taocdn.com/s3/m/9ed77362453610661fd9f447.png)
1
u u ❖ 用序对表示法可以表示为
A
(u,
0)
|
0
u
3
u,
2 3
u
2
|
3
u
4.5
(u,1)
|
4.5
u
5
常用的隶属度函数
❖ 在不同的具体问题中,往往需要选择不同的隶属 度函数,对隶属度函数的选择通常依赖相关领域 的专家知识 。一下是一些常用的隶属度函数:
D CoR
上式中的合成操作有不同的定义方法,最常用的就是式最大-最小合成
1987年,模糊控制应用于 仙台市地铁的自动驾驶。
1993年,模糊理论的 创始人L.Zadeh教授 提出了软计算
(Soft Computing)[3]
3.2 模糊集合与模糊逻辑
本节是关于模糊集合、模糊逻辑、模糊关系的基 础知识,为介绍模糊推理、模糊计算作理论准备, 包括下列要点:
❖ 模糊集合的概念 ❖ 模糊集合的隶属度函数 ❖ 模糊集合上的运算及其基本定律 ❖ 模糊逻辑及其基本定律 ❖ 模糊关系及其合成运算
例如,“室温在27ºC是高温度”,这个命题真值如 何呢?无论认为是还是否,答案都过于极端。在模 糊逻辑中,一个命题不再非真即假,它可以被认为 是“部分的真”。模糊逻辑中的隶属度在[0,1]之间 取值,用以表示程度。上面关于温度的问题,可以 认为该温度对“高温度”的隶属度是0.6,即“部分
的高温”。
模糊逻辑发展历程
❖ 幂等律 ❖ 交换律 ❖ 结合律
❖ 分配律
❖ 吸收律 ❖ 两极律
❖ 复原律 ❖ 摩根律
A A A, A A A A B B A, A B B A (A B) C A (B C) (A B) C A (B C)
人工智能模糊推理
![人工智能模糊推理](https://img.taocdn.com/s3/m/bf6a2d697e21af45b307a82b.png)
121 第4章 不确定与非单调推理在现实世界中,能够进行精确描述的问题只占较少一部分,而大多数问题是非精确、非完备的。
对于这些问题,若采用上一章所讨论的精确性推理方法显然是不行的。
为此,人工智能需要研究不确定性的推理方法,以满足客观问题的需求。
4.1.1 C-F 模型C-F 模型是消特里菲等人在确定性理论的基础上,结合概率论和模糊集合论等方法提出的一种基本的不确定性推理方法。
下面讨论其知识表示和推理问题。
1. 知识不确定性的表示在C-F 模型中,知识是用产生式规则表示的,其一般形式为:IF E THEN H (CF(H, E))其中,E 是知识的前提条件;H 是知识的结论;CF(H, E)是知识的可信度。
对它们的简单说明如下:前提条件可以是一个简单条件,也可以是由合取和析取构成的的复合条件。
例如E=( E1 OR E2) AND E3 AND E4就是一个复合条件。
结论可以是一个单一的结论,也可以是多个结论。
可信度CF (Certainty Factor 简记为CF)又称为可信度因子或规则强度,它实际上是知识的静态强度。
CF(H, E)的取值范围是[-1,1],其值表示当前提条件E 所对应的证据为真时,该前提条件对结论H 为真的支持程度。
CF(H, E)的值越大,对结论H 为真的支持程度就越大。
例如IF 发烧 AND 流鼻涕 THEN 感冒 (0.8)表示当某人确实有“发烧”及“流鼻涕”症状时,则有80%的把握是患了感冒。
可见,CF(H, E)反映的是前提条件与结论之间的联系强度,即相应知识的知识强度。
2. 可信度的定义在C-F 模型中,把CF(H, E)定义为CF(H, E)=MB(H, E)-MD(H, E)其中,MB (Measure Belief 简记为MB)称为信任增长度,它表示因与前提条件E 匹配的证据的出现,使结论H 为真的信任增长度。
MD (Measure Disbelief 简记为MD)称为不信任增长度,它表示因与前提条件E 匹配的证据的出现,对结论H 的不信任增长度。
第四章_模糊控制器的设计
![第四章_模糊控制器的设计](https://img.taocdn.com/s3/m/77ceeab1b0717fd5360cdc44.png)
2)模糊子集的分布 每个语言变量的取值,对应于其论域上 的一个模糊集合。个数确定以后,需要考 虑模糊子集的分布,即模糊子集在模糊论 域上的分布方式和情况,即确定每个模糊 子集的隶属函数
1
NB NM NS
ZO
PS
PM PB
隶属函数的类型 ① 正态分布型(高斯基函数 )
( x ai )2 bi 2
第4章 模糊控制器的工作原理
一、模糊控制与传统控制 二、模糊控制系统的组成 三、确定量的模糊化 四、模糊控制算法的设计 五、模糊推理 六、输出信息的模糊判决 七、基本模糊控制器的设计 八、模糊模型的建立
4.1 模糊控制系统的基本组成
从传统控制到模糊控制 • 传统控制(Conversional control):经典反馈控 制和现代控制理论。它们的主要特征是基于精确 的系统数学模型的控制。适于解决线性、时不变 等相对简单的控制问题。
• 完备性 属函数的分布必须覆盖语言变量的整个论域,否则,将会出现“空档”, 从而导致失控。
NB NM 1 NS ZO PS PM PB
0 -6 空档
-4
-2
0
2
4
6
x
不完备的隶属函数分布
一致性:即论域上任意一个元素不得同时是两个F子集的核
交互性:即论域上任何一个元素不能仅属于一个F集合
3)一个确定数的模糊化 一个确定数的模糊化分为两步: (1)根据确定数以及量化因子求在基本论域 上的量化等级。 (2)查找语言变量的赋值表,找出与最大隶 属度对应的模糊集合,该模糊集合就代表 确定数的模糊化结果。
假设E*=-6,系统误差采用三角形隶 属函数来进行模糊化。 E*属于NB的 隶属度最大(为1),则此时,相对 应的模糊控制器的模糊输入量为:
-模糊计算
![-模糊计算](https://img.taocdn.com/s3/m/fb81a71ea300a6c30c229fe9.png)
u=
∫µ
(x)dx
u = ∑xi ⋅ µN (xi )
=48.2
∑µ
N
(xi )
13
4.3 模糊计算
2. 最大隶属度法
这种方法最简单, 这种方法最简单,只要在推理结论的模糊集 合中取隶属度最大的那个元素作为输出量即可。 合中取隶属度最大的那个元素作为输出量即可。 要求这种情况下其隶属函数曲线一定是正规凸模 糊集合(即其曲线只能是单峰曲线)。 糊集合(即其曲线只能是单峰曲线)。 例如,对于“水温适中” 例如,对于“水温适中”,按最大隶属度原 有两个元素40和 具有最大隶属度 具有最大隶属度1.0, 则,有两个元素 和50具有最大隶属度 ,那就 对所有取最大隶属度的元素40和50求平均值,执 对所有取最大隶属度的元素 和 求平均值, 求平均值 行量应取: 行量应取:
umax = (40 + 50) / 2 = 45
14
4.3 模糊计算
3. 系数加权平均法
系数加权平均法的输出执行量由下式 决定: 决定:
u = ∑ki ⋅ xi / ∑ki
(4.36)
式中, 式中,系数的选择要根据实际情况 而定, 而定,不同的系统就决定系统有不同 的响应特性。 的响应ቤተ መጻሕፍቲ ባይዱ性。
15
目前在管理科学系统工程经济学心理学社会学生态学未来学语言学历史学军事学以及人工智能自动控制遥感技术模式识别信息处理天气预报图像识别地震预测家用电器医疗诊断交通运输商品质量评价预测与规则农作物选种化合物及地矿物的分类图书情报分类等多学科多领域都得到了应用
计算智能(1) 第四章 计算智能
模糊计算
模糊计算是一门崭新的信息学科。自1965年美国自动控制论学者 L.Zadeh教授开创模糊数学以来,这门新兴学科呈现出旺盛的生命力 和渗透力。它的应用已扩展到许多科学技术领域。目前在管理科学、 系统工程、经济学、心理学、社会学、生态学、未来学、语言学、 历史学、军事学以及人工智能、自动控制、遥感技术、模式识别、 信息处理、天气预报、图像识别、地震预测、家用电器、医疗诊断、 交通运输、商品质量评价、预测与规则、农作物选种、化合物及 地矿物的分类、图书情报分类等多学科、多领域都得到了应用。 模糊计算这门学科已经显示出它的强大生命力,并且越来越受到重视 模糊数学与计算机技术是息息相关的。模糊数学产生的背景之一, 就是用数学手段把人脑对复杂事物进行模糊度量、模糊识别、 模糊推理、模糊控制和模糊决策的本领移植到电子计算机上来, 提高计算机的智能信息处理能力。本篇主要从信息处理科学的角度 讨论模糊计算的基本方法、模糊信息处理及其应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典二值(布尔)逻辑
在经典二值(布尔)逻辑体系中,所有的分类 都被假定为有明确的边界;(突变) 任一被讨论的对象,要么属于这一类,要么不 属于这一类; 一个命题不是真即是假,不存在亦真亦假或非 真非伪的情况。(确定)
1
天气冷热
雨的大小
风的强弱
人的胖瘦
年龄大小
个子高低
2
模糊数学
•模糊概念 模糊概念:从属于该概念到不属于该概念之间 无明显分界线 年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨。 模糊数学就是用数学方法研究模糊现象。
3
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
5
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种 • 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU • 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支 分类、识别、评判、预测、控制、排序、选择;
并以此数作为 R1°R2 第i行第j列的元素。
R2=
0.2 0.4 0.6
0.8 0.6 0.4
求 R1°R2
42
模糊推理
模糊命题 模糊概念 1 张三是一个年轻人。 2 李四的身高为1.75m左右。模糊数据 3 他考上大学的可能性在60%左右。 对相应事件发生 的可能性或确信 4 明天八成是个好天气。 程度作出判断。 5 今年冬天不会太冷的可能性很大。
33
模糊二元关 系R是以 U×V为论域 的一个模糊 子集,序偶 (u,v)的隶属 度为uR(u,v)
34
3 模糊关系
对于有限论域U={u1, u2 ,…, um }, V={v1, v2 ,…, vn },则U对V的模糊关系的隶属函数 可以用m×n阶模糊矩阵R来表示,即 R=(rij)m×n
35
(Fuzzy Sets,Information and Control, 8, 338-353 )
•基本思想 用属于程度代替属于或不属于。 某个人属于秃子的程度为0.8, 另一个人属于 秃子的程度为0.3等.
4
模糊数学的发展
1975年之前,发展缓慢;1980以后发展迅速; 1990-1992 Fuzzy Boom • 杂志种类 1978年,Int. J. of Fuzzy Sets and Systems 每年1卷共340页,1999年8卷每卷480页 Int. J. of Approximate Reasoning Int. J. Fuzzy Mathematics Int. J. Uncertainty, Fuzziness, knowledge-based Systems
6
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐 • 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
7
国内状况
1976年传入我国 1980年成立中国模糊数学与模糊系统学 会 1981年创办《模糊数学》杂志 1987年创办《模糊系统与数学》杂志 我国已成为全球四大模糊数学研究中心 之一(美国、西欧、日本、中国)
31
2 普通集合上的“关系”
例3、设U={ 红桃,方块,黑桃,梅花 } V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V 解: U×V = { ( 红桃, A) ,(红 桃 , 2 ), …… , (梅花, K) },共52个元素。
32
3 模糊关系
在普通集合上定义的“关系”都是确定 性关系,u和v或者有某种关系,或者没 有这种关系。 但是,在现实世界中,很多事物的关系 并不是十分明确的,如:人与人之间的 相像关系,人与事物之间的爱好关系等。
39
40
模糊关系的合成
设 R1 与 R2 分别是 U×V 及 V×W 上的两个模糊 关系,则R1与R2的合成是指从U到W的一个模 糊关系,记为:R1°R2 其隶属函数为
μR1°R2 (u,w)= { μR1 (u,v) μR2 (v,w) }
41
例:设有如下两个模糊关系: 方法: 0.4 0.5 0.1 取R1的第i行元素分别与R2 的第j列的对应元素相比 R1= 0.2 0.6 0.2 较,两个数中取其小者, 然后再在所得的一组最 小数中取最大的一个, 0.5 0.3 0.2
2 3
也不是表示相加,它只是一个记号。
18
μF(ui)/ ui 表示 ui 对模糊集 F的隶属度。当 某个隶属度为0时,可以略去不写。 如: A=1/ u1+0.7/ u2+ 0/ u3+0.5/ u4 B=1/ u1+0.7/ u2+0.5/ u4 它们是相同的模糊集。
19
无论论域是有限的还是无限的,连续的 还是离散的,扎德都用如下记号作为模 糊 子集的一般表示形式:
讨论某一概念的外延时总离不开一定的范围。 这个讨论的范围,称为“论域”,论域中的每 个对象称为“元素”。
11
模糊数学理论
表示集合的几种方法
(1)列举法:
列写出集合中的全体元素。
适用于元素有限的集合。
(2)定义法:
以集合中元素的共性来描述集合的一种方法。
适用于有许多元素而不能一一列举的集合。
12
模糊数学理论
44
模糊推理
模糊语言值是指表示大小、长短、多少等程度的一 些词汇。如:极大、很大、相当大、比较大。模糊 语言值同样可用模糊集描述。 模糊数:如果实数域R上的模糊集A的隶属函数μA(u) 在R上连续且具有如下性质: (1)A是正规模糊集,即存在u属于R,使得μA(u)=1。 (2)A是凸模糊集,即对于任意实数x,a<x<b,有 μA(x)>=min{μA(a), μA(b)}。 直观上看,模糊数的隶属函数的图形是单峰的,在 在峰顶是隶属度达到1。
45
模糊知识的表示
(1)模糊产生式规则的一般形式是: IF E THEN H (CF,λ) 其中,E是用模糊命题表示的模糊条件;H是用模糊命题表示的 模糊结论;CF是知识的可信度因子,它既可以是一个确定 的数,也可以是一个模糊数或模糊语言值。λ是匹配度的阈 值,用以指出知识被运用的条件。例如: IF x is A THEN y is B (CF,λ) (2)推理中所用的证据也用模糊命题表示,一般形式为 x is A’ 或者 x is A’ (CF) (3)模糊推理要解决的问题:证据与知识的条件是否匹配;如 果匹配,如何利用知识及证据推出结论。
8
为什么研究模糊数学
•人工智能的要求
• 取得精确数据不可能或很困难 •没有必要获取精确数据
模糊数学的产生不仅形成了一门崭新的数学学科, 而且也形成了一种崭新的思维方法,它告诉我们存 在亦真亦假的命题,从而打破了以二值逻辑为基础 的传统思维,使得模糊推理成为严格的数学方法。 随着模糊数学的发展,模糊理论和模糊技术将对于 人类社会的进步发挥更大的作用。
29
A=0.3/u1+0.7/u2+1/u3+0.6/u4+0.5/u5
解: (1)λ截集 A1={ u3 } A0.6={ u2,u3,u4 } A0.5={ u2,u3,u4,u5 } A0.3={ u1,u2,u3,u4,u5 } (2)核、支集 KerA={ u3 } SuppA={ u1,u2,u3,u4,u5 }
30
2 普通集合上的“关系”
笛卡尔乘积(直积,代数积) 设U与V是两个集合,则称 U×V={ (u,v) | u∈U, v∈V } 为U与V的笛卡尔乘积。 若R是U×V上的一个子集,则称R为从U到V的 一个关系。记为: 对于U×V中的元素(u,v) ,若(u,v) ∈R,则 称u与v有关系R,否则,称U与v没有关系R。
24
A=0.3/ u1+0.8/ u2+0.6/ u3
B=0.6/ u1+0.4/ u2+0.7/ u3
解:
A∩B =0.3 / u1+0.4 / u2+0.6 / u3 A∪B =0.6 / u1+0.8 / u2+0.7 / u3
A =(1-0.3) / u1+(1-0.8) / u2+(1-0.6) / u3
这里的积分号不是数学中的积分,也不 是求和,只是表示论域中各元素与其隶 属度对应关系的总括,是一个记号。
20
A (u) B (u)
A (u) B (u)
21
22
0.5
23
例:设U={ u1,u2,u3 }
A=0.3/ u1+0.8/ u2+0.6/ u3 B=0.6/ u1+0.4/ u2+0.7/ u3 求:A∩B, A∪B及 A
43
模糊推理
模糊命题
含有模糊概念、模糊数据的语句称为模糊命题。它 的一般表示形式为: x is A 或者 x is A (CF) 其中,A是模糊概念或者模糊数,用相应的模糊集 及隶属函数刻画; x是论域上的变量,用以代表所 论述对象的属性; CF是该模糊命题的可信度,它既 可以是一个确定的数,也可以是一个模糊数或者模 糊语言值。
集合的特征函数:设A是论域U上的一个集合, u U 对任意 ,令
1 CA (u) 0 如果 u A 如果 u A
则称CA(u)为集合A的特征函数。
13
例:设有论域:U={ 1,2,3,4,5 },A={ 1,3,5 }, 求其特征函数。 解:特征函数如下: 1 当u=1,3,5 CA(u)= 0 当u=2,4
对 于 一 般 的ቤተ መጻሕፍቲ ባይዱ模 糊 子 集 A 可 表 示 为 A={μ1, μ2, …,μn },其中μi表示论域中第i个元素 对A的隶属度。