直线与平面,平面与平面平行练习题
面面平行练习题
面面平行练习题一、选择题1. 若平面α内的直线a与平面β内的直线b平行,且直线a不在平面β内,那么平面α与平面β的位置关系是:A. 平行B. 相交C. 垂直D. 重合2. 在空间几何中,若两平面没有公共点,则这两个平面:A. 相交B. 平行C. 垂直D. 重合3. 根据面面平行的判定定理,若直线a平行于平面β,直线b在平面α内,且直线a与直线b平行,则:A. 平面α与平面β平行B. 平面α与平面β相交C. 平面α与平面β垂直D. 不能确定4. 若平面α与平面β平行,且点P不在平面α或平面β内,则过点P的直线与平面α和平面β的位置关系是:A. 平行B. 相交C. 垂直D. 重合5. 根据面面平行的性质定理,若平面α与平面β平行,直线a在平面α内,直线b在平面β内,则直线a与直线b:A. 平行B. 相交C. 垂直D. 重合二、填空题6. 若直线a平行于直线b,且直线a在平面α内,直线b在平面β内,则平面α与平面β_________。
7. 当两平面平行时,它们之间的距离处处_________。
8. 若直线a与平面α垂直,直线b与平面β垂直,且直线a与直线b平行,则平面α与平面β_________。
9. 若直线a与直线b相交,且直线a在平面α内,直线b在平面β内,则平面α与平面β_________。
10. 当平面α与平面β平行时,平面α内的任意直线与平面β_________。
三、简答题11. 描述面面平行的性质定理,并给出一个几何图形的例子。
12. 解释为什么两个平面平行时,它们之间的距离处处相等,并给出证明。
13. 给出一个实际生活中面面平行的例子,并解释其在该场景中的重要性。
四、证明题14. 已知平面α内的直线a与平面β内的直线b平行,且直线a不在平面β内,证明平面α与平面β平行。
15. 若平面α与平面β平行,直线c在平面α内,直线d在平面β内,且直线c与直线d平行,证明直线a与直线b平行。
五、应用题16. 在一个立方体中,找出所有平行的平面对,并解释为什么它们是平行的。
线面平行、面面平行的判定及性质练习
直线与平面、平面与平面平行的判定及其性质练习一、选择题:1.下列命题中为真命题的是()A.平行于同一条直线的两个平面平行B.垂直于同一条直线的两个平面平行C.若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D.若三直线a、b、c两两平行,则在过直线a的平面中,有且只有—个平面与b,c均平行. 2.平面α∥平面β,直线aα,P∈β,则过点P的直线中()A.不存在与α平行的直线 B.不一定存在与α平行的直线C.有且只有—条直线与a平行 D.有无数条与a平行的直线3.下列命题中,正确的是个数是( )①若两个不同平面不相交,那么它们平行。
②空间的两个相等的角所在的平面也平行。
③若一个平面内无数条直线都平行于另一个平面,则这两个平面平行A.0个 B.1个 C.2个 D.3个4.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是( )A.平行 B.相交 C.相交或平行 D.以上答案都不对∈,那么过点P且平行于α的直线()5.已知直线a∥平面α,PαA.只有一条,不在平面α内 B.有无数条,不一定在α内C.只有一条,且在平面α内 D.有无数条,一定在α内6.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是 ( )A.平行 B.相交 C.相交或平行 D.以上答案都不对 7.下列结论中正确的是 ( )①α∥β,β∥γ,则α∥γ;②过平面外一条直线有且只有一个平面与已知平面平行;③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交。
A.①②③ B.②③④ C.①③④ D.①②③④8.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是()A.过A且平行于a和b的平面可能不存在B.过A有且只有一个平面平行于a和bC .过A 至少有一个平面平行于a 和bD .过A 有无数个平面平行于a 和b 9.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行; ③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等; ④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③B .①②C .②③D .③④10.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是 A .过A 有且只有一个平面平行于a ,b B .过A 至少有一个平面平行于a ,b C .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 二、填空题:11.一条直线和一个平面平行,过此直线和这个平面平行的平面有________个。
高中-空间直线、平面的平行试题-
空间直线、平面的平行考法一线面平行【例1-1】(2021·海原县第一中学高一期末)如图,正方体1111ABCD A B C D -中,E 为1DD 中点.求证:1//BD 平面AEC .【例1-2】(2020·浙江高一期末)如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.【一隅三反】1.(2020·陕西西安市·高一期末)如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;2.(2021·全国高一课时练习)如图,在三棱锥S ABC -中,已知SAC 是正三角形,G 为SAC 的重心,D ,E 分别为SC ,AB 的中点,F 在AB 上,且13AF AB =求证://DE 平面SGF3.(2020·咸阳市高新一中高一月考)正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P ,Q ,且AP DQ =.求证://PQ 平面BCE .考法二面面平行【例2】(2021·全国高一课时练习)如图,在正方体ABCD A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)直线EG //平面BDD 1B 1;(2)平面EFG //平面BDD 1B 1.【一隅三反】1.(2021·全国高一专题练习)下列四个正方体图形中,A,B,C 为正方体所在棱的中点,则能得出平面ABC∥平面DEF 的是A.B.C.D.2.(2021·全国高一课时练习)如图:在正方体1111ABCD A B C D -中,E 为1DD 的中点.(1)求证:1//BD 平面AEC ;(2)若F 为1CC 的中点,求证:平面//AEC 平面1BFD .3.(2021·全国高一)如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,E 、F 分别为PD 、PA 的中点,AC 、BD 交于点O .(1)求证:平面//PBC 平面EFO ;(2)求三棱锥A EFO -与四棱锥P ABCD -的体积之比.考法三平行的综合运用【例3】(2020·全国高一课时练习)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1;(2)EG ∥平面BB 1D 1D ;(3)平面BDF ∥平面B 1D 1H .【一隅三反】1.(2020·北京大兴区·高一期末)如图所示,在四棱锥P ABCD -中,//BC 平面PAD ,12BC AD =,E 是PD 的中点.(1)求证://BC AD ;(2)求证://CE 平面PAB ;(3)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使//MN 平面PAB ?说明理由.考法四线面、面面平行的性质【例4-】(2020·全国高一课时练习)在如图所示的几何体中,D 、H 、G 分别是AC 、BF 、CE 的中点,//EF DB .求证://GH 平面ABC .【例4-2】(2020·全国高一课时练习)如图,在三棱柱111ABC A B C -中,点D 为AC 的中点,点1D 是11A C 上的一点,若1BC //平面11AB D ,则1111A DD C=()A.12B.1C.2D.3【一隅三反】1.(2020·北京人大附中高一期末)如图,在直三棱柱111ABC A B C -中,2BAC π∠=,11AA AB AC ===,1CC 的中点为H ,点N 在棱11A B 上,//HN 平面1A BC ,则111A NA B 的值为________.2.(2021·全国高一课时练习)已知平面α//平面β,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且6PA =,9AC =,8PD =,则BD 的长为___________.3.(2020·河南高一月考)如图,一个侧棱长为l 的直三棱柱111ABC A B C -容器中盛有液体(不计容器厚度).若液面恰好分别过棱AC ,BC ,11B C ,11A C 的中点D ,E ,F ,G .(1)求证:平面//DEFG 平面11ABB A ;(2)当底面ABC 水平放置时,求液面的高.4.(2020·浙江杭州市·高一期末)如图,正三棱柱111ABC A B C -的底面边长为2,高为32,过AB 的截面与上底面交于PQ ,且点P 在棱11A C 上,点Q 在棱11B C 上.(Ⅰ)证明:11//PQ A B ;(Ⅱ)当点P 为棱11A C 的中点时,求四棱锥C ABQP -的体积.。
几何平行练习题
几何平行练习题练习一:平行线与平面1. 在平面P上,画一条直线AB,并以点C为中心、画一条与AB 平行的直线CD。
a) 证明直线CD和直线AB平行。
b) 若直线AB与另一条直线EF相交于点G,证明直线CD与直线EF平行。
2. 平面P上有一条直线AB和另一条直线CD,且这两条直线不在同一平面内。
a) 证明直线AB与直线CD平行。
b) 若直线CD与另一条直线EF相交于点G,证明直线AB与直线EF平行。
练习二:判断平行线1. 已知直线AB和直线CD平面上不重合且不相交,且它们的方向相同。
a) 证明直线AB与直线CD平行。
b) 若直线AB与另一条直线EF相交于点G,证明直线CD与直线EF平行。
2. 已知直线AB和直线CD平面上不重合且不相交,且它们的方向相反。
a) 证明直线AB与直线CD平行。
b) 若直线AB与另一条直线EF相交于点G,证明直线CD与直线EF平行。
练习三:平行线之间的性质1. 在△ABC中,直线DE与直线AB和直线AC平行,分别交边AB于点D、边AC于点E。
a) 证明直线DE与边BC平行。
b) 若直线FG与直线BC平行,交边AB于点F、边AC于点G,证明直线FG与直线DE平行。
2. 在△ABC中,直线DE和直线FG分别平行于边BC,分别交边AB于点D和F、边AC于点E和G。
a) 证明直线DE和直线FG平行。
b) 若直线HI与直线BC平行,交边AB于点H、边AC于点I,证明直线HI与直线DE、直线FG都平行。
练习四:平行线的证明1. 在平面P上,已知三条平行线l1,l2,l3。
a) 若直线m与l1平行且交直线l2于点A,证明直线m与直线l3平行。
b) 若直线n与直线l1平行且交直线l3于点B,证明直线n与直线l2平行。
2. 已知四条平行线l1,l2,l3,l4。
a) 若直线m通过直线l1,l2之间的交点且与直线l3平行,证明直线m与直线l4平行。
b) 若直线n通过直线l1,l2之间的交点且与直线l4平行,证明直线n与直线l3平行。
直线平面平行的判定与性质 练习题
直线、平面平行的判定与性质1.(2019·西安模拟)设α,β是两个平面,直线a ⊂α,则“a ∥β”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 依题意,由a ⊂α,a ∥β不能推出α∥β,此时平面α与β可能相交;反过来,由α∥β,a ⊂α,可得a ∥β.综上所述,“a ∥β”是“α∥β”的必要不充分条件,选B.2.(2019·四川名校联考)如图,正方体ABCD A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 由题可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,B Q =23BB 1,连接M Q ,NP ,P Q ,则M Q 綊23B 1A 1,NP 綊23AB ,又B 1A 1綊AB ,故M Q 綊NP ,所以四边形M Q PN 是平行四边形,则MN ∥Q P ,Q P ⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C ,则MN ∥平面BB 1C 1C ,故选B.3.(2019·枣庄诊断)如图,直三棱柱ABC A ′B ′C ′中,△ABC 是边长为2的等边三角形,AA ′=4,点E ,F ,G ,H ,M 分别是边AA ′,AB ,BB ′,A ′B ′,BC 的中点,动点P 在四边形EFGH 内部运动,并且始终有MP ∥平面ACC ′A ′,则动点P 的轨迹长度为( )A .2B .2πC .2 3D .4解析:选D 连接MF ,FH ,MH ,因为M ,F ,H 分别为BC ,AB ,A ′B ′的中点,所以MF ∥平面AA ′C ′C ,FH ∥平面AA ′C ′C ,所以平面MFH ∥平面AA ′C ′C ,所以M 与线段FH 上任意一点的连线都平行于平面AA ′C ′C ,所以点P 的运动轨迹是线段FH ,其长度为4,故选D.4.(2019·成都模拟)已知直线a ,b 和平面α,下列说法中正确的是( ) A .若a ∥α,b ⊂α,则a ∥b B .若a ⊥α,b ⊂α,则a ⊥bC.若a,b与α所成的角相等,则a∥bD.若a∥α,b∥α,则a∥b解析:选B 对于A,若a∥α,b⊂α,则a∥b或a与b异面,故A错;对于B,利用线面垂直的性质,可知若a⊥α,b⊂α,则a⊥b,故B正确;对于C,若a,b与α所成的角相等,则a与b相交、平行或异面,故C错;对于D,由a∥α,b∥α,则a,b之间的位置关系可以是相交、平行或异面,故D错.5.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MN Q不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以M Q∥CD,所以AB∥M Q .又AB⊄平面MN Q,M Q⊂平面MN Q,所以AB∥平面MN Q.同理可证选项C、D中均有AB∥平面MN Q.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接O Q,则O Q∥AB.因为O Q与平面MN Q有交点,所以AB与平面MN Q有交点,即AB与平面MN Q不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MN Q.故选A.6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C 对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.7.如图所示,三棱柱ABCA1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:设BC 1∩B 1C =O ,连接OD .∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD ,∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形, ∴O 为BC 1的中点,∴D 为A 1C 1的中点,则A 1D ∶DC 1=1.答案:18.已知正方体ABCD A 1B 1C 1D 1,下列结论中,正确的是________(只填序号). ①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1; ③AD 1∥DC 1;④AD 1∥平面BDC 1.解析:连接AD 1,BC 1,AB 1,B 1D 1,C 1D ,BD ,因为AB 綊C 1D 1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确.答案:①②④9.在三棱锥P ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF=MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:810.(2019·南宁毕业班摸底)如图,△ABC 中,AC =BC =22AB ,四边形ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥底面ABC ; (2)求几何体ADEBC 的体积.解:(1)证明:如图,取BC 的中点M ,AB 的中点N ,连接GM ,FN ,MN .∵G ,F 分别是EC ,BD 的中点, ∴GM ∥BE ,且GM =12BE ,NF ∥DA ,且NF =12DA .又四边形ABED 为正方形,∴BE ∥AD ,BE =AD , ∴GM ∥NF 且GM =NF .∴四边形MNFG 为平行四边形.∴GF ∥MN ,又MN ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)连接CN ,∵AC =BC ,∴CN ⊥AB , 又平面ABED ⊥平面ABC ,CN ⊂平面ABC , ∴CN ⊥平面ABED .易知△ABC 是等腰直角三角形,∴CN =12AB =12,∵C ABED 是四棱锥,∴V C ABED =13S 四边形ABED ·CN =13×1×12=16.11.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,设DF 与GN 的交点为O , 则AE 必过DF 与GN 的交点O . 连接MO ,则MO 为△ABE 的中位线, 所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN . 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点, 所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .12.(2019·河南八市联考)如图,在矩形ABCD 中,AB =1,AD =2,PA ⊥平面ABCD ,E ,F 分别为AD ,PA 的中点,点Q 是BC上一个动点.(1)当Q 是BC 的中点时,求证:平面BEF ∥平面PD Q ;(2)当BD ⊥F Q 时,求B QQ C的值.解:(1)证明:∵E ,Q 分别是AD ,BC 的中点, ∴ED =B Q ,ED ∥B Q ,∴四边形BED Q 是平行四边形, ∴BE ∥D Q.又BE ⊄平面PD Q ,D Q ⊂平面PD Q , ∴BE ∥平面PD Q ,又F 是PA 的中点,∴EF ∥PD , ∵EF ⊄平面PD Q ,PD ⊂平面PD Q , ∴EF ∥平面PD Q ,∵BE ∩EF =E ,BE ⊂平面BEF ,EF ⊂平面BEF , ∴平面BEF ∥平面PD Q. (2)如图,连接A Q ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD . ∵BD ⊥F Q ,PA ∩F Q =F ,PA ⊂平面PA Q ,F Q ⊂平面PA Q , ∴BD ⊥平面PA Q ,∵A Q ⊂平面PA Q ,∴A Q ⊥BD ,在矩形ABCD 中,由A Q ⊥BD 得△A Q B 与△DBA 相似, ∴AB 2=AD ×B Q , 又AB =1,AD =2, ∴B Q =12,Q C =32,∴B Q Q C =13.。
线面、面面平行练习题(含答案)
-可编辑修改- DCA BB 1A 1C 11.下列条件中,能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33.直线,a b c ,及平面a b ,,使//a b 成立的条件是()A .//,a b a a ÌB .//,//a b a aC .//,//a c b cD .//,a b a ab =4.若直线m 不平行于平面a ,且m Ëa ,则下列结论成立的是()A .a 内的所有直线与m 异面B .a 内不存在与m 平行的直线C .a 内存在唯一的直线与m 平行D .a 内的直线与m 都相交8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是①②③④10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A1B1C1D1中,E,M,N,G分别是AA1,CD,CB,CC1的中点,求证:(1)MN//B1D1;(2)AC1//平面EB1D1 ;(3)平面EB1D1//平面BDG.THANKS致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
完整版)线线、线面、面面平行练习题(含答案)
完整版)线线、线面、面面平行练习题(含答案)一、选择题1.B2.C3.B4.B5.A6.A二、填空题7.直线MN与直线BD异面。
三、解答题10.因为D是AC的中点,所以BD平分角ABC,即∠ABD=∠CBD。
又因为AB=AC,所以△ABD≌△CBD,从而BD=BD,即BD//平面ABC。
又因为A1D1//ABC,所以BD//A1D1,即BD//平面A1BD。
因此,BD//平面A1BD,即B1C1//平面A1BD,即B1C1//平面ABD。
11.1) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN//CD,MN=CD/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以MN=CD/2=AC/√3=BD/2√3,即MN//B1D1.2) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以AE=BD/2=AC/√3,从而AE=EN,即AEEN是平行四边形,即AE//EN。
又因为XXX,所以AE//MN,即平面AEM//平面MNC。
又因为平面AEM与平面ABC的交线是直线AE,平面MNC与平面ABC的交线是直线MN,所以AE//MN//BD,即B1D1//平面AEM。
因此,AC1//平面AEM//B1D1,即AC1//平面EB1D1.3) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.又因为D1是BD的中点,所以D1C1=BC/2=AC/2√2.所以MN=CD/2=AC/√3=D1C1√2/√3,即MN//D1C1.又因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以EG=CC1/2=AC/2√2.又因为ABCD是平行六面体,所以AD//BC,从而△ABD≌△CBA1,即AD=BC,AD=2AC/√3.所以EG=CC1/2=AC/2√2=AD/2√2,即EG//AD。
04线面平行与面面平行判定与性质(经典题型+答案)
线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。
解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。
例4:已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B.例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( ) A .0 B .1 C .2 D .3 解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ).A. 0个B. 1个C. 0个或1个D. 1个或2个解:这两点可以是在平面同侧或两侧.选C 。
高二数学专题复习平行问题【内容提要】直线与平面平面与平面平行的定义及其判定定理和性质定理线线平行 线
高二数学专题复习:平行问题学号______________ 姓名_______________【内容提要】1.直线与平面、平面与平面平行的定义及其判定定理和性质定理线线平行 线面平行 面面平行2.在各类平行问题的论证中,应注意“线线平行”、“线面平行”、“面面平行”间 的转化及转化的条件,已知“线面平行”、“面面平行”必须通过作辅助面才能得到“线线平行”。
【基础训练】1.如果l ∥α,则l 平行于α内的 ( ) (A )全部直线 (B )过l 的平面与α的交线 (C )任一直线 (D )唯一确定地直线2.过直线l 外两点,作与l 平行的平面,这样的平面 ( )(A )能作出无数个 (B )只能作出一个 (C )不能作出 (D )上述都有可能 3.b 是平面α外的一条直线,下列条件中可得出b ∥α的是()A 、b 与α内一条直线不相交B 、b 与α内两条直线不相交C 、b 与α内无数条直线不相交D 、b 与α内所有直线不相交4.如果一条直线和一个平面平行,为了使夹在它们间的两条线段相等,其充要条件是()A 、两条线段平行B 、两条线段垂直于平面C 、两条线段与平面所成角相等D 、两条线段垂直于已知线段 5.满足下列哪个条件,可以确定直线a ∥平面β()A 、a 上有两点A 、B 到平面β的距离相等 B 、 a ∥b ,b ⊂βC 、b ⊥a ,b ⊥βD 、a ⊄β,a ∥b ,b ∥β6.在△ABC 中,AB=5,AC=7,∠A=60°,G 是△ABC 的重心,过G 的平面α与BC 平行,AB α=M ,AC α=N ,则MN=__________________。
7.下列命题中可以判断平面α∥平面β的是 (1)α⊥γ,β⊥γ(2)直线l 与平面α、β成等角(3)α、β分别过两平行直线 (4)a 、b 异面,α过a 平行于b ,β过b 平行于a (5)α内不共线的三点到β的距离相等8.平面α∥平面β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于S ,若AS=18,BS=9,CD=34,则CS=__________________.9.平面α∥平面β,A 、B ∈α,C ∈β,AA ′⊥β于A ′,BB ′⊥β于B ′,若 AC ⊥AB ,AC 与面β成60°角,AC=8cm ,B ′C=6cm ,则异面直线AC 与BB ′间的距离为________.10.l ∥α,m ⊂α,则l 与m 的位置关系是_______________________;11.l 1∥12,l 1∥α,则l 2与α的位置关系是_______________________;12.a ∥l 1,a ∥l 2,l 1⊂α,l 2⊂α,则a 与α的位置关系是__________________。
直线与平面平行的判定、平面与平面平行的判定
一、选择题1.能保证直线a与平面α平行的条件是a bA.错误!未找到引用源。
,错误!未找到引用源。
,∥a bB.错误!未找到引用源。
,∥cα,a∥b,a∥cC.错误!未找到引用源。
,∥D.错误!未找到引用源。
,A∈a,B∈a,C∈b,D∈b且AC=BD2.下列说法中正确的是A.若直线a平行于平面α内的无数条直线,则a∥αB.若直线a∥b,直线b⊂α,则a∥αC.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面平行D.若一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行3.两个平面平行的条件是A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内的无数条直线平行于另一个平面D.一个平面内的任意一条直线平行于另一个平面4.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为A.平行B.相交C.平行或相交D.可能重合5.设P是异面直线,a b外的一点,则过点P且与,a b都平行的平面A.有且只有一个B.恰有两个C.没有或只有一个D.有无数个6.如图,在正方体ABCD-A′B′C′D′中,E,F分别为平面ABCD和平面A′B′C′D′的中心,则正方体的六个面中与EF平行的平面有A.1个B.2个C.3个D.4个7.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四边形的六条棱中与平面EFGH平行的条数是A.0 B.1C.2 D.38.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是A.①③B.①④C.①③D.②④二、填空题9.在三棱台错误!未找到引用源。
中,错误!未找到引用源。
,点错误!未找到引用源。
、错误!未找到引用源。
分别是棱错误!未找到引用源。
、错误!未找到引用源。
的中点,则在三棱台的各棱所在的直线中,与平面错误!未找到引用源。
线面平行练习题
线面平行练习题一、选择题1. 已知直线a与平面α平行,直线b在平面α内,下列说法正确的是:A. 直线a与直线b平行B. 直线a与直线b异面C. 直线a与直线b相交D. 直线a与直线b可能平行,也可能异面2. 若直线m与平面α平行,直线n在平面α内,且直线m与直线n不平行,则直线m与直线n:A. 平行B. 异面C. 相交D. 无法确定3. 直线l在平面β内,且与平面α平行,若直线m与平面α平行,直线m不在平面β内,则直线l与直线m:A. 平行B. 异面C. 相交D. 垂直二、填空题4. 若直线a与平面α平行,直线b与平面α垂直,则直线a与直线b_________。
5. 已知直线m平行于平面α内的直线n,若直线m在平面β内,且平面α与平面β相交于直线l,则直线m与直线l_________。
6. 若直线a与平面α平行,直线b在平面α内,且直线a与直线b不平行,则直线a与直线b_________。
三、判断题7. 若直线a与平面α平行,直线b在平面α内,则直线a与直线b一定平行。
()8. 若直线m与平面α平行,直线n在平面α内,且直线m与直线n平行,则直线m与直线n一定在同一平面内。
()9. 若直线a与平面α平行,直线b与平面α垂直,则直线a与直线b垂直。
()四、简答题10. 已知直线l平行于平面α,平面α与平面β相交于直线m,求证:直线l与直线m平行或异面。
11. 若直线a与平面α平行,平面α与平面β相交于直线l,直线b在平面β内且与直线l不平行,求证:直线a与直线b平行或异面。
五、证明题12. 已知平面α内的直线a与平面β平行,直线b在平面β内,且直线a与直线b不平行。
证明:直线a与直线b异面。
13. 已知直线m与平面α平行,直线n在平面α内,且直线m与直线n不相交。
证明:直线m与直线n异面。
14. 若直线a与平面α平行,直线b在平面α内,且直线a与直线b 垂直,求证:直线a与平面α垂直。
六、解答题15. 在正方体ABCD-A₁B₁C₁D₁中,已知直线AB₁与直线CD₁平行,求证:直线AB₁与平面ABCD平行。
面面平行典型例题
平面与平面平行的判定及性质
1、下列条件中,能判断两个平面平行的是()
A.一个平面内的一条直线平行于另一个平面
B.一个平面内的两条直线平行于另一个平面
C.一个平面内有无数条直线平行于另一个平面
D.一个平面内任何一条直线都平行于另一个平面
2、已知两个不同的平面α、β和两条不重合的直线m、n,有下列四个命题:
①若m∥n,n⊂α,则m∥α;②若m∥α,n∥α,且m⊂β,n⊂β,
则α∥β;③m∥α,n⊂α,则m∥n;④若α∥β,m⊂α,则m∥β.
其中正确命题的个数是()
A.1 B.2 C.3 D.4
一、平面与平面平行的判定与性质的应用举例
例1 、如图所示,三棱柱ABC—A1B1C1,
D是BC上一点,且A1B∥平面AC1D,D1
是B1C1的中点,
求证:平面A1BD1∥平面AC1D.
练习3、如图所示,已知ABCD—A1B1C1D1是
棱长为3的正方体,点E在AA1上,点F在CC1
上,G在BB1上,且AE=FC1=B1G=1,H是
B1C1的中点.
(1)求证:E、B、F、D1四点共面;
(2)求证:平面A1GH∥平面BED1F.
例2、如图所示,平面α∥平面β, 点A∈α,C∈α,点B∈β,D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD. 求证:EF∥β;
练习:正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.
求证:PQ∥平面BCE.
二、小结。
平面与平面平行的判定与性质试题及答案
平面与平面平行的判定与性质一、选择题1.平面α∥平面β,点A 、C ∈α,点B 、D ∈β,则直线AC ∥直线B D 的充要条件是( )A .AB ∥CD B .AD ∥CBC .AB 与CD 相交 D .A 、B 、C 、D 四点共面2.“α内存在着不共线的三点到平面β的距离均相等”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件3.平面α∥平面β,直线a ⊂α,P ∈β,则过点P 的直线中( )A .不存在与α平行的直线B .不一定存在与α平行的直线C .有且只有—条直线与a 平行D .有无数条与a 平行的直线4.下列命题中为真命题的是( )A .平行于同一条直线的两个平面平行B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.5.已知平面α∥平面β,且α、β间的距离为d ,l ⊂α,l ′⊂β,则l 与l ′之间的距离的取值范围为( )A .(d ,∞)B .(d ,+∞)C .{d}D .(0,∞)6.已知直线a 、b 、c ⊂α,且a ∥β、b ∥β、c ∥β,则“a 、b 、c 到平面β的距离均相等”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件7.给出以下命题:①夹在两个平行平面间的线段,较长的与平面所成的角较小;②夹在两个平行平面间的线段,如果它们的长度相等,则它们必平行;③夹在两个平行平面间的线段,如果它的长度相等,则它们与平面所成的角也相等; ④在过定点P 的直线中,被两平行平面所截得的线段长为d 的直线有且只有一条,则两平行平面间的距离也为d其中假命题共有( )A .1个B .2个C .3个D .4个8.设α∥β,P ∈α,Q ∈β当P 、Q 分别在平面α、β内运动时,线段PQ 的中点X 也随着运动,则所有的动点X ( )A .不共面B .当且仅当P 、Q 分别在两条平行直线上移动时才共面C .当且仅当P 、Q 分别在两条互相垂直的异面直线上移动时才共面D .无论P 、Q 如何运动都共面二、填空题9.已知α∥β且α与β间的距离为d ,直线a 与α相交于点A 与β相交于B ,若d AB 332=,则直线a 与α所成的角=___________.10.过两平行平面α、β外的点P 两条直线AB 与CD ,它们分别交α于A 、C 两点,交β于B 、D 两点,若P A =6,AC =9,PB =8,则BD 的长为__________.11.已知点A 、B 到平面α的距离分别为d 与3d ,则A 、B 的中点到平面α的距离为________.12.已知平面α内存在着n 个点,它们任何三点不共线,若“这n 个点到平面β的距离均相等”是“α∥β”的充要条件,则n 的最小值为_________.三、解答题13.已知平面α∥平面β直线a ∥α,a β,求证:a ∥β.14.如图,平面α∥平面β,A 、C ∈α,B 、D ∈β,点E 、F 分别在线段A B、CD 上,且FD CF EB AE =,求证:EF ∥平面β.15.P 是△A BC 所在平面外一点,A ′,B ′,C ′分别是△P BC 、△PCA 、△P A B的重心,(1)求证:平面A ′B′C ′∥平面A BC ;(2)求S △A ′B′C ′∶S △A BC .16.如图已知平面α∥平面β,线段A B分别交α、β于M 、N ,线段AD 分别交α、β于C 、D ,线段BF 分别交α,β于F 、E ,若AM =m ,BN =n ,MN =P ,求△END 与△FMC 的面积之比.17.如图,已知:平面α∥平面β,A 、C ∈α,B 、D ∈β,AC 与BD 为异面直线,AC =6,BD =8,A B=CD =10,A B与CD 成60°的角,求AC 与BD 所成的角.参考答案一、选择题1.D 2.B 3.C 4.B 5.B 6.C 7.A 8.D二、填空题9.60° 10.12 11.d 或2d 12.5三、解答题13.证明:取平面α内一定点A ,则直线a 与点A 确定平面γ,设γ∩α=b ,γ∩β=c , 则由a ∥α得a ∥b ,由α∥β得b ∥c ,于是a ∥c .又∵a ⊄β,∴a ∥β.14.证明:(1)若直线AB 和CD 共面,∵α∥β,平面ABDC 与α、β分别交于AC 、BC 两直线,∴AC ∥BD .又∵EB AE =FD CF,∴EF ∥AC ∥BD ,∴EF ∥平面β.(2)若AB 与CD 异面,连接BC 并在BC 上取一点G ,使得EB AE =GB CG,则在△BAC 中,EG ∥AC ,AC ⊂平面α,∴EG ∥α.又∵α∥β,∴EG ∥β;同理可得:GF ∥BD ,而BD ⊂β,又∵GF ∥β.∵EG ∩GF =G ,∴平面EGF ∥β,又∵EF ⊂平面EGF ,∴EF ∥β.综合(1)(2)得EF ∥β.15.证明:(1)连接P A ′、PB ′、PC ′,分别交BC 、CA 、AB 于K 、G 、H ,连接GH 、KG 、HK .∵B ′、C ′均为相应三角形的重心,∴G 、H 分别为AC 、AB 的中点,且PG B P '=PH C P '=32,∴B ′C ′∥GH ,同理A ′B ′∥KG ,A ′B ′∩B ′C ′=B ′且GH ∩KG =G ,从而平面A ′B ′C ′∥平面ABC .(2)由(1)知△A ′B ′C ′∽△KGH , ∴KGH C B A S S ∆'''∆=2)(GH C B ''=94,又∵S △KGH =41S △ABC ,∴S △A ′B ′C ′=91S △ABC ,∴S △A ′B ′C ′∶S △ABC =1∶9.16.证明:∵α∥β,平面AND 分别交α,β于MC 、ND ,∴由面面平行的性质定理知,MC ∥ND ,同理MF ∥NE ;又由等角定理:“一个角的两边分别平行于另一角的两边且方向相同,则两角相等”知:∠END =∠FMC ,从而ND MC =AN AM ,MF NE =BM BN,∴ND =AM AN ·MC =m p m +·MC ,NE =BM BN·MF =p n n +·MF .∴S △END =21ND ·NE ·sin ∠END=21·m pm +·p n n +·MC ·MF ·sin ∠FMC=)+()+(p n m p m n ·S △FMC .∴FMC END S S ∆∆=)+()+(p n m p m n .即:△END 与△FMC 的面积之比为)+()+(p n m p m n .17.由α∥β作BE ∥=AC ,连结CE ,则ABEC 是平行四边形.∠DBE 是AC 与BD 所成的角.∠DCE 是AB 、CD 所成的角,故∠DCE =60°.由AB =CD =10,知CE =10,于是△CDE 为等边三角形, ∴DE =10.又∵BE =AC =6,BD =8,∴∠DBE =90°.∴AC 与BD 所成的角为90°.。
直线平面平行的判定及其性质练习题含答案
1直线、平面平行的判定及其性质练习题第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //..第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥C.a ,b 相交但不垂直D.a ,b 异面第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11A C 上的线段,求证:11E F //平面AC .第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.bamα βγP E ACB D F AB CD 1A 1D 1B 1C1F 1E ABCEND MP2第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .CDABMP1A1B1D 1CFEABCD1A 1D 1B1C A BCD 1D1A1C 1BABDC3第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ; (2)平面MNP 与平面ACD 的交线AC //.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ;(2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点 D.都平行或都交于同一点第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 .第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?A MB N CPED AE H CFBGDMPQNB4第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点. 求证:MN //平面PAD .第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ).A.4a B.2a C.32aD.周长与截面的位置有关第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. 如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.APDMNBCbamα βγAB CD1A1B 1C1Dαcbaβ5第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO B O =',CO C O ='. 求证:ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α内的一条直线平行 B.直线a 与平面α内两条直线不相交C.直线a 与平面α内的任一条直线都不相交 D.直线a 与平面α内的无数条直线平行直线、平面平行的判定及其性质答案第1题.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题.答案:A.第3题答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题. 答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD .1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第6题. 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PM AN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC ,OABCA 'B 'C 'ABCD 1A1D 1B1C 1F1EEF6∴MN //平面PBC .(1) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题.答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //. PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 答案:C.第11题. 答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩ ∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DBDB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 CDABMPO7MNP ACD AC 即平面与平面的交线//.第13题. 答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点., EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH . (2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 答案:D.第15题. 答案:A. 第16题. 答案:20.第17题.答案:m n ∶.第18题. 答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC 平面EFGH EF =,BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形EGFH 为平行四边形.(2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形3(1)2ax a x =⨯-⨯223()x x =-+22311()224a x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,238S =最大值, 即当E 为AB 23. 第19题. 答案:425∶第20题.答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点, NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第22题.答案:证明:m m m a a b a m b βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第23题.答案:B. 第27题.答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =,bamα βγABCD1A1B1C1D8所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //. 因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''. 第30题.答案:C.。
2023年高考数学一轮复习第七章立体几何与空间向量4空间直线平面的平行练习含解析
空间直线、平面的平行考试要求 1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( ×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)教材改编题1.下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是( )A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案 D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,E ,F 分别是BC ,PD 的中点,求证:(1)PB ∥平面ACF ;(2)EF ∥平面PAB .证明 (1)如图,连接BD 交AC 于O ,连接OF ,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,又∵F 是PD 的中点,∴OF ∥PB , 又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2 直线与平面平行的性质例2 如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM 上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.延伸探究在本例中,若将条件“E,F,G分别是AB,AC,A1B1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解如图,连接A1B交AB1于O,连接OD1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1. 又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即AD DC=1. 教师备选如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A 1C 1G ∩BC =H ,求证:H 为BC 的中点. 证明 (1)∵E ,F 分别为B 1C 1,A 1B 1的中点, ∴EF ∥A 1C 1,∵A 1C 1⊂平面A 1C 1G ,EF ⊄平面A 1C 1G , ∴EF ∥平面A 1C 1G ,又F ,G 分别为A 1B 1,AB 的中点, ∴A 1F =BG , 又A 1F ∥BG ,∴四边形A 1GBF 为平行四边形, 则BF ∥A 1G ,∵A 1G ⊂平面A 1C 1G ,BF ⊄平面A 1C 1G , ∴BF ∥平面A 1C 1G ,又EF ∩BF =F ,EF ,BF ⊂平面BEF , ∴平面A 1C 1G ∥平面BEF .(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B 1D 1∥BD ,所以B 1D 1∥l .题型三 平行关系的综合应用例4 如图,在正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23.(1)求证:PQ ∥平面A 1D 1DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明. (1)证明 连接CP 并延长,与DA 的延长线交于M 点,如图,连接MD 1,因为四边形ABCD 为正方形, 所以BC ∥AD ,故△PBC ∽△PDM , 所以CP PM =BP PD =23,又因为CQ QD 1=BP PD =23, 所以CQ QD 1=CP PM =23, 所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA , 故PQ ∥平面A 1D 1DA .(2)解 当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图,证明如下:因为AR AB =35,即BR RA =23, 故BR RA =BP PD. 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA ,又PQ ∥平面A 1D 1DA ,PQ ∩PR =P ,PQ ,PR ⊂平面PQR , 所以平面PQR ∥平面A 1D 1DA . 教师备选如图,四边形ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .思维升华 证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.(1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解 设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC=BC -CF BC =1-x4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝⎛⎭⎪⎫x +6-32x =12-x .又∵0<x <4,∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.(2022·呼和浩特模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析对于A,一条直线与两个平面都平行,两个平面不一定平行,故A不正确;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不正确;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不正确;对于D,如图,在直线b上取点B,过点B和直线a确定一个平面γ,交平面β于a′,因为a∥β,所以a∥a′,又a′⊄α,a⊂α,所以a′∥α,又因为b∥α,b∩a′=B,b⊂β,a′⊂β,所以β∥α.3.(2022·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则( )A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形答案 D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )A.2∶3B.2∶5C.4∶9D.4∶25答案 D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.(多选)(2022·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是( )答案AC解析对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图,取正方体所在棱的中点G,连接FG并延长,交AB延长线于H,则AB与平面DEF相交于点H,故B错误;对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;对于D,AB与DF所在平面的正方形对角线有交点B,DF与该对角线平行,∴直线AB与平面DEF相交,故D错误.6.(多选)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜程度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE ·AH 为定值 答案 AD解析 根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行),结合题中图形易知A 正确;由题图可知水面EFGH 的边EF 的长保持不变,但邻边的长却随倾斜程度而改变,可知B 错误;因为A 1C 1∥AC ,AC ⊂平面ABCD ,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故C 错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故D 正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案 l ⊄α解析 ①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 点M 在线段FH 上(或点M 与点H 重合) 解析 连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明 如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE 綉D 1G .∴四边形OEGD 1是平行四边形, ∴EG ∥D 1O .又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,由题意易证B 1D 1∥BD .又B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B , ∴平面BDF ∥平面B 1D 1H .10.如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)如图,连接EC , 因为AD ∥BC ,BC =12AD ,所以BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形, 所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP , 因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(多选)已知α,β是两个平面,m,n是两条直线.下列命题正确的是( )A.如果m∥n,n⊂α,那么m∥αB.如果m∥α,m⊂β,α∩β=n,那么m∥nC.如果α∥β,m⊂α,那么m∥βD.如果α⊥β,α∩β=n,m⊥n,那么m⊥β答案BC解析如果m∥n,n⊂α,那么m∥α或m⊂α,故A不正确;如果m∥α,m⊂β,α∩β=n,那么m∥n,这就是线面平行推得线线平行的性质定理,故B正确;如果α∥β,m⊂α,那么m∥β,这就是利用面面平行推线面平行的性质定理,故C正确;缺少m⊂α这个条件,故D不正确.12.(2022·福州检测)如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是( )A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案 B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.13.(多选)(2022·临沂模拟)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将△ABE 沿AE 翻折,使得二面角B -AE -D 为直二面角,得到图2所示的四棱锥B -AECD ,点F 为线段BD 上的动点(不含端点),则在四棱锥B -AECD 中,下列说法正确的有( )图1 图2A .B ,E ,C ,F 四点不共面 B .存在点F ,使得CF ∥平面BAE C .三棱锥B -ADC 的体积为定值D .存在点E 使得直线BE 与直线CD 垂直 答案 AB解析 对于A ,假设直线BE 与直线CF 在同一平面上,所以E 在平面BCF 上, 又因为E 在折前线段BC 上,BC ∩平面BCF =C ,所以E 与C 重合,与E 异于C 矛盾, 所以直线BE 与直线CF 必不在同一平面上,即B ,E ,C ,F 四点不共面,故A 正确; 对于B ,如图,当点F 为线段BD 的中点,EC =12AD 时,直线CF ∥平面BAE ,证明如下:取AB 的中点G ,连接GE ,GF , 则EC ∥FG 且EC =FG ,所以四边形ECFG 为平行四边形, 所以FC ∥EG ,又因为EG ⊂平面BAE , 则直线CF 与平面BAE 平行,故B 正确;对于C ,在三棱锥B -ADC 中,因为点E 的移动会导致点B 到平面ACD 的距离发生变化,所以三棱锥B -ADC 的体积不是定值,故C 不正确;对于D ,过D 作DH ⊥AE 于H ,因为平面BAE ⊥平面AECD ,平面BAE ∩平面AECD =AE ,所以DH ⊥平面BAE ,所以DH ⊥BE ,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,且DC ⊂平面AECD ,DH ∩DC =D ,所以BE ⊥平面AECD ,所以BE ⊥AE ,与△ABE 是以B 为直角的三角形矛盾,所以不存在点E 使得直线BE 与直线CD 垂直,故D 不正确.14.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =DD 1=1,AB =3,E ,F ,G 分别是AB ,BC ,C 1D 1的中点,点P 在平面ABCD 内,若直线D 1P ∥平面EFG ,则线段D 1P 长度的最小值是________.答案72解析 如图,连接D 1A ,AC ,D 1C .因为E ,F ,G 分别为AB ,BC ,C 1D 1的中点, 所以AC ∥EF ,又EF ⊄平面ACD 1,AC ⊂平面ACD 1, 则EF ∥平面ACD 1.同理可得EG ∥平面ACD 1,又EF ∩EG =E ,EF ,EG ⊂平面EFG ,所以平面ACD 1∥平面EFG . 因为直线D 1P ∥平面EFG , 所以点P 在直线AC 上.在△ACD 1中,易得AD 1=2,AC =2,CD 1=2, 所以1AD C S △=12×2×22-⎝⎛⎭⎪⎫222=72, 故当D 1P ⊥AC 时,线段D 1P 的长度最小,最小值为7212×2=72.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为( )A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案 B解析 取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN ,∴点P 的轨迹是线段EF ,∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22,∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O , A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.如图,正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为AB 1,A 1C 1上的点,A 1N =AM .(1)求证:MN ∥平面BB 1C 1C ;(2)求MN 的最小值.(1)证明 如图,作NE ∥A 1B 1交B 1C 1于点E ,作MF ∥AB 交BB 1于点F ,连接EF , 则NE ∥MF .∵NE ∥A 1B 1,∴NEA 1B 1=C 1NA 1C 1.又MF ∥AB ,∴MF AB =B 1MAB 1,∵A 1C 1=AB 1,A 1N =AM ,∴C 1N =B 1M .∴NE A 1B 1=MF AB,又AB =A 1B 1,∴NE =MF .∴四边形MNEF 是平行四边形,∴MN ∥EF , 又MN ⊄平面BB 1C 1C ,EF ⊂平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .(2)解 设B 1E =x ,∵NE ∥A 1B 1, ∴B 1E B 1C 1=A 1NA 1C 1.又∵MF ∥AB ,∴B 1F BB 1=B 1M AB 1,∵A 1N =AM ,A 1C 1=AB 1=2a ,B 1C 1=BB 1=a ,B 1E =x ,∴B 1E B 1C 1+B 1F BB 1=A 1N A 1C 1+B 1MAB 1,∴x a +B 1F a =1,∴B 1F =a -x ,从而MN =EF =B 1E 2+B 1F 2 =x 2+a -x2 =2⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫a 22, ∴当x =a 2时,MN 的最小值为22a .。
直线与平面、平面与平面平行的判定(附答案)
直线与平面、平面与平面平行的判定[学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.知识点一直线与平面平行的判定定理语言叙述符号表示图形表示平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行⎭⎪⎬⎪⎫a⊄αb⊂αa∥b⇒a∥α思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗答根据直线与平面平行的判定定理可知该结论错误.知识点二平面与平面平行的判定定理语言叙述符号表示图形表示一个平面内的两条相交直线与另一个平面平行,则这两个平面平行⎭⎪⎬⎪⎫a⊂α,b⊂αa∩b=Aa∥β,b∥β⇒α∥β思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗答不一定.这条直线与另一个平面平行或在另一个平面内.题型一直线与平面平行的判定定理的应用例1 如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)EH∥平面BCD;(2)BD∥平面EFGH.证明(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.跟踪训练1 在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC.证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两点,连接PQ.因为M,N分别是△ABD和△BCD的重心,所以BM∶MP=BN∶NQ=2∶1.所以MN∥PQ.又因为MN⊄平面ADC,PQ⊂平面ADC,所以MN∥平面ADC.题型二面面平行判定定理的应用例2 如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平行四边形,则ED綊B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.跟踪训练2 已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,点G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.求证:(1)E,B,F,D1四点共面;(2)平面A1GH∥平面BED1F.证明(1)∵AE=B1G=1,∴BG=A1E=2.又∵BG∥A1E,∴四边形A1EBG是平行四边形,∴A1G∥BE.连接FG.∵C1F=B1G,C1F∥B1G,∴四边形C1FGB1是平行四边形,∴FG=C1B1=D1A1,FG∥C1B1∥D1A1,∴四边形A1GFD1是平行四边形,∴A1G∥D1F,∴D1F∥EB.故E,B,F,D1四点共面.(2)∵H是B1C1的中点,∴B1H=32 .又∵B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知,A 1G ∥BE ,且HG ∩A 1G =G ,FB ∩BE =B , ∴平面A 1GH ∥平面BED 1F .题型三 线面平行、面面平行判定定理的综合应用例3 在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点.问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO 请说明理由.解 当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO .理由如下:连接PQ .∵Q 为CC 1的中点,P 为DD 1的中点, ∴PQ ∥DC ∥AB ,PQ =DC =AB ,∴四边形ABQP 是平行四边形,∴QB ∥PA .又∵O为DB的中点,∴D1B∥PO.又∵PO∩PA=P,D1B∩QB=B,∴平面D1BQ∥平面PAO.跟踪训练3 如图,三棱柱ABC-A1B1C1的底面为正三角形,侧棱A1A⊥底面ABC,E,F分别是棱CC1,BB1上的点,EC=是线段AC上的动点,当点M在何位置时,BM∥平面AEF请说明理由.解当M为AC中点时,BM∥平面AEF.理由如下:方法一如图1,取AE的中点O,连接OF,OM.∵O,M分别是AE,AC的中点,∴OM∥EC,OM=12 EC.又∵BF∥CE,EC=2FB,∴OM∥BF,OM=BF,∴四边形OMBF为平行四边形,∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF,∴BM∥平面AEF.方法二如图2,取EC的中点P,连接PM,PB.∵PM是△ACE的中位线,∴PM∥AE.∵EC=2FB=2PE,CC1∥BB1,∴PE=BF,PE∥BF,∴四边形BPEF是平行四边形,∴PB∥EF.又∵PM⊄平面AEF,PB⊄平面AEF,∴PM∥平面AEF,PB∥平面AEF.又∵PM∩PB=P,∴平面PBM∥平面AEF.又∵BM⊂面PBM,∴BM∥平面AEF.面面平行的判定例4 已知在正方体ABCD-A′B′C′D′中,M,N分别是A′D′,A′B′的中点,在该正方体中是否存在过顶点且与平面AMN平行的平面若存在,试作出该平面,并证明你的结论;若不存在,请说明理由.分析根据题意画出正方体,根据平面AMN的特点,试着在正方体中找出几条平行于该平面的直线,然后作出判断,并证明.解如图,与平面AMN平行的平面有以下三种情况:下面以图①为例进行证明.如图①,取B′C′的中点E,连接BD,BE,DE,ME,B′D′,可知四边形ABEM是平行四边形,所以BE∥AM.又因为BE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.因为MN是△A′B′D′的中位线,所以MN∥B′D′.因为四边形BDD′B′是平行四边形,所以BD∥B′D′.所以MN∥BD.又因为BD⊂平面BDE,MN⊄平面BDE,所以MN∥平面BDE.又因为AM⊂平面AMN,MN⊂平面AMN,且AM∩MN=M,所以由平面与平面平行的判定定理可得,平面AMN∥平面BDE.1.过直线l外两点,作与l平行的平面,则这样的平面( )A.不可能作出B.只能作出一个C.能作出无数个D.上述三种情况都存在2.经过平面α外两点,作与α平行的平面,则这样的平面可以作( )个或2个个或1个个个3.若线段AB,BC,CD不共面,M,N,P分别为线段AB,BC,CD的中点,则直线BD与平面MNP的位置关系是( )A.平行B.直线在平面内C.相交D.以上均有可能4.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是( )A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的位置关系是________.一、选择题1.下列说法正确的是( )①若一个平面内有两条直线都与另一个平面平行,则这两个平面平行;②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行;③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线都与另一个平面平行,则这两个平面平行.A.①③B.②④C.②③④D.③④2.平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行B.直线a∥α,a∥β,且直线a不在α与β内C.直线a⊂α,直线b⊂β,且b∥α,a∥βD.α内的任何直线都与β平行3.六棱柱的表面中,互相平行的平面最多有( )对对对对4.如果直线a平行于平面α,那么下列命题正确的是( )A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )∥平面EFG,且四边形EFGH是平行四边形∥平面BCD,且四边形EFGH是梯形∥平面ABD,且四边形EFGH是平行四边形∥平面ADC,且四边形EFGH是梯形6.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为( )A.平行B.相交C.平行或相交D.可能重合7.已知直线l,m,平面α,β,下列命题正确的是( )∥β,l⊂α⇒α∥β∥β,m∥β,l⊂α,m ⊂α⇒α∥β∥m,l⊂α,m⊂β⇒α∥β∥β,m∥β,l⊂α,m⊂α,l∩m=M⇒α∥β二、填空题8.三棱锥SABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.9.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.10.右图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面五个结论:①平面EFGH∥平面ABCD;②PA∥平面BDG;③EF∥平面PBC;④FH∥平面BDG;⑤EF∥平面BDG;其中正确结论的序号是________.三、解答题11.如图,在已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.12.如图,在正四棱柱ABCD-A1B1C1D1中,M是棱AB的中点,点N在侧面AA1D1D上运动,点N满足什么条件时,MN∥平面BB1D1D当堂检测答案1.答案D解析设直线外两点为A、B,若直线AB∥l,则过A、B可作无数个平面与l平行;若直线AB与l异面,则只能作一个平面与l平行;若直线AB与l相交,则过A、B没有平面与l平行.2.答案B解析①当经过两点的直线与平面α平行时,可作出一个平面β使β∥α.②当经过两点的直线与平面α相交时,由于作出的平面又至少有一个公共点,故经过两点的平面都与平面α相交,不能作出与平面α平行的平面.故满足条件的平面有0个或1个.3.答案A解析连接NP,因为N、P分别是BC、CD的中点,M是AB的中点,AB、BC、CD不共面,所以直线BD不在平面MNP上.∴直线BD与平面MNP平行.4.答案A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1,又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,∴平面E1FG1∥平面EGH1.5.答案CD∥α解析因为AB∥CD,AB⊂平面α,CD⊄平面α,由线面平行的判定定理可得CD∥α.课时精练答案一、选择题1.答案D解析如图,长方体ABCD-A1B1C1D1中,在平面ABCD内,在AB上任取一点E,过点E作EF∥AD,交CD于点F,则由线面平行的判定定理,知EF,BC都平行于平面ADD1A1,用同样的方法可以在平面ABCD内作出无数条直线都与平面ADD1A1平行,但是平面ABCD与平面ADD1A1不平行,因此①②都错;③正确,事实上,因为一个平面内任意一条直线都平行于另一个平面,所以这两个平面必无公共点(要注意“任意一条直线”与“无数条直线”的区别);④是平面与平面平行的判定定理,正确.2.答案D解析 对于A 项,当α与β相交时,α内也有无数条直线都与交线平行,故A 错误;对于B 项,当a 平行于α与β的交线时,也能满足,但此时α与β相交,故B 错误;对于C 项,当a 和b 都与α与β的交线平行时,也能满足,但此时α与β相交,故C 错误;对于D 项,α内的任何直线都与β平行,故在一个平面内存在两条相交直线平行于另一平面,故D 正确. 3.答案 C解析 侧面中有3对,对面相互平行,上下两底面也相互平行. 4.答案 B解析 如图,直线B 1C 1∥平面ABCD ,B 1C 1∥BC ,B 1C 1∥AD ,B 1C 1∥EF (E ,F 为中点)等,平面ABCD 内平行于BC 的所有直线均与B 1C 1平行.但AB与B 1C 1不平行.5.答案 B解析 易证EF ∥平面BCD .由AE ∶EB =AF ∶FD ,知EF ∥BD ,且EF =15BD .又因为H ,G 分别为BC ,CD 的中点,所以HG∥BD,且HG=12BD.综上可知,EF∥HG,EF≠HG,所以四边形EFGH是梯形,且EF∥平面BCD.6.答案C解析若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.7.答案D解析如图所示,在长方体ABCDA1B1C1D1中,AB∥CD,则AB∥平面DC1,AB⊂平面AC,但是平面AC与平面DC1不平行,所以A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以B错误;可证AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,又平面AC与平面BC1不平行,所以C错误;很明显D是面面平行的判定定理,所以D正确.二、填空题8.答案平行解析如图,延长AG交BC于F,连接SF,则由G为△ABC的重心知AG∶GF=2,又AE∶ES=2,∴EG∥SF,又SF⊂平面SBC,EG⊄平面SBC,∴EG∥平面SBC.9.答案①②③④解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.10.答案①②③④解析把图形还原为一个四棱锥,然后根据线面、面面平行的判定定理判断即可.三、解答题11.证明因为PM∶MA=BN∶ND=PQ∶QD,所以MQ∥AD,NQ∥BP.因为BP⊂平面PBC,NQ⊄平面PBC,所以NQ∥平面PBC.又因为底面ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.因为BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又因为MQ∩NQ=Q,所以根据平面与平面平行的判定定理,得平面MNQ∥平面PBC.12.解如图,在正四棱柱ABCD-A1B1C1D1中,分别取棱A1B1,A1D1,AD的中点E,F,G,连接ME,EF,FG,GM.因为M是AB的中点,所以ME∥AA1∥FG,且ME=AA1=FG.所以四边形MEFG是平行四边形.因为ME∥BB1,BB1⊂平面BB1D1D,ME⊄平面BB1D1D,所以ME∥平面BB1D1D.在△A1B1D1中,因为EF∥B1D1,B1D1⊂平面BB1D1D,EF⊄平面BB1D1D,所以EF∥平面BB1D1D.又因为ME∩EF=E,且ME⊂平面MEFG,EF⊂平面MEFG,所以平面MEFG∥平面BB1D1D.在FG上任取一点N,连接MN,所以MN⊂平面MEFG.所以MN与平面BB1D1D无公共点.所以MN∥平面BB1D1D.总之,当点N在平面AA1D1D内的直线FG上(任意位置)时,都有MN∥BB1D1D,即当点N在矩形AA1D1D中过A1D1与AD的中点的直线上运动时,都有MN∥平面BB1D1D.。
(完整版)直线与平面平行的判定和性质经典练习及详细答案
直线、平面平行的判定及其性质1. 下列命题中,正确命题的是 ④ 。
①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点。
2. 下列条件中,不能判断两个平面平行的是 (填序号)。
①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 答案 ①②③3. 对于平面α和共面的直线m 、n,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b,平面α,则以下三个命题: ①若a ∥b,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b 。
其中真命题的个数是 . 答案 05. 直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件。
A.充分而不必要 B.必要而不充分 C 。
充要 D 。
不充分也不必要6. 能保证直线a 与平面α平行的条件是 A 。
b a b a //,,αα⊂⊄ B 。
b a b //,α⊂ C.c a b a c b //////,,,αα⊂D 。
b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =7. 如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A 。
线线、线面、面面平行练习题(含答案)
i、选择题1下列条件中,能判断两个平面平行的是 () A •一个平面内的一条直线平行于另一个平面 B .一个平面内的两条直线平行于另一个平面 C •一个平面内有无数条直线平行于另一个平面 D •一个平面内任何一条直线都平行于另一个平面2. E , F , G 分别是四面体 ABCD 勺棱BC CD DA 的中点,则此四面体中与过 E , F ,G 的截面平行的棱的条数是9. 正方体ABCD-A i B i C i D i 中,E 为DD 1中点,则BD i 和平面ACE 位置关系是三、解答题iO.如图,正三棱柱 ABC-AB i C i 的底面边长是2,侧棱长是,3, D 是AC 的中点•求过平面外一点有且只有一条直线和这个平面平行; ③过直线外一点有且只有一个平 面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b异面,则经过b 存在唯 个平面与[平行ii •如图,在平行六面体 ABCD-A i B i C i D i 中,E , M , N , G 分别是AA i , CD , CB , CC i 的中点, 求证:(i ) MN//B i D i ; (2) AC i //平面 EB i D i ; (3)平面 EB i D i //平面 BDG.A . 0B . 1 3. 直线a , b,c 及平面:, A . a// :・,b 二二 B . 4. 若直线m 不平行于平面C . 2D [,使a//b 成立的条件是( a// : ,b// : :•,且 m 二:•, .3 ) D . a 〃 :•,:丁| : =b ) 证:B i C// 平面 A i BD .C . a// c,b //c 则下列结论成立的是( B .:-内不存在与m 平行的直线D .:-内的直线与m 都相交A .:-内的所有直线与m 异面C .:-内存在唯一的直线与 m 平行5.下列命题中,假命题的个数是(①一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 直线、平面平行的判定及其性质 测试题6.已知空间四边形 ABC [中, M,N 分别是AB,CD 的中点,则下列判断正确的是 ()iiA• MN AC BD B • MN 弓 AC BDC• MN =i AC BD二、填空题7 •在四面体ABCD 中,四面体的四个面中与i MN AC BDM , MN &如下图所示,四个正方体中, 分别为其所在棱的中点,能得到N 分别是面 △ ACD , △ BCD 的重心,则 平行的是 ________ .A ,B 为正方体的两个顶点, MNPAB//面MNP 勺图形的序号的是B2C . :- // —a 二:sb 二,,则 a//b D4. 一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关 系是()A.异面B.相交C.平行D.不能确定5•下列四个命题中,正确的是()①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③ 如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如 果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③D .③④6. a , b 是两条异面直线,A 是不在a , b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于 a , bB .过A 至少有一个平面平行于a , bC. 过A 有无数个平面平行于 a , bD. 过A 且平行a , b 的平面可能不存在、填空题7. a , b ,c 为三条不重合的直线, a, 3, 丫为三个不重合的平面,直线均不在平面内,给出六个命题:且如=缪,求证:直线MN //平面PBC.MB NP参考答案A一、 选择题 1. D【提示】当■- - /:' -1时,〉内有无数多条直线与交线 I 平行,同时这些直线也与平面1平行.故A , B, C 均是错误的 2. C、选择题1. _:匚,B 是两个不重合的平面,a , b 是两条不同直线,在下列条件下,可判定 一:匚// 3 的是()A . -:: , 3都平行于直线a , bB .:-内有三个不共线点到3的距离相等C . a , b 是G 内两条直线,且 a //3, b // 3D . a , b 是两条异面直线且 a//_::, b// 二,a // 3, b / 3 2.两条直线a , b 满足a // b , b 二〕,则a 与平面:-的关系是( )3.设a,b 表示直线,:-, 表示平面,P 是空间一点,下面命题中正确的是(A . a 二:,贝V a/rBa// : , b 二:^ ,则 a//b① a // C b // c■- // c④一a // c 厂、a //T—a // b;② b //— -// —几⑤〃其中正确的命题是// c// b;③「c⑥a //_______ •(将正确的序号都填上)& 设平面 ot // 3, A , C€a , B , D €3,直线 AB 与 CD 交于 S,若 AS=18, BS=9 , CD=34 ,贝y CS= ____________ . 9.如图,正四棱柱 ABCD-A 1B 1C 1D 1中,E , F , G , H 分 别是棱CC 1, C 1D 1 , DD 1 , DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则 M 满足 时,有 MN // 平面 B 1BD D 1. 三、解答题P-ABCD PA AB = a在棱PC 上.问点E 在何处时,PA//平面EBD ,并加以证明 P a, P^ l :',a/r-// '■,则 a11•如下图,设P 为长方形ABCD 所在平面外一点,M , N 分别为AB , PD 上的点,ACC【提示】棱AC , BD与平面EFG平行,共2条.3. C【提示】a//二b二:s则a//b或a,b异面;所以A错误;a〃〉,b〃>,则a//b或a,b异面或a,b相交,所以B错误;a// :•,〉门■-二b,则a//b或a,b异面,所以D错误;a//c,b//c,贝U a//b,这是公理4,所以C正确.4. B【提示】若直线m不平行于平面[,且m二〉,则直线m于平面:-相交,〉内不存在与m平行的直线.5. B【提示】②③④错误•②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行•③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边二、填空题7. 平面ABC,平面ABD【提示】连接AM并延长,交CD于E,连结BN并延长交CD于F,由重心性质可知,E、F重合为一点,且该点为CD的中点E,由型=型=丄得M N // AB.因此,MA NB 2MN //平面ABC且MN //平面ABD.8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP, 对于②④,过AB找一个平面与平面MNP相交,AB与交线显然不平行,故②④不能推证AB//面MNP.9. 平行【提示】连接BD交AC于0,连0E,「. OE // B D1, OEC平面ACE , A B D1//平面ACE.三、解答题10. 证明:设AB1与A1B相交于点P,连接PD,则P为AB1中点,D 为AC 中点,.PD//B1C.又;PD 二平面A1B D, B1C//平面A1B D11. 证明:(1);M、N分别是CD、CB的中点,.MN//BD又;BB1//DD1,四边形BB1D1D是平行四边形.所以BD//B 1D1 又MN//BD,从而MN//B 1D1(2)(法 1 )连A1C1, A1C1 交B1D1 与O 点■■四边形A1B1C1D1为平行四边形,则O点是A1C1的中点E是AA1的中点,.EO是厶AA1C1的中位线,EO//AC1.AC1 二面EB1D1 , EO 面EB1D1,所以AC1//面EB1D1(法2)作BB1中点为H点,连接AH、C1H , E、H点为AA1、BB 1中点,所以EH//C1D1,则四边形EHC1D1是平行四边形,所以ED1//HC1又因为EA // B1H,则四边形EAHB 1是平行四边形,所以EB〃/AH丫AHC HC1=H,几面AHC 1〃面EB1D1.而AC 1匸面AHC 1,所以AC 1//面EB1D1 (3)因为EA// B1H,则四边形EAHB 1是平行四边形,所以EB//AH因为AD// HG,则四边形ADGH是平行四边形,所以DG//AH,所以EB1//DG又;BB1//DD1,四边形BB1D1D是平行四边形. 所以BD//B1D1.3匸 Bb DG=G 二面 EBD// 面 BDG如图(2),由 ot // 3知 AC // BD , (1)⑵4一、 选择题 1. D 【提示】A 错,若a // b ,则不能断定o ( // 3; B 错,若A , B , C 三点不在B 的同一侧,则不能断定 ? / 3 C 错,若a //b ,则不能断定:• //3; D 正确. 2. C 【提示】若直线a , b 满足a // b , b 二::,则a //二或a 7二3. D 【提示】根据面面平行的性质定理可推证之4. C 【提示】设a 门3=1, a// a , a // 3过直线a 作与a 3都相交的平面 Y 记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年05月14日xx 学校高中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列命题中正确的是( )A.若直线l 平行于平面α内的无数条直线,则//l αB.若直线a 在平面α外,则//a αC.若直线//,a b b α⊂,则//a αD.若直线//,a b b α⊂,则a 平行于平面α内的无数条直线2.已知 m 、n 是两条不重合的直线, α、β是两个不重合的平面,有下列命题:①若//m α,则 m 平行于平面α内任意一条直线;②若//,,m n αβαβ⊂⊂,则//m n ;③若//,//,//m n m n αβ,则//αβ;④若//,m αβα⊂,则//m β.其中真命题的个数是( )A.0B.1C.2D.33.已知,m n 表示两条直线, ,αβ表示两个平面,则下列命题正确的是( )A.若//,//,//m m n αβα,则//n βB.若//,//,//m n αβαβ则//m nC.若//,,m n αβαβ⊂⊂,则//m nD.若//,//,m n m αβ交,αβ于,?A B 两点, n 交,αβ于,?C D 两点,则四边形ABDC 是平行四边形4.空间中,下列命题正确的是( )A.若//,//a b a α,则//b αB.若//,//,,a b a b ααββ⊂⊂,则//βαC.若//,//b αβα,则//b βD.若//,a αβα⊂,则//a β5.有下列结论:①若平面//α平面β,平面//β平面γ,则平面//α平面γ;②过平面外一条直线有且只有一个平面与已知平面平行;③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;④如果一条直线与两个平行平面中的一个相交,那么它与另一个平面必相交.其中正确的是( )A.①②③B.②③④C.①③④D.①②③④二、解答题6.如图所示,在三棱锥P ABQ -中, ,,,D C E F 分别是,,,AQ BQ AP BP 的中点, PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .求证: //AB GH .7.如图,在正方体1111ABCD A B C D -中,点1P BB ∈ (P 不与B 、1B 重合).11,PA A B M PC BC N ⋂=⋂=.求证: //MN 平面ABCD .8.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形, M 为PC 的中点,在DM 上任取一点G ,过点G 、A 、P 作平面交平面DMB 于GH .证明: //PA GH9.如图,四边形ABCD 与ADEF 均为平行四边形, ,,M N G 分别是,,AB AD EF 的中点.1.求证: //BE 平面DMF ;2.求证:平面//BDE 平面MNG .10.如图所示,已知直三棱柱ABC A B C '-'',点M 、N 分别为'A B 和B C ''的中点.证明: MN //平面A ACC ''.11.如图所示,在空间四边形ABCD 中, E 、F 、G 、H 分别是各边上的点,已知//BD 平面EFGH ,且//AC 平面EFGH ,求证:四边形EFGH 为平行四边形.12.如图,在正方体1111ABCD A B C D -中, O 为底面ABCD 的中心, P 是1DD 的中点,设Q 是1CC 上的点,问:当点 Q 在什么位置时,平面1//D BQ 平面PAO ?13.如图,已知,F H 分别是正方体1112ABCD A B C D =的棱11,CC AA 的中点.求证:平面//BDF 平面11B D H .14.如图,在棱长为a 的正方体1111ABCD A B C D -中,,,,E F P Q 分别是111,,,BC C D AD BD 的中点1.求证: PQ P 平面11DCC D2.求P Q 、的长BB D D 3.求证:EF P平面11参考答案一、选择题1.答案:D解析:A 中直线l 可以在平面α内.B 中直线a 可以与平面α相交,C 中直线a 可以在平面α内.D 正确.2.答案:B解析:3.答案:D解析:4.答案:D解析:A 中 b 有可能在平面α内,故A 错误;B 中缺少a 与 b 相交的条件,故B 错误;C 中 b 有可能在平面β内,故C 错误;D 正确.5.答案:C解析:二、解答题6.答案:证明: ,,,D C E F 分别是,,,AQ BQ AP BP 的中点,所以//,//EF AB DC AB .所以//EF DC .又EF ⊄平面,PCD DC ⊂平面PCD ,所以//EF 平面PCD .又EF ⊂平面EFQ ,平面EFQ ⋂平面PCD GH =,所以//EF GH .又//EF AB ,所以//AB GH .解析:7.答案:如图,连接AC 、11A C , 在长方体1111ABCD A B C D -中,11//AA CC ,且11AA CC =,∴四边形11ACC A 是平行四边形.∴11//AC A C .∵AC ⊄平面11A BC ,11AC ⊂平面11A BC , ∴//AC 平面11A BC .∵AC ⊂平面PAC ,平面11A BC ⋂平面PAC MN =,∴//AC MN .∵MN ⊄平面ABCD ,AC ⊂平面ABCD ,∴//MN 平面ABCD .解析:8.答案:连接AC 交BD 于点 O ,连接OM ,则 O 为AC 的中点.在△PAC 中,∵,M O 分别为,PC AC 的中点,∴//OM PA .又OM ⊂平面,MBD PA ⊄平面MBD∴//PA 平面MBD又平面PAHG ⋂平面MBD GH =,PA ⊂平面PAHG∴//PA GH解析:9.答案:1.证明:连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为ABE ∆的中位线,所以//,BE MO又BE ⊄平面DMF ,MO ⊂平面DMF ,所以//BE 平面DMF .2.证明:因为,N G 分别为平行四边形ADEF 的边,AD EF 的中点所以//,DE GN又DE ⊄平面MNG ,GN ⊂平面MNG ,所以//DE 平面MNG .又M 为AB 的中点所以MN 为ABD ∆的中位线,所以//BD MN .又MN ⊂平面MNG ,BD ⊄平面MNG ,所以//BD 平面MNG .又DE 与BD 为平面BDE 内的两条相交直线,所以平面//BDE 平面MNG .解析:10.答案:连接AB '、'AC ,则AB '与'A B 交于点M ,M 为AB '中点.又因为N 为B C ''的中点,所以//'MN AC .又MN ⊄平面A ACC '',AC '⊂平面A ACC '',所以//MN 平面A ACC ''.解析:11.答案:∵//BD 平面EFGH ,BD ⊂平面ABD ,BD ⊂平面CBD ,平面ABD ⋂平面EFGH EH =,平面CBD ⋂平面EFGH FG =,∴////BD FG EH同理,可得//EF HG .∴四边形EFGH 为平行四边形.解析:12.答案:当 Q 为1CC 的中点时,平面1//D BQ 平面PAO .理由:连接P Q 、.∵Q 1CC 的中点时, P 为1DD 的中点, ∴P Q 、CD . 又CD AB ,∴P Q 、AB ,∴四边形PABQ 为平行四边形,∴//QB PA ,∴//QB 平面PAO∵,?P Q 分别是1,DD DB 的中点,∴1//D B PO∴1//D B 平面PAO .又1D B QB B ⋂=∴平面1//D BQ 平面PAO .解析:13.答案:证明:取1DD 的中点E ,连接AE 、EF .因为E 、F 分别为1DD 、1CC 的中点,∴E F CD .∴四边形EFBA 为平行四边形.∴//AE BF .∵E 、H 分别为1D D 、1A A 的中点,∴1 D E HA ,∴四边形1HAED 为平行四边形,∴1//HD AE ,∴1//HD BF .∵1HD ⊄平面BDF ,BF ⊂平面BDF ,∴1//HD 平面BDF又∵1111B D HD D ⋂=∴平面BDF //平面11B D H .解析:14.答案:1.证明:法一:如图,连接1,AC CD .因为,?P Q 分别是1,AD AC 的中点,所以1PQ CD P .又PQ ⊄平面111,DCC D CD ⊂平面11,DCC D 所以PQ P 平面11DCC D .法二:取AD 的中点G ,连接,PG GQ ,则有1,,PG DD GQ DC P P 且PG GQ G ⋂=,所以平面PGQ P 平面11DCC D .又PQ ⊂平面PGQ ,所以PQ P 平面11DCC D .2.由第一问易知1122PQ D C == 3.证明:法一:取11B D 的中点1O ,连接11,FO BO ,则有11112FO B C =P . 又1112BE B C =P ,所以1BE FO =P .所以四边形1BEFO 为平行四边形,所以1EF BO P , 又EF ⊄平面111,BB D D BO ⊂平面11BB D D ,所以EF P 平面11BB D D .法二:取11B C 的中点1E ,连接11,EE FE ,则有11111,,FE B D EE BB P P 且111FE EE E =⋂,所以平面1EE F P 平面11BB D D又EF ⊂平面1EE F ,所以EF P 平面11BB D D .解析:欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。