中考数学锐角三角函数综合题含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学锐角三角函数综合题含详细答案
一、锐角三角函数
1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.
【答案】553
【解析】
【分析】
如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.
【详解】
解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.
∵AM⊥CD,
∴∠QMP=∠MPO=∠OQM=90°,
∴四边形OQMP是矩形,
∴QM=OP,
∵OC=OD=10,∠COD=60°,
∴△COD是等边三角形,
∵OP⊥CD,
∠COD=30°,
∴∠COP=1
2
∴QM=OP=OC•cos30°=3
∵∠AOC=∠QOP=90°,
∴∠AOQ=∠COP=30°,
∴AQ=1
OA=5(分米),
2
∴AM=AQ+MQ=5+3
∵OB∥CD,
∴∠BOD=∠ODC=60°
在Rt △OFK 中,KO =OF•cos60°=2(分米),FK =OF•sin60°=23(分米), 在Rt △PKE 中,EK =22EF FK -=26(分米), ∴BE =10−2−26=(8−26)(分米),
在Rt △OFJ 中,OJ =OF•cos60°=2(分米),FJ =23(分米),
在Rt △FJE′中,E′J =2263-(2)
=26, ∴B′E′=10−(26−2)=12−26, ∴B′E′−BE =4.
故答案为:5+53,4.
【点睛】
本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
2.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10
cos 10
B =. (1)求AB 的长度;
(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.
(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.
【答案】(1) 10AB ;(2) 10AD AE ⋅=;(3)证明见解析.
【解析】
【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;
(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的
性质可得AD•AE=AF•AG,连接BG,求得AF=3,FG=1
3
,继而即可求得AD•AE的值;
(3)连接CD,延长BD至点N,使DN=CD,连接AN,通过证明△ADC≌△ADN,可得AC=AN,继而可得AB=AN,再根据AH⊥BN,即可证得BH=HD+CD.
【详解】(1)过A作AF⊥BC,垂足为F,交⊙O于G,
∵AB=AC,AF⊥BC,∴BF=CF=1
2
BC=1,
在RtΔAFB中,BF=1,∴AB=
1
10 cos10
10
BF
B
==
;
(2)连接DG,
∵AF⊥BC,BF=CF,∴AG为⊙O的直径,∴∠ADG=∠AFE=90°,
又∵∠DAG=∠FAE,∴△DAG∽△FAE,
∴AD:AF=AG:AE,
∴AD•AE=AF•AG,
连接BG,则∠ABG=90°,∵BF⊥AG,∴BF2=AF•FG,
∵AF=22
AB BF
-=3,
∴FG=1
3
,
∴AD•AE=AF•AG=AF•(AF+FG)=3×10
3
=10;
(3)连接CD,延长BD至点N,使DN=CD,连接AN,
∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,
∴∠ADC=∠ADN,
∵AD=AD,CD=ND,
∴△ADC≌△ADN,
∴AC=AN,
∵AB=AC,∴AB=AN,
∵AH⊥BN,
∴BH=HN=HD+CD.
【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.
3.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
【答案】(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH.理由如下:
∵四边形ABCD是正方形∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°