七年级下册数学几何专题(一)
七年级下册数学几何专项训练题
1、下列图形中,是轴对称图形但不是中心对称图形的是()。
A、平行四边形B、等腰三角形C、正方形D、圆(答案:B。
解析:等腰三角形有一条对称轴,即高,但不是中心对称图形,因为不能找到一个点使得图形关于该点中心对称。
平行四边形、正方形和圆都是中心对称图形。
)2、两条直线被第三条直线所截,如果同位角相等,那么这两条直线()。
A、一定平行B、一定不平行C、可能平行也可能不平行D、无法确定是否平行(答案:A。
解析:根据同位角相等定理,如果两条直线被第三条直线所截,且同位角相等,那么这两条直线一定平行。
)3、下列说法中,正确的是()。
A、两条直线被第三条直线所截,内错角一定相等B、直线外一点到这条直线的垂线段,叫做点到直线的距离C、过一点有且只有一条直线与已知直线平行D、在同一平面内,不相交的两条直线叫做平行线(答案:D。
解析:A选项,两条直线被第三条直线所截,内错角不一定相等,除非两条直线平行;B选项,直线外一点到这条直线的垂线段的长度,才叫做点到直线的距离;C 选项,过直线外一点有且只有一条直线与已知直线平行,若点在直线上则无法作出与已知直线平行的直线;D选项,正确。
)4、若一个角的补角是120°,则这个角的余角是()。
A、30°B、60°C、90°D、120°(答案:B。
解析:一个角的补角是180°减去这个角,已知补角是120°,所以这个角是180°-120°=60°,它的余角是90°-60°=30°。
)5、下列图形中,既是轴对称图形又是中心对称图形的是()。
A、等边三角形B、等腰梯形C、菱形D、平行四边形(答案:C。
解析:菱形有两条对角线作为对称轴,且关于其中心点中心对称。
等边三角形只是轴对称图形,等腰梯形也只是轴对称图形,平行四边形只是中心对称图形。
)6、两条平行线被第三条直线所截,同旁内角的角平分线()。
人教版七年级数学4.1几何图形1说课稿
新课导入是激发学生学习兴趣、吸引注意力的关键环节。我将采用以下方式导入新课:
1.生活实例引入:通过展示生活中常见的几何图形,如窗户的形状、地砖的排列等,让学生直观感受到几何图形在生活中的广泛应用,引发他们对几何图形的探究欲望。
2.提出问题:向学生提出引导性问题,如“你们在生活中还见到过哪些几何图形?”“这些图形有什么特点?”等,激发学生的思考,为进入新课学习做好铺垫。
人教版七年级数学4.1几何图形1说课稿
一、教材分析
(一)内容概述
本节课是人教版七年级数学下册第四章第一节“几何图形1”,在整个课程体系中,本章是学生在学习了一元一次方程、不等式及它们的应用等知识之后,对几何知识的初步接触。这部分内容为后续的几何学习奠定基础,起着承上启下的作用。本节课的主要知识点包括:认识基本的几何图形(如点、线、射线、线段、角等),了解它们的基本性质和分类,以及平面图形的识别。
(四)总结反馈
在总结反馈阶段,我将引导学生进行自我评价,并提供有效的反馈和建议:
1.学生自评:让学生回顾本节课所学内容,总结自己在几何图形认识、分类和应用方面的收获和不足。
2.同伴互评:组织学生相互评价,从不同角度给予意见和建议,促进学生之间的相互学习和提高。
3.教师评价:针对学生的表现,给予肯定和鼓励,同时指出存在的问题,为学生提供改进的方向。
2.课堂互动可能不够充分,影响学生的学习积极性。
3.时间分配可能不合理,导致教学计划无法顺利完成。
为应对这些问题,我将:
1.通过丰富的教学资源和手段,如教具、多媒体等,帮助学生提高空间想象力。
2.鼓励学生积极参与,设置多样的互动环节,增强课堂活力。
3.灵活调整教学节奏,确保教学内容能够得到充分讲解和巩固。
七年级数学(下册)几何典型题
七年级数学(下册)几何典型题1. 如图,AC 、BD 相交于点O ,∠A =ABC ,∠DBC =∠D ,BD 平分∠ABC ,点E 在BC 的延长线上。
(1) 求证:CD//AB;(2) 若∠D =38°,求∠ACE 的度数。
2. 如图,直线AB 、CD 相交于点O ,EO ⊥AB ,垂足为O 。
(1) 若∠EOC =35°,求∠EOD 的度数;(2) 若∠AOC+∠BOD =100°,求∠EOD 的度数。
3. 如图,在直角坐标系XOY 中,点A 、B 的坐标分别是A (-1,0),B (3,0),将线段AB 向上平移2个单位,再向右平移1个单位,得到线段DC ,点AB 的对就点分别是点D 、C ,连接AD 、BC. (1) 直接写出点C 、D 的坐标; (2) 求四边形ABCD 的面积;(3) 点P 为线段BC 上任意一点(与点B 、C 不重合),连接PD 、PO.求证:∠CDP+∠BOP=∠OPD.4. 如图,直接EF 分别与直线AB ,CD 相交于点P 和点Q ,PG 平分∠APQ, QH 平分∠DQP ,并且∠1=∠2,说出图中哪些直线平行。
5. 平面内的两条直线有相交和平行两种位置关系。
(1) 如图1,若AB//CD ,点P 在AB 、CD 内部,∠B =50°,∠D =30°,求∠BPD 的度数。
(2) 如图2,将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间有何数量关系?请写出你的结论并加以证6. 如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题。
(1) 请在图中建立适当的直角坐标系,并写出图书馆(B )的位置坐标。
(2) 若体育馆位置坐标为C (-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积。
7. 如圖,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥A E8. 如图,在平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P (a,b )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A ’B ’C ’,点P 的对应点为P ’(a+6,b-2). (1) 直接写出点C ’的坐标; (2) 在图中画出△A ’B ’C ’; (3) △AOA ’的面积。
七年级下册数学期末考试几何大题证明必考题
图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
部编数学七年级下册专题01相交线与平行线中的四种几何模型全攻略(解析版)含答案
专题01 相交线与平行线中的四种几何模型全攻略类型一、猪脚模型例.问题情境:如图①,直线AB CD ∥,点E ,F 分别在直线AB ,CD 上.(1)猜想:若1130Ð=°,2150Ð=°,试猜想P Ð=______°;(2)探究:在图①中探究1Ð,2Ð,P Ð之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若12325Ð+Ð=°,75EPG Ð=°,求PGF Ð的度数.【答案】(1)80°(2)36012P Ð=°-Ð-Ð;证明见详解(3)140°【详解】(1)解:如图过点P 作MN AB ∥,∵AB CD ∥,∴AB MN CD ∥∥.∴1180EPN Ð+Ð=°,2180FPN Ð+Ð=°.∵1130Ð=°,2150Ð=°,∴12360EPN FPN Ð+Ð+Ð+Ð=°∴36013015080EPN FPN Ð+=°-°-°=°.∵P EPN FPN Ð=Ð+Ð,∴∠P =80°.故答案为:80°;(2)解:36012P Ð=°-Ð-Ð,理由如下:如图过点P 作MN AB ∥,∵AB CD ∥,∴AB MN CD ∥∥.∴1180EPN Ð+Ð=°,2180FPN Ð+Ð=°.∴12360EPN FPN Ð+Ð+Ð+Ð=°∵EPN FPN P Ð+Ð=Ð,36012P Ð=°-Ð-Ð.(3)如图分别过点P 、点G 作MN AB ∥、KR AB∥∵AB CD ∥,∴AB MN KR CD ∥∥∥.∴1180EPN Ð+Ð=°,180NPG PGR Ð+Ð=°,2180RGF Ð+Ð=°.∴12540EPN NPG PGR RGF Ð+Ð+Ð+Ð++Ð=°∵75EPG EPN NPG Ð=Ð+Ð=°,PGR RGF PGF Ð+Ð=Ð,12325Ð+Ð=°,∴12540PGF EPG Ð+Ð+Ð+Ð=°∴54032575140PGF Ð=°-°-°=°故答案为:140°.【变式训练1】已知直线a b ∥,直线EF 分别与直线a ,b 相交于点E ,F ,点A ,B 分别在直线a ,b 上,且在直线EF 的左侧,点P 是直线EF 上一动点(不与点E ,F 重合),设∠PAE =∠1,∠APB =∠2,∠PBF =∠3.(1)如图1,当点P 在线段EF 上运动时,试说明∠1+∠3=∠2;(2)当点P 在线段EF 外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).【答案】(1)证明见详解(2)①312Ð=Ð+Ð;证明见详解;②123Ð=Ð+Ð;证明见详解【详解】(1)解:如图4所示:过点P 作PC a ∥,∵a b ∥∴PC a b ∥∥∴1APC Ð=Ð,3BPC Ð=Ð,∵2APC BPC Ð=Ð+Ð,∴213Ð=Ð+Ð;(2)解:①如图5过点P 作PC a ∥,∵a b∥∴PC a b∥∥∴3BPC Ð=Ð,1APC Ð=Ð,∵2BPC APC Ð=Ð+Ð,∴312Ð=Ð+Ð;②如图6过点P 作PC a ∥,∵a b∥∴PC a b∥∥∴1APC Ð=Ð,3BPC Ð=Ð,∵2APC BPC Ð=Ð+Ð,∴123Ð=Ð+Ð.【变式训练2】阅读下面内容,并解答问题.已知:如图1,AB CD P ,直线EF 分别交AB ,CD 于点E ,F .BEF Ð的平分线与DFE Ð的平分线交于点G .(1)求证:EG FG ^;(2)填空,并从下列①、②两题中任选一题说明理由.我选择 题.①在图1的基础上,分别作BEG Ð的平分线与DFG Ð的平分线交于点M ,得到图2,则EMF Ð的度数为 .②如图3,AB CD P ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO Ð的平分线与DFO Ð的平分线交于点P ,则EOF Ð与EPF Ð满足的数量关系为 .180BEF DFE \Ð+Ð=°EG Q 平分BEF Ð,FG 平分12GEB BEF \Ð=Ð,Ð1GEB GFD \Ð+Ð=Ð45EMF BEM MFD \Ð=Ð+Ð=°,故答案为:45°;②结论:2EOF EPF Ð=Ð.理由:如图3中,由题意,EOF BEO DFO Ð=Ð+Ð,EPF BEP DFP Ð=Ð+Ð,PE Q 平分BEO Ð,PF 平分DFO Ð,2BEO BEP \Ð=Ð,2DFO DFP Ð=Ð,2EOF EPF \Ð=Ð,故答案为:2EOF EPF Ð=Ð.【变式训练3】如图:(1)如图1,AB CD ∥,=45ABE а,21CDE Ð=°,直接写出BED Ð的度数.(2)如图2,AB CD ∥,点E 为直线AB ,CD 间的一点,BF 平分ABE Ð,DF 平分CDE Ð,写出BED Ð与F Ð之间的关系并说明理由.(3)如图3,AB 与CD 相交于点G ,点E 为BGD Ð内一点,BF 平分ABE Ð,DF 平分CDE Ð,若60BGD Ð=°,95BFD Ð=°,直接写出BED Ð的度数.【答案】(1)∠BED =66°;(2)∠BED =2∠F ,见解析;(3)∠BED 的度数为130°.【详解】(1)解:(1)如图,作EF ∥AB ,,∵直线AB ∥CD ,∴EF ∥CD ,∴∠ABE =∠1=45°,∠CDE =∠2=21°,∴∠BED =∠1+∠2=66°;(2)解:∠BED=2∠F,理由是:过点E作EG∥AB,延长DE交BF于点H,∵AB∥CD,∴AB∥CD∥EG,∴∠5=∠1+∠2,∠6=∠3+∠4,又∵BF平分∠ABE,DF平分∠CDE,∴∠2=∠1,∠3=∠4,则∠5=2∠2,∠6=2∠3,∴∠BED=2(∠2+∠3),又∠F+∠3=∠BHD,∠BHD+∠2=∠BED,∴∠3+∠2+∠F=∠BED,综上∠BED=∠F+12∠BED,即∠BED=2∠F;(3)解:延长DF交AB于点H,延长GE到I,∵∠BGD=60°,∴∠3=∠1+∠BGD=∠1+60°,∠BFD=∠2+∠3=∠2+∠1+60°=95°,∴∠2+∠1=35°,即2(∠2+∠1) =70°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠2,∠CDE=2∠1,∴∠BEI=∠ABE +∠BGE=2∠2+∠BGE,∠DEI=∠CDE+∠DGE=2∠1+∠DGE,∴∠BED=∠BEI+∠DEI=2(∠2+∠1)+( ∠BGE+∠DGE)=70°+60°=130°,∴∠BED 的度数为130°.类型二、铅笔模型例.问题情景:如图1,AB ∥CD ,∠PAB =140°,∠PCD =135°,求∠APC 的度数.(1)丽丽同学看过图形后立即口答出:∠APC =85°,请补全她的推理依据.如图2,过点P 作PE ∥AB ,因为AB ∥CD ,所以PE ∥CD .( )所以∠A +∠APE =180°,∠C +∠CPE =180°.( )因为∠PAB =140°,∠PCD =135°,所以∠APE =40°,∠CPE =45°,∠APC =∠APE +∠CPE =85°.问题迁移:(2)如图3,AD ∥BC ,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β,求∠CPD 与∠α、∠β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请直接写出∠CPD 与∠α、∠β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论),两直线平行,同旁内角互补;(2)CPD a b Ð=Ð+Ð,理由见解析;(3)CPD b a Ð=Ð-Ð或CPD a bÐ=Ð-Ð【详解】解:(1)如图2,过点P 作PE ∥AB ,因为AB∥CD,所以PE∥CD.(平行于同一条直线的两条直线平行)所以∠A+∠APE=180°,∠C+∠CPE=180°.(两直线平行同旁内角互补)因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.故答案为:平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;(2)∠CPD=∠α+∠β,理由如下:如图3所示,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,如图4所示:过P作PE∥AD交CD于E,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β-∠α;当P在AB延长线时,如图5所示:同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α-∠β.综上所述,∠CPD与∠α、∠β之间的数量关系为:∠CPD=∠β-∠α或∠CPD=∠α-∠β.【变式训练1】已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC 的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∠AGC=(x+y)°;(3)∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.【详解】解:(1)如图,过点G作GE∥AB,∵AB∥GE,∴∠A+∠AGE=180°(两直线平行,同旁内角互补).∵∠A=140°,∴∠AGE=40°.∵AB∥GE,AB∥CD,∴GE∥CD.∴∠C+∠CGE=180°(两直线平行,同旁内角互补).∵∠C=150°,∴∠CGE=30°.∴∠AGC=∠AGE+∠CGE=40°+30°=70°.(2)如图,过点G作GF∥AB∵AB∥GF,∴∠A=AGF(两直线平行,内错角相等).∵AB∥GF,AB∥CD,∴GF∥CD.∴∠C=∠CGF.∴∠AGC=∠AGF+∠CGF=∠A+∠C.∵∠A=x°,∠C=y°,∴∠AGC=(x+y)°.(3)如图所示,过点E作EM∥AB,过点F作FN∥AB,过点G作GQ∥CD,∵AB∥CD,∴AB∥EM∥FN∥GQ∥CD.∴∠BAE=∠AEM,∠MEF=∠EFN,∠NFG=∠FGQ,∠QGC=∠GCD(两直线平行,内错角相等).∴∠AEF=∠BAE+∠EFN,∠FGC=∠NFG+GCD.∵∠EFN+∠NFG=∠EFG,∴∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.【变式训练2】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.思路点拨:小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE的度数,从而可求出∠APC的度数;小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC 的度数;小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC的度数为 °;问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【答案】问题解决:110°;问题迁移:(1)∠CPD=∠α+∠β,理由见解析;(2)∠CPD=∠β﹣∠α,理由见解析【详解】解:小明的思路:如图2,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°,故答案为:110;(1)∠CPD=∠α+∠β,理由如下:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图6,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;例.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【答案】(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠B+∠BPD+∠D=360°,理由见解析;(2)∠BPD=∠B+∠D,理由见解析;(3)∠BPD=∠D-∠B或∠BPD=∠B-∠D,理由见解析【详解】解:(1)如图(1)过点P作EF∥AB,∴∠B+∠BPE=180°,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠EPD+∠D=180°,∴∠B+∠BPE+∠EPD+∠D=360°,∴∠B+∠BPD+∠D=360°.(2)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D.(3)如图(3),∠BPD=∠D-∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠BPD,∴∠D=∠B+∠BPD,即∠BPD=∠D-∠B;如图(4),∠BPD=∠B-∠D.理由:∵AB ∥CD ,∴∠1=∠B ,∵∠1=∠D +∠BPD ,∴∠B =∠D +∠BPD ,即∠BPD =∠B -∠D .【变式训练2】已知//AM CN ,点B 为平面内一点,AB BC ^于B .(1)如图1,点B 在两条平行线外,则A Ð与C Ð之间的数量关系为______;(2)点B 在两条平行线之间,过点B 作BD AM ^于点D .①如图2,说明ABD C Ð=Ð成立的理由;②如图3,BF 平分DBC Ð交DM 于点,F BE 平分ABD Ð交DM 于点E .若180,3FCB NCF BFC DBE ÐÐÐÐ+=°=,求EBC Ð的度数.【答案】(1)∠A +∠C =90°;(2)①见解析;②105°【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠A +∠AOB =90°,∴∠A +∠C =90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN\//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.类型四、齿距模型例.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.【答案】y=90°-x+z.【详解】解:作CG//AB,DH//EF,∵AB//EF,∴AB//CG//HD//EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【变式训练1】如图1,已知AB ∥CD ,∠B =30°,∠D =120°;(1)若∠E =60°,则∠F = ;(2)请探索∠E 与∠F 之间满足的数量关系?说明理由;(3)如图2,已知EP 平分∠BEF ,FG 平分∠EFD ,反向延长FG 交EP 于点P ,求∠P 的度数.【答案】(1)90°;(2)30F E Ð=Ð+°,理由见解析;(3)15°【详解】(1)解:如图1,分别过点E ,F 作//EM AB ,//FN AB ,////EM AB FN \,30B BEM \Ð=Ð=°,MEF EFN Ð=Ð,又//AB CD Q ,//AB FN ,//CD FN \,180D DFN \Ð+Ð=°,又120D Ð=°Q ,60DFN \Ð=°,30BEF MEF \Ð=Ð+°,60EFD EFNÐ=Ð+°,60EFD MEF \Ð=Ð+°3090EFD BEF \Ð=Ð+°=°;故答案为:90°;(2)解:如图1,分别过点E ,F 作//EM AB ,//FN AB ,////EM AB FN \,30B BEM \Ð=Ð=°,MEF EFN Ð=Ð,又//AB CD Q ,//AB FN ,(1)求证://GH MN ;(提示:可延长AC 交MN 于点P 进行证明)(2)如图2,AE 平分GAC Ð,DE 平分BDC Ð,若AED GAC Ð=Ð,求GAC Ð与ACD Ð之间的数量关系;(3)在(2)的条件下,如图3,BF 平分DBM Ð,点K 在射线BF 上,13KAG GAC Ð=Ð,若AKB ACD Ð=Ð,直接写出GAC Ð的度数.∵ACD C Ð=Ð,∴//AP BD ,∴NBD NPA Ð=Ð,∵GAC NBD Ð=Ð,∴GAC NPA Ð=Ð,∴//GH MN ;(2)延长AC 交MN 于点P ,交DE 于点Q ,∵180E EAQ AQE Ð+Ð+Ð=°,180AQE AQD Ð+Ð=°,∴AQD E EAQ Ð=Ð+Ð,∵//AP BD ,∴AQD BDQ Ð=Ð,∴BDQ E EAQ Ð=Ð+Ð,∵AE 平分GAC Ð,DE 平分BDC Ð,∴2GAC EAQ Ð=Ð,2CDB BDQ Ð=Ð,∴2CDB E GAC Ð=Ð+Ð,∵AED GAC Ð=Ð,ACD CDB Ð=Ð,∴23ACD GAC GAC GAC Ð=Ð+Ð=Ð; (3)当K 在直线GH 下方时,如图,设射线BF 交GH 于I ,。
专题1.11 《平行线》几何模型1(知识讲解)七年级数学下册基础知识专项讲练(浙教版)
专题1.11 《平行线》几何模型1(知识讲解)几何模型1:M 型模型(也称“猪蹄模型”)图 一//=MA NC A B ⇒∠∠+∠条件:ABC ////PQ =,==MA NC A C C A C∴∠∠∠∠∴∠∠+∠证明:过点B 作PQ//MA.,ABQ BQ ,ABC几何模型2:铅笔头模型图二0//==360MA NC A B ⇒∠+∠∠条件:ABC000////P ////PQ ,180,180360MA NC BMA NC A C C A C∴∠∠=∠∠=∴∠+∠+∠=证明:过点B 作BP//MA.则,ABP+BP+,ABC几何模型3:鸡翅模型图三//-=MA NC A B ⇒∠∠∠条件:C////PQ ////PQ ,,,MA NC MA NC A C C B CBQ A C B∴∠∠∠∠∴∠=∠∠∴∠-∠=∠证明:过点B 作PQ//MA.则,ABQ=BQ=,ABQ-几何模型4:折鸡翅模型图四//MA NC A B ⇒∠=∠+∠条件:C ////PQ ////PQ ,,,MA NC MA NC A C C ABC CBQ A ACB C∴∠∠∠∠∴∠=∠∠∴∠==∠+∠证明:过点B 作PQ//MA.则,ABQ=BQ=,ABQ-几何模型5:多个M 型模型12121//......n n MA NB P PPAQ Q Q B -⇒∠+∠++∠=∠+∠+∠++∠条件: 证明思路参考几何模型1几何模型6:多个铅笔头模型12121//......n n MA NB P P P A Q Q Q B -⇒∠+∠++∠=∠+∠+∠++∠条件: 证明思路参考几何模型2类型一、M 型模型1(2020·宁波市惠贞书院七年级期中)如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.【答案】90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;解:如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∴90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点拨】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;举一反三:【变式1】(2020·四川成都市·天府四中七年级期中)如图,//,,3527'EE MN CA CB EAC ⊥∠=︒,则MBC ∠=____________________.【答案】5433'【分析】过C 点做EF 的平行线,利用平行线的性质,即可证明.解:过C 点做EF 的平行线,GH//,EF MN////,EF GH MN ∴3527'EAC ACH ∴∠=∠=,又,CA CB ⊥90,ACB ∴∠=︒5433',HCB ACB ACH ∴∠=∠-∠=︒又//,GH MN5433'HCB CBM ∴∠=∠=.故答案为:5433'.【点拨】本题考查了通过平行线的性质求解角度问题,解题关键在于过中间的点作已知直线的平行线.【变式2】(2019·辽宁大连市·七年级期末)阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).【答案】阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-. 【分析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP∴MN ,可得∴CHA=∴PHA+∴PHC ,结合(1)的结论和CG 平分∴ECD 可得∴PHC =∴FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DG CF .∵DG MN ,∴MN CF .∵BH MN ,∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP∴MN ,∴∴PHA=∴MAH=1BAM 2∠,由(1)得FC∴MN ,∴FC∴HP ,∴∴PHC=∴FCH ,∴40∠=︒+∠ECD MAB ,CG 平分∴ECD , ∴∴ECG=20°+1MAB 2∠,∴∴FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠ ∴∴CHA=∴PHA+∴PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 类型二、铅笔头型模型2 (2020·山东聊城市·七年级期末)直线AB 、CD 被直线EF 所截,AB∴CD ,点P 是平面内一动点.(1)若点P 在直线CD 上,如图∴,∴α=50°,则∴2= °.(2)若点P 在直线AB 、CD 之间,如图∴,试猜想∴α、∴1、∴2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图∴,(2)中∴α、∴1、∴2之间的关系还成立吗?请作出判断并说明理由.【答案】(1)50;(2)∴α=∴1+∴2,证明见解析;(3)不成立.理由见解析.【分析】(1)由题意直接根据平行线的性质可直接求解;(2)由题意过P作PG∴AB,则PG∴AB∴CD,利用平行线的性质即可求解;(3)根据题意过P作PH∴AB,则PH∴AB∴CD,利用平行线的性质进行分析即可求解.解:(1)∵AB∥CD,∠α=50°∴∠2=∠α=50°,故答案为:50;(2)∠α=∠1+∠2.证明:过P作PG∥AB,∵AB∥CD,∴PG∥AB∥CD,∴∠2=∠EPG,∠1=∠FPG,∵∠α=∠EPF=∠EPG+∠FPG,∴∠α=∠1+∠2;(3)不成立.理由:过P 作PH ∥AB ,∵AB ∥CD ,∴PH ∥AB ∥CD ,∴∠2=∠EPH ,∠1=∠FPH ,∵∠α=∠EPF =∠EPH ﹣∠FPH ,∴∠α=∠2﹣∠1,故不成立.【点拨】本题主要考查平行线的性质,注意掌握并灵活运用平行线的性质是解题的关键. 举一反三:【变式1】(2020·河北邢台市·八年级月考)如图1,四边形MNBD 为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(BAE AEC ECD ∠∠∠、、),则BAE AEC ECD ∠+∠+∠=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(BAE AEF EFC FCD ∠∠∠∠、、、),则BAE AEF EFC FCD ∠+∠+∠+∠=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(BAE AEF EFG FGC GCD ∠∠∠∠∠、、、、),则BAE AEF EFG FGC GCD ∠+∠+∠+∠+∠=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n 刀,剪出()1n +个角,那么这()1n +个角的和是____________°.【答案】(1)360;(2)540;(3)720;(4)180n.【分析】(1)过点E作EH∴AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.证明:(1)过E作EH∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EH∥AB,∴CD∥EH(平行于同一条直线的两条直线互相平行).∵EH∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EH,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E 、F 、G 分别作AB 的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n 刀,剪出n+1个角,那么这n+1个角的和是180n 度. 故答案为:(1)360;(2)540;(3)720;(4)180n .【点拨】题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.举一反三:【变式2】(2020·湖北随州市·七年级期末)已知12l l //,点A ,C 分别在直线1l ,2l 上,点B 在直线1l 与2l 之间,90BCN BAM ∠<∠≤︒.(1)如图1,求证:ABC BAM BCN ∠=∠+∠.阅读并补齐下列推理过程过点B 作//BG NC ,因为12l l //,所以//AM _____(______________)所以ABG BAM ∠=∠,CBG BCN ∠=∠(_______________________)所以ABC ABG CBG BAM BCN ∠=∠+∠=∠+∠.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,在学习中要注意体会.(2)如图2,点D ,E 在直线1l 上,DBC BAM ∠=∠,BE 平分ABC ∠,求证:DBE DEB ∠=∠.(3)在(2)的条件下,过点B 作BF 平分CBE ∠,请直接写出使//BF AM 时,BAM ∠与BCN ∠之间应具备的关系.【答案】(1)BG ,平行于同一条直线的两条直线平行,两条直线平行内错角相等;(2)见解析;(3)3BAM BCN ∠=∠【分析】(1)添加平行线,根据平行于同一条直线的两条直线平行,再利用平行线的性质进行角的等量代换;(2)与(1)同理,通过添加平行线,根据平行于同一条直线的两条直线平行,再利用平行线的性质、角平分线的定义进行角的等量代换;(3)在(2)的条件下,根据已有的数量关系,加上平行线得到的内错角相等进行等量代换即可.解:(1)BG ,平行于同一条直线的两条直线平行,两条直线平行内错角相等;(2)过点B 作BG //NC ,12//l l ,AM //BG ∴DEB EBG ∴∠=∠,CBG BCN ∠=∠,由(1)知,ABC BAM BCN ∠=∠+∠,又DBC BAM ∠=∠,ABC DBC BCN ∴∠=∠+∠,ABC ABD DBC ∠=∠+∠,ABD BCN ∴∠=∠,∴ABD CBG ∠=∠, BE 平分ABC ∠,ABE CBE ∴∠=∠,DBE EBG ∴∠=∠,DEB DBE ∴∠=∠(3)BAM 3BCN ∠=∠,理由如下:∴DBC =∴DBE +∴EBF +∴FBC ,∴BF∴AM ,∴∴EBF =∴DEB ,∴BF 平分∴CBE ,∴∴CBF =∴EFB ,而由(2)知:∴DBE =∴DEB ,∴∴DBC =3∴FBC ,∴CN∴AM ,∴CN∴BF ,∴∴FBC=∴BCN,∴DBC=3∴BCN,而∴BAM=∴DBC,∴∴BAM=3∴BCN【点拨】本题考查平行线的推论和性质,熟练掌握平行线的性质,并灵活进行等量代换是关键.。
微专题一同位角、内错角、同旁内角的常见模型图(教案)-2022-2023学年七年级下册数学(人教版)
(1)识别同位角、内错角、同旁内角:对于初学者来说,区分这三个角度关系可能存在一定的难度。
难点突破:通过直观的图形展示,让学生观察、比较,引导学生总结规律,加强记忆。
(2)平行线中同位角、内错角、同旁内角的性质理解:理解这些性质背后的逻辑关系,对于学生来说可能存在困难。
难点突破:采用举例法,通过多个具体实例的讲解,让学生感受性质的应用,从而加深理解。
4.平行线中同位角、内错角、同旁内角的性质;
5.运用同位角、内错角、同旁内角的性质解决实际问题。
本节内容旨在帮助学生掌握平行线中同位角、内错角、同旁内角的基本概念和性质,并能够运用这些知识解决实际题目。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的几何直观能力,通过观察和分析同位角、内错角、同旁内角的常见模型图,让学生能够直观地理解和把握几何图形之间的关系;
微专题一同位角、内错角、同旁内角的常见模型图(教案)-2022-2023学年七年级下册数学(人教版)
一、教学内容
本节教学内容选自人教版七年级下册数学第四章“平行线的性质”中的微专题一,主要围绕同位角、内错角、同旁内角的常见模型图展开。内容包括:
1.同位角的定义及识别;
2.内错角的定义及识别;
3.同旁内角的定义及识别;
1.分组讨论:学生们将分成若干小组,每组讨论一个与同位角、内错角、同旁内角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸张来演示同位角、内错角、同旁内角的形成和性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用同位角、内错角、同旁内角的性质来证明两条直线平行。
七年级数学下册专题01 平行线的四大模型(原卷版)-7年级数学下册压轴题攻略(人教版)
专题01 平行线的四大模型平行线的性质和判定是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。
它不但为三角形的内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形知识的基础.本节课重点学习平行线的基础模型的应用迁移.模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.专题分析模型分类模型分析【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式1-1】(2023•渝中区校级模拟)如图,已知直线a∥b,∠BAC=90°,∠1=40°,则∠2的度数为()A.40°B.50°C.130°D.140°典例分析【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100°B.105°C.115°D.125°【变式1-3】(2022春•肇州县期末)如图,AB∥CD,∠C=110°,∠B=120°,则∠BEC =()A.110°B.120°C.130°D.150°【变式1-4】(2023春•巴南区月考)已知直线MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN和PO之间.(1)如图1,求证:∠CAB﹣∠MCA=∠PBA;(2)如图2,CD∥AB,点E在直线PQ上,且∠MCA=∠DCE,求证:∠ECN=∠CAB;(3)如图3,BF平分∠PBA,CG平分∠ACN,且AF∥CG.若∠CAB=50°,直接写出∠AFB的度数.【变式1-5】(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC =∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.模型分析模型二“猪蹄”模型(模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典例分析【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF 把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-2】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-3】(2023•海南模拟)如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD 等于()A.60°B.70°C.80°D.90°【变式2-4】(2023春•覃塘区期末)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF =60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1B.2C.3D.4【变式2-5】(2023春•赣县区期末)【问题背景】:同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题探究】:(1)如图1,AB∥CD,E为AB、CD之间一点,连接BE、DE,得到∠BED 与∠B、∠D之间的数量关系,并说明理由;【类比迁移】:(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:如图2,直线AB∥CD,若∠B=23°,∠G=35°,∠D=25°,求∠BEG+∠GFD的度数;【灵活应用】:(3)如图3,直线AB∥CD,若∠E=∠B=60°,∠F=85°,则∠D=25度.【变式2-6】(2023春•邵阳期末)如图1,直线AB∥CD,P是截线MN上的一点.(1)若∠MNB=45°,∠MDP=20°,求∠MPD;(2)如图1,当点P在线段MN上运动时,∠CDP与∠ABP的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T是直线MN上且位于M点的上方的一点,如图所示,当点P在射线MT上运动时,∠CDP与∠ABP的平分线交于Q,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【变式2-7】(2023春•防城港期末)阅读下面材料:(1)小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a∥b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(温馨提示:过点E作EF∥AB)模型分析模型三“臭脚”模型“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典例分析【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD =80°,求∠CDE的度数.【变式3-1】已知AB∥CD.(1)如图1,求证:∠ABE+∠DCE﹣∠BEC=180°;(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F.若BF∥CE,∠BEC=26°,求∠BFC.模型分析结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.典例分析【典例4】(2022秋•朝阳区校级期末)已知AB∥CD,点E在AB上,点F在DC上,点G 为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.【变式4-1】(2022秋•肃州区校级期末)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.【变式4-2】(2022春•朝阳县期末)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【变式4-3】(2020春•乳山市期中)【信息阅读】材料信息:如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.方法信息:如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.解:过点C作CF∥AB.∴∠BCF=∠B=55°.∵AB∥DE,∴CF∥DE.∴∠DCF=∠D=35°.∴∠BCD=55°﹣35°=20°.【问题解决】(1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:;(2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.1.(2023春•建昌县期末)如图,将一个含30°角的直角三角板的直角顶点C放在直尺的两边MN,PQ之间,则下列结论中:①∠1=∠3;②∠2=∠3;③∠1+∠3=90°;④若∠3=60°,则AB⊥PQ,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.(2023春•芜湖期末)如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α3.(2022•恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120°B.130°C.140°D.150°4.(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°5.(2021春•椒江区校级月考)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠FBC=n°,∠BAD=m°,则∠AEC等于()度.A.90﹣+m B.90﹣﹣C.90﹣D.90﹣+ 6.(2023春•赫山区期末)【问题情景】(1)如图1,AB∥CD,∠P AB=135°,∠PCD=115°,求∠APC的度数;【问题迁移】(2)如图2,已知∠MON,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,连接PD,PC,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由;【知识拓展】(3)在(2)的条件下,若将“点P在A,B两点之间运动”改为“点P在A,B两点外侧运动(点P与点A,B,O三点不重合)”其他条件不变,请直接写出∠CPD 与∠α,∠β之间的数量关系.7.(2022春•良庆区校级期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB=∠CFD,∠BFC=3∠DBE,求∠EBC的度数.8.(2021秋•平昌县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.9.(2023春•黑山县期中)问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF 与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.10.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.11.(2023春•孝义市期末)综合与探究数学活动课上,老师以“一个含45°的直角三角板和两条平行线”为背景展开探究活动,如图1,已知直线m∥n,直角三角板ABC中,∠ACB=90°,∠BAC=∠ABC=45°.(1)如图1,若∠2=65°,则∠1=;(直接写出答案)(2)“启航”小组在图1的基础上继续展开探究:如图2,调整三角板的位置,当三角板ABC的直角顶点C在直线n上,直线m与AB,AC相交时,他们得出的结论是:∠1﹣∠2=135°,你认为启航小组的结论是否正确,请说明理由;(3)如图3,受到“启航”小组的启发,“睿智”小组提出的问题是:在图2的基础上,继续调整三角板的位置,当点C不在直线n上,直线m与AC,BC相交时,∠1与∠2有怎样的数量关系?请你用平行线的知识说明理由.12.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.12.(2023春•甘井子区期末)如图1,点M在射线BA,CD之间,0°<∠ABM<30°,连接BM,过点M作ME⊥BM交射线CD于点E,且∠MED﹣∠B=90°.(1)求证:AB∥CD;(2)过点C作∠ECN=∠B,交直线ME于点N,先按要求画图,再解决下列问题.①当CN在CD上方,满足∠CNE=5∠B时,在图2中画图,求∠B的度数;②作∠BME的角平分线交射线CD于点K,交∠ECN的角平分线于点F,请直接写出∠MKC与∠MFC之间的数量关系.。
[必刷题]2024七年级数学下册几何证明专项专题训练(含答案)
[必刷题]2024七年级数学下册几何证明专项专题训练(含答案)试题部分一、选择题:1. 在下列几何图形中,哪一个图形可以通过旋转90度后与自身重合?()A. 矩形B. 等边三角形C. 正方形D. 梯形2. 下列哪个条件可以证明两个三角形全等?()A. 两边和其中一边的对角相等B. 两角和其中一角的对边相等C. 两边和它们的夹角相等D. 两角和其中一边相等3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个条件可以证明两个角相等?()A. 两角的度数相等B. 两角的对边相等C. 两角的邻边相等D. 两角的余角相等5. 若一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长为()A. 32cmB. 42cmC. 46cmD. 52cm6. 在平行四边形ABCD中,若AB=6cm,BC=8cm,则对角线AC的取值范围是()A. 2cm < AC < 14cmB. 2cm < AC < 6cmC. 2cm < AC < 8cmD. 6cm < AC < 14cm7. 下列哪个条件可以证明两个平行四边形全等?()A. 一组对边平行且相等B. 两组对边平行C. 一组对边平行,另一组对边相等D. 一组对边平行且相等,另一组对边也相等8. 在三角形ABC中,若AB=AC,∠B=60°,则三角形ABC的周角为()A. 120°B. 180°C. 240°D. 360°9. 下列哪个图形是轴对称图形?()A. 等腰梯形B. 直角梯形C. 等腰三角形D. 一般四边形10. 若一个正方形的对角线长为10cm,则该正方形的面积是()A. 50cm²B. 100cm²C. 200cm²D. 500cm²二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。
七年级数学下册几何知识点
七年级数学下册几何知识点七年级数学下册,几何是一个非常重要的知识点。
在这一学期中,学生们需要掌握许多几何概念和技巧,如图形的分类、长度和面积等基本概念。
本文将带领读者一起回顾这些重要知识点,以帮助大家更好地准备考试。
1.图形的分类在几何学中,图形的分类是最基础的知识点。
在学习几何时,学生需要掌握各种常见的图形,并能够准确地描述它们的属性。
常见的几何图形包括:点、线、线段、射线、角、平面角、平面、圆等。
2.长度和面积的计算在几何学中,长度和面积的计算是非常重要的。
学生需要理解如何计算这些属性,才能更好地理解几何中的相关概念。
一些常见的长度单位包括:米、毫米、厘米、千米等。
一些常见的面积单位包括:平方米、平方厘米、公顷等。
3.直线和角度直线和角度是几何学中另一个重要的概念。
学生需要理解直线和角度的定义和相关的基本知识。
例如,学生需要知道:一条直线有无限个点,而一个角度有三个重要的部分:顶点、起始边和结束边。
4.三角形和其它多边形三角形是几何学中最常见的图形之一。
学生需要掌握不同种类的三角形,包括等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。
除了三角形,学生还需要理解其它多边形的相关知识,如四边形、五边形、六边形等。
5.圆和环圆是几何学中的一个基本概念。
学生需要掌握圆的定义,以及如何计算它的直径、周长和面积等属性。
此外,学生还需要了解环的相关知识,如何计算环的周长和面积等。
总结几何是一个非常基础的数学学科,而且在许多实际问题中有着广泛的应用。
因此,一个扎实的几何学习基础对于学生们来说非常重要。
在学习几何时,学生最好能够理解每一个基本概念和知识点,以此为基础,逐步提高自己的几何水平。
七年级下册数学压轴题训练——几何(一)拐点与角平分线结合
压轴题训练——几何(一)拐点与角平分线结合1.(1)如图1,已知AB∥CD,求证:∥EGF=∥AEG+∥CFG(2)如图2,已知AB∥CD,∥AEF 与∥CFE 的平分线交于点G.猜想∥G 的度数。
证明你的猜想(3)如图3,已知AB∥CD,EG 平分∥AEH,EH 平分∥GEF,FH 平分∥CFG,FG 平分∥HFE,∥G=95°,求∥H 的度数.2.已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠.(2)如图2,点P 在直线AB 、CD 之间AC 左侧,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 下方,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.3.如图,已知AB CD ∥,直线FG 分别与AB 、CD 交于点F 、点G .(1)如图1,当点E 在线段FG 上,若40EAF ∠=︒,30EDG ∠=︒,则AED =∠__________°;(2)如图2,当点E 在线段FG 的延长线上,CD 与AE 交于点H ,则AED ∠、EAF ∠、EDG ∠之间满足怎样的关系,请证明你的结论;(3)如图3,在(2)的条件下,DM 平分EDG ∠,交AE 于点K ,射线AN 将EAB ∠分成:1:2EAN NAB ∠∠=,且与DM 交于点I ,若 22DEA ∠=︒,20DIA ∠=︒,求DKE ∠的度数.4.已知,直线AB//CD ,∥EFG =90°.(1)如图1,点F 在AB 上,FG 与CD 交于点N ,若∥EFB =65°,则∥FNC = °;(2)如图2,点F 在AB 与CD 之间,EF 与AB 交于点M ,FG 与CD 交于点N .∥AMF 的平分线MH 与∥CNF 的平分线NH 交于点H .①若∥EMB =α,求∥FNC (用含α的式子表示);②求∥MHN 的度数.5.(1)如图1,AB∥CD,CF平分∥DCE,若∥DCF=30°,∥E=20°,求∥ABE的度数.(2)如图2,已知AB∥CD,CF平分∥DCE,∥EBF=2∥ABF,若∥F的2倍与∥E的补角的和为190°,求∥ABE的度数.(3)如图3,若P是(2)中的射线BE上一点,G是CD上任一点,PQ∥GN,PQ平分∥BPG,GM平分∥DGP,若∥B =30°,求∥MGN的度数.6.已知AM∥CN,点B为平面内一点,AB∥BC于B.(1)如图1,直接写出∥A和∥C之间的数量关系___;(2)如图2,过点B作BD∥AM于点D,求证:∥ABD=∥C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∥DBC,BE平分∥ABD,若∥FCB+∥NCF=180°,∥BFC=3∥DBE,求∥EBC的度数.。
北师大版七年级下册数学几何解答题专题复习
2021-2022学年七年级下学期数学几何解答题专题复习1、如图,在ABC中,CD平分∠ACB,E为边AC上一点,连接DE,EC=ED,过点E作EF⊥AB,垂足为F.(1)判断DE与BC的位置关系,并说明理由;(2)若∠A=30°,∠ACB=80°,求∠DEF的度数.2、已知:如图,AB∥DE,AC∥DF,BF=EC.(1)求证:△ABC≌△DEF;(2)过点C作CG⊥AB于点G,若S△ABC=9,DE=6,求CG 的长.3、如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.4、如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.5、如图,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从点A出发,沿AB向点B方向运动,同时,点Q从点B出发,以相同的速度沿BC向点C方向运动.连接AQ,CP,AQ,CP交于点M.(1)求证:AQ=CP;(2)求∠QMC的度数;(3)若点P,Q分别运动到AB,BC的延长线上,直线AQ,CP交于点M,请在备用图中补全图形,并求出∠QMC的度数.6、如图,ABC中,过点A,B分别作直线AM,BN,且AM//BN,过点C作直线DE交直线AM于D,交直线BN于E,设AD=a,BE=b.(1)如图1,若AC,BC分别平分∠DAB和∠EBA,求∠ACB的度数;(2)在(1)的条件下,若a=1,b=52,求AB的长;(3)如图2,若AC=AB,且∠DEB=∠BAC=60°,求DC的长.(用含a,b的式子表示)7、如图,点C线段AB上一点,以线段AC为腰作等腰直角△ACD,∠ACD=90°,点E 为CD延长线上一点,且CE=CB,连接AE,BD,点F为AE延长线上一点,连接BF,FD.(1)①求证:△ACE≌△DCB;②试判断BD与AF的位置关系,并证明;(2)若BD平分∠ABF,当CD=3DE,S△ADE32,求线段BF的长.8、如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.9、如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE//BC时,若△DEF的面积为2,请直接写出△ABC的面积.10、(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.11、如图,在边长为8的正方形ABCD中,点E在边AB上移动(不与端点重合).连接CE,以CE为一边在其右侧作△CEF,其中∠CEF=90°,CE=EF,点G为FC的中点,过点F 作FH⊥AD,垂足为点H,连接GD,GH,F A.(1)求证:∠EAF=135°;(2)请判断线段GD和GH之间有何关系?写出你的结论并证明;(3)在点E移动过程中,△EAF面积有最大值吗?如果有,求出△EAF面积的最大值及此时BE的长;如果没有,说明理由.12、如图,已知四边形ABCD ,连接AC ,其中AD AC ⊥,BC AC ⊥,AC BC =,延长CA 到点E ,得AE AD =,点F 为AB 上一点,连接FE 、FD ,FD 交AC 于点G .(1)求证:EAF DAF ≌;(2)若ADF α∠=,DFE β∠=,试探究α、β的数量关系,并说明理由; (3)如图2,连接CF ,若DF CF ⊥,求DCF ∠的度数.13、如图1,在△ABC 中,CA =CB ,∠ACB =90°.点D 是AC 中点,连接BD ,过点A 作AE ⊥BD 交BD 的延长线于点E ,过点C 作CF ⊥BD 于点F . (1)求证:∠EAD =∠CBD ; (2)求证:BF =2AE ;(3)如图2,将△BCF 沿BC 翻折得到△BCG ,连接AG ,请猜想并证明线段AG 和AB 的数量关系.14、在△ABD中∠A=45°,BC⊥AD于点C,E为AB上一点,连接DE交BC于点F,且∠ADE=∠CBD.(1)如图1,求证:DE=BD.(2)如图2,作AM⊥BD于点M,交BC于点H,判断AH与BD的数量关系,并证明.(3)在(2)的条件下,当CH:BH=4:7,△ADE的面积为152时,①求线段AD的值;②设AH=a,用含a的代数式表示线段BM的值.15、如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON 于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO=∠CEB,求△CDH的面积(用含a,b的代数式表示).16、 以BC 为斜边在它的同侧作Rt DBC 和Rt ABC ,其中90A D ∠=∠=︒,AB AC =,AC 、BD 交于点P .(1)如图1,BP 平分ABC ∠,求证:BC AB AP =+;(2)如图2,过点A 作AE BP ⊥,分别交BP 、BC 于点E 、点F ,连接AD ,过A 作AG AD ⊥,交BD 于点G ,连接CG ,CG 交AF 于点H ,求证:GH CH =;(3)如图3,点M 为边AB 的中点,点Q 是边BC 上一动点,连接MQ ,将线段MQ 绕点M 逆时针旋转90︒得到线段MK ,连接PK 、CK ,当15DBC ∠=︒,4AP =时,求PK CK +的最小值.17、 已知△ABC ≌△EDC ,过点A 作直线l ∥BC ;(1)如图1,点D 在线段AC 上时,点E 恰好落在直线l 上点A 的右侧,求∠ACB 的度数; (2)如图2,在(1)的条件下,连接BE 交AC 于点F ,G 是线段CE 上一点,且满足CG=CF ,连接DG 交EF 于点H ,连接CH .求证:CHG CBE S GHS BE; (3)如图3,∠ACB 大小与(1)中相同,当点D 不在线段AC 上时,且点F 、点G 、点H 满足(2)中条件,点M ,N 分别为线段CE ,GD 的延长线与直线l 的交点.请直接写出△GMN 为等腰三角形时,∠EBC 与∠BCD 满足的数量关系.18、(1)问题引入:如图1,点F 是正方形ABCD 边CD 上一点,连接AF ,将ADF 绕点A 顺时针旋转90°与ABG 重合(D 与B 重合,F 与G 重合,此时点G ,B ,C 在一条直线上),∠GAF 的平分线交BC 于点E ,连接EF ,判断线段EF 与GE 之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD 中,∠ADC +∠B =180°,AB =AD ,E ,F 分别是边BC ,CD 延长线上的点,连接AE ,AF ,且∠BAD =2∠EAF ,试写出线段BE ,EF ,DF 之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD 中,∠ABC =90°,AC 平分∠DAB ,点E 在AB 上,连接DE ,CE ,且∠DAB =∠DCE =60°,若DE =a ,AD =b ,AE =c ,求BE 的长.(用含a ,b,c 的式子表示)。
七年级下册数学几何知识点
七年级下册数学几何知识点5.1、相交线同一平面内,两直线不平行就相交。
1、邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
2、对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
对顶角相等。
3、垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
4、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
5、垂足:两条垂线的交点叫垂足。
6、垂线特点:过一点有且只有一条直线与已知直线垂直。
7、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
两条直线被第三条直线所截形成8个角。
8、同位角:在两条直线的上方,又在某直线的同侧,具有这种位置关系的两个角叫同位角。
9、内错角:在在两条直线之间,又在某直线的两侧,具有这种位置关系的两个角叫内错角。
10、同旁内角:在在两条直线之间,又在某直线的同侧,具有这种位置关系的两个角叫同旁内角。
5.2、平行线以及判定1、平行线(1)平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)(2)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(3)平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
2、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
5.3、平行线的性质(1)性质1、两条平行线被第三条直线所截,同位角相等。
2、两条平行线被第三条直线所截,内错角相等。
3、两条平行线被第三条直线所截,同旁内角互补。
4、两条平行线被第三条直线所截,外错角相等。
(2)平行线的距离:两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.(3)命题和定理1、命题的概念:判断一件事情的语句,叫做命题。
2022-2023学年人教版数学七年级下册期末几何解答题专题练习
2022-2023学年人教版七年级下学期期末数学几何解答题专题练习1、如图,AB∥CD,∠A=∠C,BE平分∠ABC交AD的延长线于点E,(1)证明:AD∥BC;(2)若∠ADC=118°,求∠E的度数.2、如图,已知∠1=∠BDC,∠2+∠3=180°.(1)AD与EC平行吗?试说明理由.(2)若DA平分∠BDC,CE⊥AE于点E,∠1=80°,试求∠F AB的度数.3、小聪把一副三角尺ABC,DCE按如图1的方式摆放,其中边BC,DC在同一条直线上,过点A向右作射线AP∥DE.(1)如图2,求∠P AC的度数;(2)如图3,点Q是线段BC上一点,若∠AQB=53∠PAQ,求∠QAB的度数.4、已知:在四边形ABCD中,AD∥BC,AE平分∠DAB交BC于点E,点M为线段BC上一点,且AM∥DC.(1)如图(1),若点M与点E重合,求证:∠C=∠BAE;(2)如图(2),若AN平分∠BAM交BC于点N,且∠NAE=25°,求∠C的度数;(3)在(1)的条件下,F为线段BA的延长线上一点,∠DCB=75°,若∠DCB的三等分线与∠F AD的角平分线交于点P,请直接写出∠APC的度数.5、直线AB∥CD,BE﹣EC是一条折线段,BP平分∠ABE.(1)如图1,若BP∥CE,求证:∠BEC+∠DCE=180°;(2)CQ平分∠DCE,直线BP,CQ交于点F.①如图2,写出∠BEC和∠BFC的数量关系,并证明;②当点E在直线AB,CD之间时,若∠BEC=40°,直接写出∠BFC的大小.6、如图1,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠BEF=α,∠FHD=β.(1)直接写出∠EFH的度数为;(2)如图2,若HM平分∠CHF,MN平分∠BEF,证明:∠EFH+2∠M=180°;(3)如图3,若∠BEN=1n∠BEF,∠MHC=1n∠FHC,则∠M=.(用含有n,α,β的式子表示)7、如图,已知A(0,a),B(b,0),且满足|a−4|+√b+6=0.(1)求A、B两点的坐标;(2)点P(m,n)在线段AB上,当PB=2P A时,求P点的坐标;(3)若点M(c,6),△ABM的面积记作S△ABM,当S△ABM>10时,直接写出c的取值范围.8、在平面直角坐标系中,已知点A(a,0),B(0,b),若a,b满足(a﹣b+6)2+|2a﹣3b+14|=0.(1)求点A,B的坐标;(2)将线段AB向右平移2个单位至CD,线段CD与y轴交于点E,求点E的坐标;(3)点P为直线CD上一动点,连接BC,PB,若4≤S△BCP<6,则点P的横坐标x P的取值范围是.9、如图,已知AB∥CD,M,N分别是直线AB,CD上一点,点E在直线AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,F是EM上一点,NE平分∠FND,FH平分∠NFE,试探究∠NHF与∠BME 之间的数量关系?并证明你的结论;(3)如图3,P为直线MN上一动点(不与点N重合),过点P作PG⊥MN交直线CD 于点G,∠PNG的角平分线和∠PGC的角平分线交于点O,则∠O的度数为(直接写出结果).10、平面直角坐标系中,A(a,0),B(0,b),a,b均为整数,且满足b=√2a−4−√4−a,点C在y轴负半轴上且S△ABC=10,将线段AB平移到DE,其中点A的对应点是点D.(1)请直接写出点A ,B ,C 的坐标;(2)如图(1),若点D 的坐标为(﹣1,0),点F (m ,n )为线段DE 上一点,且△ACF 的面积大于12,求m 的取值范围;(3)如图(2),若DE 与y 轴的交点G 在B 点上方,点P 为y 轴上一动点,请直接写出∠EBO ,∠BPD ,∠PDA 之间的数量关系.11、在平面直角坐标系中,A (a ,0),B (1,b ),a ,b 满足|a +b ﹣1|+√2a −b +10=0,连接AB 交y 轴于C .(1)直接写出a = ,b = ;(2)如图1,点P 是y 轴上一点,且三角形ABP 的面积为12,求点P 的坐标;(3)如图2,直线BD 交x 轴于D (4,0),将直线BD 平移经过点A ,交y 轴于E ,点Q (x ,y )在直线AE 上,且三角形ABQ 的面积不超过三角形ABD 面积的13,求点Q 横坐标x 的取值范围.12、已知,AB ∥DE ,点C 是直线AB ,DE 下方一点,连接BC ,DC .(1)如图1,求证:∠B +∠D ﹣∠C =180°;(2)如图2,若BF ,DG 分别平分∠ABC 和∠CDE ,BF 、DG 所在的直线相交于点H ,若∠H =α°,求∠C 的度数;(用含α的式子表示)(3)如图3,若BF ,DG 分∠ABC 和∠CDE 为两部分,且∠ABF =n ∠FBC ,∠EDG =n ∠CDG ,直线BF ,DG 相交于点H ,则∠H = .(用含n 和∠C 的式子表示)13、已知,在平面直角坐标系中,点A 在y 轴上,OA =a ,点B (b ,b ),且a 、b 满足√a +b −8+(a −b −4)2=0.(1)则a = ;b = ;(2)如图1,在x 轴上是否存在点C ,使三角形ABC 的面积等于三角形ABO 面积的一半?若存在,请求出点C 的坐标;若不存在,请说明理由;(3)如图2,将线段AB 向左平移m 个单位(m >0),得到线段A 'B ',其中点A ,点B 的对应点分别为点A ',点B '.若点N (﹣1,n )在射线A 'B '上,连接ON ,BN 得到三角形BON ,若三角形BON 的面积大于三角形ABO 面积的12并且小于三角形ABO 面积,则m 的取值范围是 .14、如图1,已知点A (﹣2,0),B (0,﹣4),C (﹣4,﹣6),过点C 作x 轴的平行线m ,一动点P 从C 点出发,在直线m 上以1个单位长度/秒的速度向右运动,与此同时,直线m 以2个单位长度/秒的速度竖直向上运动.(1)直接写出:运动1秒时,点P 的坐标为 ;运动t 秒时,点P 的坐标为 ;(用含t 的式子表示)(2)若点P 在第三象限,且S △ABP =8,求点P 的坐标;(3)如图2,如果将直线AB 沿y 轴负半轴向下平移n 个单位长度,恰好经过点C ,求n 的值.15、已知BE 平分∠ABD ,DE 平分∠BDC ,且∠BED =∠ABE +∠EDC .(1)如图1,求证:AB ∥CD ;(2)如图2,若∠ABE =3∠ABF ,且∠BFD =30°时,试求∠CDF ∠FDE 的值;(3)如图3,若H 是直线CD 上一动点(不与D 重合),BI 平分∠HBD ,画出图形,并探究出∠EBI 与∠BHD 的数量关系.问题探究:(1)如图1,∠CFP +∠EPF =∠AEP ,证明:AB ∥CD ;问题拓展:(2)如图2,AB ∥CD ,∠AEP 的角平分线EK 所在的直线和∠DFP 的角平分线FR 所在的直线交于Q 点,请写出∠EPF 和∠EQF 之间的数量关系,并证明.问题迁移:(3)如图3,AB ∥CD ,直线MN 分别交AB ,CD 于点M ,N ,若点H 在线段MN 上,且∠MEF =α,请直接写出∠HFE ,∠MEH 和∠EHF 之间满足的数量关系(用含α的式子表示).16、当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB 与BC 的夹角∠ABC =α.(1)如图①,若α=90°,判断入射光线EF 与反射光线GH 的位置关系,并说明理由.(2)如图②,若90°<α<180°,入射光线EF 与反射光线GH 的夹角∠FMH =β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD 与BC 的夹角∠BCD =γ(90°<γ<180°),入射光线EF 与镜面AB 的夹角∠1=m (0°<m <90°),已知入射光线EF 从镜面AB 开始反射,经过n (n 为正整数,且n ≤3)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出γ的度数.(可用含有m 的代数式表示)17、在平面直角坐标系中,点A ,C 均在x 轴上,点B 在第一象限,直线AB 上所有点的坐标(x ,y )都是二元一次方程x ﹣y =﹣2的解,直线BC 上所有点的坐标(x ,y )都是二元一次方程2x +y =8的解.(1)求B 点的坐标时,小明是这样想的:先设B 点坐标为(m ,n ),因为B 点在直线AB 上,所以(m ,n )是方程x ﹣y =﹣2的解;又因为B 点在直线BC 上,所以(m ,n )也是方程2x +y =8的解,从而m ,n 满足{m −n =−22m +n =8.据此可求出B 点坐标为 ,再求出A 点坐标为 ;C 点坐标为 .(均直接写出结果)(2)若线段BC 上存在一点D ,使S △OCD =12S △ABC (O 为原点),求D 点坐标;(3)点E (a ,﹣3)是坐标平面内的动点,若满足S △ABE ≤13S △ABC ,求a 的取值范围.18、已知:点E 在直线AB 上,点F 在直线CD 上,AB ∥CD .(1)如图1,连EF ,EP 平分∠AEF ,FP 平分∠CFE ,求∠P 的度数.(2)如图2,若∠EGF =160°,射线EH ,FH 分别在∠AEG ,∠CFG 的内部,且∠EHF =40°,当∠AEG =4∠AEH 时,求∠GFH ∠CFG 的值.(3)如图3,在(1)的条件下,在直线CD 上有一动点M (点M 不与点F 重合),EN 平分∠MEF ,若∠PEN =α(0°<α<90°),请直接写出∠EMF = (结果用含α的式子表示).19、在平面直角坐标系中,A (a ,0),B (b ,b ),C (0,c ).(其中a ,b ,c 均为正数),且a ,b ,c 满足{3a −b +2c =8a −2b −c =−9,若√b 的算术平方根为√2. (1)求a ,b ,c 的值.(2)如图1,在第二象限内有一点P (m ,12),若四边形ACPO 的面积与△ABC 的面积相等,求不等式:x−32≥2x−m 3的解集.(3)如图2,BO 平分∠AOC ,过点C 作CD ∥AB 交BO 的延长线于点D ,AE 平分∠BAX ,AE 的反向延长线交BO 的延长线于点F ,设∠CDB =α,∠F =β(其中α,β均为锐角),请直接写出:α+2β3= .23.(10分)如图1,已知直线l1∥l2,点A、B在直线l1上,点C、D在l2上,线段AD交线段BC于点E,且∠BED=60°.(1)求证:∠ABE+∠EDC=60°;(2)如图2,当F、G分别在线段AE、EC上,且∠ABF=2∠FBE,∠EDG=2∠GDC,标记∠BFE为∠1,∠BGD为∠2.①若∠1﹣∠2=16°,求∠ADC的度数;②当k=时,(k∠1+∠2)为定值,此时定值为.24.(12分)如图1,在平面直角坐标系中,已知A(a,1),B(0,b),且实数a,b满足√a+b−2+|a+2b|=0.(1)直接写出两点坐标:A(),B();(2)如图2,将线段AB沿着横坐标均为m的点组成的直线l对折,A与C对应,B与D 对应,若凸四边形ABDC的面积为18,求m的值;(3)如图3,点P在第二、四象限的角平分线上,设P点坐标为(h,﹣h),其中h≠0.①当P在线段AB上时,求h的值;②若S△ABP≥2+32S△OBP.直接写出h的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何复习专题训练
一、三角形三边关系及内角和问题
1、(1)一个三角形的三边长分别为2,x-1,3,则x 的取值范围是_____________
(2)一个三角形两边的长分别是2cm 和7cm ,第三边的长是偶数,则这个三角形的周长为____________ 2、一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是 __________三角形 3、在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠C =___________ 4、如图,∠A+∠B+∠C+∠D+∠E+∠F=_______________
5、(1)如图,在△ABC 中,P 是∠ABC 和∠ACB 的平分线的交点,试探索∠A 与∠P 的数量关系,并说出你的理由。
(2)如图,在△ABC 中,P 是∠ABC 与∠ACE 的平分线的交点,试探索∠A 与∠P 的数量关系,并说出你的理由。
(3)如图,PB 、PC 别是△ABC 的∠ABC 、∠ACB 的外角角平分线,BP 、CP 相交于P ,试探索∠BPC 与∠A 之间的数量关系,并说出你的理由.
6、如图,在 中,D 是BC 上任意一点,E 是AD 上任意一点。
求证:(1)∠BEC >∠BAC ; (2)AB +AC >BE +EC 。
二、线段的垂直平分线与角平分线转化问题
1、如图,AB=AC ,DE 垂直平分AB 交AB 于D ,交AC 于E ,若△ABC 的周长为28,BC=8,求△BCE 的周长。
变式:如图,如图,△ABC 中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,AE=3cm ,△ADC 的周长为9cm ,则△ABC 的周长是____________
E
C
D
B
A
H
F
E
I
D
C
B
G
A
P
E
D
C
B
A
D
E
C
B
A
P
C
B
A
P
E
C
B
A
2、如图,已知在△ABC 中,AD 垂直平分BC ,AC=EC ,点B 、D 、E 在同一直线上,那么AB+DB=DE 会成立么?为什么?
3、如图,∠ABC ,∠ACB 的平分线交于0,过0作MN ∥BC ,交AB 于M ,交AC 于N 。
求证:BM +NC =MN 。
4如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB
5如图,己知,AD 平分∠BAC ,EF 垂直平分AD ,交BC 延长线于F ,连结AF ,试说明 ∠B=∠CAF.
三、等腰三角形中的分类讨论:
1. 已知等腰三角形的一个内角为75°则其顶角为_________________. 2、等腰三角形中,一个角是另一个角的两倍,求它各角的度数___________________. 3、(1)若等腰三角形的一个外角为70°,则它的底角为________________.
(2)等腰三角形的一个外角等于110°,则顶角的度数为___________________ 4、等腰三角形中,两个内角的比为4:1,则顶角的度数为______________
5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________________ 6、已知一等腰三角形两边为2,4,则它的周长为__________________
7、有一个等腰三角形,三边分别是3x -2,4x -3,6-2x ,等腰三角形的周长为 ___________ 8、(1)等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为________________ (2)等腰三角形的周长是30,其中两边的差是3,则这个三角形的三边分别为________________________
9、一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是
_________________
10、等腰三角形底边长为5cm ,一腰上的中线把周长分成的两部分之差为2cm ,则腰长为_____________ 11、等腰三角形一腰上的高与另一腰所成的夹角为30°,这个等腰三角形的顶角的度数 ___ 12、等腰三角形的一个角是50°,它的一腰上的高与底边的夹角为____________
13、己知在△ABC 中,AB=AC ,AC 边的垂直平分线与AB 边所在的直线相交所得的锐角为38°,则∠C=___________ 14、如图,CA=CB ,DF=DB ,AE=AD ,求∠A 的度数.
15、如图,在△ABC 中,AB=AC ,BC=BD,AD=DE=EB ,求∠A 的度数
F
C
D
B
E A
E
C
D
B
A
B
C
D
A
E
F
C
B A
E
D
16、如图,∠A=16°,AB=BC=CD=DE=EF ,求∠FEM 的度数。
变式:①如图AOB 是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管_______根.
②如图,AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4, ∠B=20°
(1)求∠A 4的度数;(2)根据上述规律,请写出∠A n 的度数。
(请用含n 的代数式表示)
17、如图,D 、E 在△ABC 的边BC 上,AB=AC,AD=AE.求证:BD=CE.
18、已知:△ABC 中,∠BAC=90°,AD 是BC 边上的高,BF 平分∠ABC ,交AD 于E 。
求证:△AEF 是等腰三角形
19、如图所示,在△ABC 中,∠BAC=90°,BD 平分∠ABC ,且∠BDC=2∠ABC.AE ⊥BC 于点E ,交BD 于点F ,试说明△ADF 是等边三角形。
20、如图,在△ABC 中,∠ACB=90°,△ACE 、△CBD 都是等边三角形,试判断EC 与BD 的位置关系,并说明你的结论。
四、折叠问题
如图,己知长方形ABCD ,把△ABC 沿对角线AC 折叠,交AD 于点F ,则△AFC 是一个等腰
三角形吗?为什么?
C
E
M
N
F D
B
A
F
E D
C
A
B
D B
C
A
E
A
A
A
A
E D
C
B A
E
F
D C
B
A。