第十二章 相关与回归汇总

合集下载

第12章 线性相关与回归

第12章  线性相关与回归

所以当计算出样本相关系数r后,
应对r是否来自ρ=0的总体作假设
检验,以判断两变量的总体是否有 直线相关关系。常用的假设检验方 法为t检验,其t值的计算公式为:
r 0 r tr 2 sr 1 r n2 n2
例10.2 对例10.1求得的r值作假
设检验。
1)建立假设并确定检验水准
如果我们主要目的是分析两变 量间是否存在直线相关关系,这时 我们就应进行x和y之间的线性相关
分析。如:我们要分析女大学身高
与体重之间的关系,通过散点图发
现两者有直线趋势,可对两个变量
进行线性相关分析。
直线相关(linear correlation): 是指两变量间存在的关系为直线关 系。又称为简单相关(simple
230 .455 r 0.8012 1000 .909 82.727
即表示男青年身高与前臂长之间存在正 相关关系。但还需作假设检验
三、相关系数的假设检验
相关系数r是根据样本资料计算
出来的,它是总体相关系数ρ的估
计值。若从ρ=0的总体中进行随机
抽样,抽取的样本相关系数也可能
不等于0,这是抽样误差所致。
(3,8365)和(21,36.06)两点,就 可做出本例的直线回归方程的图示。
ˆ 注意:直线必须通过( x ,y )和
纵轴上(0,a)两点,因此,这两点可
以用来核对回归直线绘制是否正确。
四、回归系数的假设检验
抽样研究中,计算出的回归系数 b为样本回归系数,故应考虑假设检 验的问题。即使我们从x、y的总体
r
( x x )( y y ) ( x x ) ( y y)
22Biblioteka l xy l xxl yy

(完整版)第十二章相关和回归分析练习试题

(完整版)第十二章相关和回归分析练习试题

第十二章相关与回归分析一、填空1.如果两变量的相关系数为0,说明这两变量之间_____________。

2.相关关系按方向不同,可分为__________和__________。

3.相关关系按相关变量的多少,分为______和复相关。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。

5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。

6.变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。

7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值cY是服从();(2)分布中围绕每个可能的cY值的()是相同的。

7.已知:工资(元)倚劳动生产率(千元)的回归方程为xyc8010+=,因此,当劳动生产率每增长1千元,工资就平均增加 80 元。

8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。

这种分析方法,通常又称为(回归分析)。

9.积差系数r是(协方差)与X和Y的标准差的乘积之比。

二、单项选择1.欲以图形显示两变量X和Y的关系,最好创建(D )。

A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是( A )。

A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3. 相关关系的种类按其涉及变量多少可分为( )。

A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是( B )。

相关与回归

相关与回归

ei~N(0, 2)
5
2
回归分析概述
• 回归分析假定自变量对因变量的影响强度是始终保持不变的,如 公式所示:
ˆ a bx y
• 对于因变量的预测值可以被分解成两部分:
• 常量(constant):x取值为零时y的平均估计量,可以被看成是一个基线 水平 • 回归部分:它刻画因变量Y的取值中,由因变量Y与自变量X的线性关系所 决定的部分,即可以由X直接估计的部分
3
回归分析概述
ˆ a bx y
• Ŷ:y的估计值(所估计的平均水平),表示给定自变量的取值时, 根据公式算得的y的估计值 • a:常数项,表示自变量取值均为0时因变量的平均水平,即回归 直线在y轴上的截距
• 多数情况下没有实际意义,研究者也不关心
• b:回归系数,在多变量回归中也称偏回归系数。自变量x 改变一 个单位,y估计值的改变量。即回归直线的斜率
4
回归分析概述
• 估计值和每一个实测值之间的差被称为残差。它刻画了因变量y 除了自变量x以外的其它所有未进入该模型,或未知但可能与y有 关的随机和非随机因素共同引起的变异,即不能由x直接估计的 部分。 • 为了方程可以得到估计,我们往往假定i服从正态分布N(0,σ2)。
yi a bx ei
回归与相关的关系
80
80
70
70
60
60
50
50
40 0 20 40 60 80 1 00
Y
40 0 20 40 60 80 1 00
Y
X
Hale Waihona Puke X回归分析概述• 研究一个连续性变量(因变量)的取值随着其它变量(自变量) 的数值变化而变化的趋势 • 通过回归方程解释两变量之间的关系显的更为精确,可以计算出 自变量改变一个单位时因变量平均改变的单位数量,这是相关分 析无法做到的 • 除了描述两变量的关系以外,通过回归方程还可以进行预测和控 制,这在实际工作中尤为重要

十二章节相关与回归分析

十二章节相关与回归分析

亲密者为小。
2024/9/29
29
PRE:用不懂得Y与X有关系时预测Y旳全部误差E1, 减去懂得Y与X有关系时预测Y旳联络误差E2,再将其化 为百分比来度量
PRE
原来的误差 — 后来的误差 后来的误差
E0 E1 E0
PRE旳取值范围是
0≤PRE≤l
削减误差百分比PRE合用于各测量层次旳变量,λ系

pij
f ij FY j
2024/9/29
15
r×c相对频数联合分布列联表
2024/9/29
16
控制X,Y相对频数条件分布列联表
2024/9/29
17
控制Y,X相对频数条件分布列联表
2024/9/29
18
投票行为
受教育程度X
Y
大学以 大学
FY

下列
投票
160
129
289
弃[例权A1]试把下表7所示旳频数61分布列联表6,8 转
2024/9/29
5
4. 单有关和复有关 从变量旳多少上看,单有关只涉及两个变量,亦称二元 有关;三个或三个以上变量之间旳关系称为复有关,亦称多 元有关。 五、直线有关和曲线有关 从变量变化旳形式上看,假如关系近似地体现为一条直 线,称为直线有关或线性有关;假如关系近似地体现为一条 曲线,则称为曲线有关或称为非线性有关。 因为数学手段旳不足,我们以学习线性有关为主。在 统计学中,经过分段处理线性有关也能够用于处理曲线相 关。
100.0% (357)
上表显示,大学以上文化程度和大学下列文化程度一样
各有60%旳人参加投票,40%旳人弃权,并没有因为受教育
程度不同,而使参加投票旳行为有所不同。所以,此时旳两

第十二章相关与回归分析

第十二章相关与回归分析

第十二章 相关与回归分析四、名词解释1.消减误差比例变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的误差0E ,减去知道Y 与X 有关系时预测Y 的误差1E ,再将其化为比例来度量。

将削减误差比例记为PRE 。

2. 确定性关系当一个变量值确定后,另一个变量值夜完全确定了。

确定性关系往往表现成函数形式。

3.非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。

4.因果关系变量之间的关系满足三个条件,才能断定是因果关系。

1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。

5.单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。

三个或三个以上的变量之间的相关关系则称为复相关,又称多元相关。

6.正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。

7.散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X 与Y 的相互关系,即得相关图,又称散点图。

8.皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X 、Y 的标准差乘积的比率。

9.同序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y Y <,则称这一配对是同序对。

10.异序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y >Y ,则称这一配对是异序对。

11.同分对如果在X 序列中,我们观察到i j X =X (此时Y 序列中无i j Y =Y ),则这个配对仅是X 方向而非Y 方向的同分对;如果在Y 序列中,我们观察到i jY =Y (此时X 序列中无i j X =X ),则这个配对仅是Y 方向而非X 方向的同分对;我们观察到i j X =X ,也观察到i j Y =Y ,则称这个配对为X 与Y 同分对。

[课件]数学建模 相关分析与回归分析 清华大学PPT

[课件]数学建模 相关分析与回归分析  清华大学PPT
**** *
r>0
** * * * ** **** * ** * *
**
***
r <0 表 示大体 上 Y随 着X增 加而递 减。
* * * * ** **** ** * * ** *** ** *
r<0
** **
* * * *
*** *
*** * * *
r0
*
*
*
*
* * * * * * * * *
1)假设回归方程不显著 H0:方程不显著 H1:方程显著
ˆy 2/1 y ˆ 2 / n 2 yy
2)计算回归方程的F统计量 F= 回归平方和/自由度(f1) 剩余平方和/自由度(f2)



3)给定显著性水平和两个自由度,查F分布表,得到相应临界值F
4)若F>F,拒绝H0,回归方程显著; 若FF,不能拒绝H0,x与y之间的关系不明显或无关系,回归方程不 显著
计算回归系数b的t值:
t
2
b

b
S
b
2 a y b xy / n 2 y S y S 2 2 b 2 n x x x x


1428879 ( 8 . 3 ) 4087 0 . 5175 2824500 / 12 2
模块BASE中的过程CORR可方便地用于计算变量之间的 相互关系:计算数据集FITNESS中OXYGEN,MAXPULSE, RSTPULSE三个变量和另三个变量RUNTIME,RUNPULSE, WEIGHT之间的相关系数。
以下可看出变量MAXPULSE和RUNPULSE有最大的正相关,OXYGEN 和RUNTIME负相关的绝对值最大,RSTPLUSE和WEIGHT的相关的绝 对值最小。

第十二章直线相关与回归

第十二章直线相关与回归

第十二章直线相关与回归A型选择题〔、若计算得一相关系数r=0.94,则()A、x与y之间一定存在因果关系B、同一资料作回归分析时,求得回归系数一定为正值C、同一资料作回归分析时,求得回归系数一定为负值D求得回归截距a>0E、求得回归截距a^ 02、对样本相关系数作统计检验(H o =0),结果r r°.05(v),统计结论是()。

A、肯定两变量为直线关系B、认为两变量有线性相关C、两变量不相关B. 两变量无线性相关E、两变量有曲线相关3、若A「0.05(如」2血。

^),则可认为()。

A. 第一组资料两变量关系密切B. 第二组资料两变量关系密切C. 难说哪一组资料中两变量关系更密切D两组资料中两变量关系密切程度不一样E、以上答案均不对4、相关分析可以用于()有无关系的研究A、性别与体重B、肺活量与胸围C、职业与血型D国籍与智商E、儿童的性别与体重5、相关系数的假设检验结果,则在〉水平上可认为相应的两个变量间()A、有直线相关关系B、有曲线相关关系C、有确定的直线函数关系D有确定的曲线函数关系E、不存在相关关系6根据样本算得一相关系数r,经t检验,P v 0.01说明()A、两变量有高度相关B、r来自高度相关的相关总体C、r来自总体相关系数p的总体D r来自卩工0的总体E、r来自p>0的总体7、相关系数显著检验的无效假设为()A、r有高度的相关性B、r来自p工0的总体C、r来自p = 0的总体D r与总体相关系数p差数为0E、r来自p>0的总体8、计算线性相关系数要求()A. 反应变量Y呈正态分布,而自变量X可以不满足正态分布的要求B. 自变量X呈正态分布,而反应变量丫可以不满足正态分布的要求C. 自变量X和反应变量丫都应满足正态分布的要求D. 两变量可以是任何类型的变量E. 反应变量Y要求是定量变量,X可以是任何类型的变量9、对简单相关系数r进行检验,当检验统计量t r>t 0.05(V)时,可以认为两变量x 与丫间()A. 有一定关系B. 有正相关关系C. 无相关关系D. 有直线关系E. 有负相关关系10、相关系数反映了两变量间的()A、依存关系B、函数关系C、比例关系D相关关系E、因果关系11、|r| “0.05/2,(2)时,则在G =0.05水准上可认为相应的两变量X、丫间()。

《相关与回归分析》

《相关与回归分析》

第十二章 相关与回归分析四、名词解释1.消减误差比例变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的误差0E ,减去知道Y 与X 有关系时预测Y 的误差1E ,再将其化为比例来度量。

将削减误差比例记为PRE 。

2. 确定性关系当一个变量值确定后,另一个变量值夜完全确定了。

确定性关系往往表现成函数形式。

3.非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。

4.因果关系变量之间的关系满足三个条件,才能断定是因果关系。

1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。

5.单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。

三个或三个以上的变量之间的相关关系则称为复相关,又称多元相关。

6.正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。

7.散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X 与Y 的相互关系,即得相关图,又称散点图。

8.皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X 、Y 的标准差乘积的比率。

9.同序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y Y <,则称这一配对是同序对。

10.异序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y >Y ,则称这一配对是异序对。

11.同分对如果在X 序列中,我们观察到i j X =X (此时Y 序列中无i j Y =Y ),则这个配对仅是X 方向而非Y 方向的同分对;如果在Y 序列中,我们观察到i j Y =Y (此时X 序列中无i j X =X ),则这个配对仅是Y 方向而非X 方向的同分对;我们观察到i j X =X ,也观察到i j Y =Y ,则称这个配对为X 与Y 同分对。

回归及相关分析PPT课件

回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述

(完整版)第十二章相关和回归分析练习试题

(完整版)第十二章相关和回归分析练习试题

第十二章相关与回归分析一、填空1. 如果两变量的相关系数为0,说明这两变量之间__ 。

2.相关关系按方向不同,可分为_____ 和________ 。

3. 相关关系按相关变量的多少,分为和复相关。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。

5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。

6.变量间的相关程度,可以用不知Y与 X有关系时预测 Y的全部误差 E1,减去知道 Y与 X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。

7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个1)实际观察值 Y 围绕每个估计值 Y c是服假定:从();(2)分布中围绕每个可能的 Y c 值的()是相同的。

7. 已知:工资(元)倚劳动生产率(千元)的回归方程为yc 10 80x,因此,当劳动生产率每增长 1 千元,工资就平均增加 80 元。

8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。

这种分析方法,通常又称为(回归分析)。

9.积差系数 r 是(协方差)与 X 和 Y 的标准差的乘积之比。

二、单项选择1.欲以图形显示两变量 X 和 Y 的关系,最好创建( D )。

A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。

A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3.相关关系的种类按其涉及变量多少可分为()。

A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。

第十二章直线相关与回归

第十二章直线相关与回归

第十二章直线相关与回归【A1型题】1.在y和x的回归分析中,若tb<t0.05,υ可认为A. 两变量存在线性相关关系B. 两变量不存在任何关系C. 样本回归系数和总体回归系数(β=0 ) 相等的可能性P>95%D. 两变量无线性相关E. 以上都不是2. sy·x和sb分别表示A. y对的离散度和b的抽样误差B. y对x的离散度和b的离散度C. y的离散度和b的离散度D. y对的离散度和y的标准估计误差E. y的离散度和b的变异3.欲分析肺活量和身高之间的数量关系,拟用身高值预测肺活量值,则应采用A. 秩相关分析B. 相关分析C. 直线回归分析D. 多元回归分析E. 以上都不是4.若r>r0.05(ν),则A. P>0.05B. P≤0.05C. P>0.01D. P≥0.05E. P<0.055.若对两个变量进行直线相关分析,r=0.39,P>0.05,则说明两个变量之间A. 有伴随关系B. 有数量关系C. 有因果关系D. 有相关关系E. 无相关关系6.对相关系数r进行假设检验,当r>r0.05(ν),则A. 两变量之间关系密切B. 两变量之间相关有统计学意义C. 两变量之间关系不密切D. 两变量之间相关无统计学意义E. 以上都不是7.对两个数值变量同时进行了相关和回归分析,r有统计学意义(P<0.05),则A. b有高度的统计学意义B. b无统计学意义C. b有统计学意义D. 不能肯定b有无统计学意义E. 以上都不是8.某研究者测定60个中学生的身高,询问了他们每天的睡眠时间,并计算了等级相关系数,检验其统计学意义,查表时,n应为A. 2B. 1C. 58D. 60E. 599.某研究者测定了睡眠时间和焦虑症状评分,若想研究两者之间的相关性,应计算的指标是A. rB. tC. b2D. uE. b10.某医师拟制作标准曲线,用光密度值来推测食品中亚硝酸盐的含量,应选用的统计方法是A. u检验B. 回归分析C. 相关分析D. χ2检验E. q检验11.在直线回归分析中,回归系数b的绝对值越大A. 所绘散点越靠近回归线B. 所绘散点越远离回归线C. 回归线在y轴上的截距越大D. 回归线对x轴越平坦E. 回归线对x轴越陡【B型题】A.B.C.D. SbE. Sy12.直线回归分析中,反映扣除x的影响后y的变异程度的指标是13.直线回归分析中,反映在y的总变异中由于x与y的直线关系而使y变异减小的部分,也就是在总平方和中可以用x解释的部分即14.直线回归分析中,反映当x为某定数时个体y值变异程度的指标是15.直线回归分析中,反映x对y的线性影响之外的一切因素对y的变异的作用是【X型题】16. 对某样本的相关系数r和0的差别进行假设检验,结果为tr<t0.05,ν,因此A. 两变量存在直线相关的可能性小于5%B. 如果样本来自ρ=0的总体,得出该r值的概率大于5%C. 如果样本来自ρ=0的总体,得出该r值的概率小于5%D. 两变量的差别无显著性E. r≠0是抽样误差所致17.在作直线回归分析时,选定自变量x的原则一般为A. 两变量间无因果关系,以变异较小者为xB. 两变量间无因果关系,以变异较大者为xC. 两变量间有因果关系,以"因"为xD. 两变量间有因果关系,以"果"为xE. x是可以精确测量和严格控制的变量18.相关系数r的数值A. 可以为负值B. 可以为正值C. 可等于1D. 可大于1E. 可等于-1【名词解释】19. 回归系数20. 截距21. 相关系数22. 等级相关23. 直线回归【简答题】24. 直线回归与相关分析的区别与联系是什么25. 进行直线相关与回归分析时应注意哪些问题26. 什么是剩余标准差?其作用如何27. 为何应该对样本相关系数和样本回归系数都应该进行假设检验28. 直线回归方程可应用在哪些方面29. 用什么方法来确定一条回归直线【应用题】30. 现有12名糖尿病患者血糖和胰岛素的测量数据列于下表中,试对其进行直线相关与回归分析表 12名糖尿病患者血糖(mmol/L)和胰岛素(mU/L)的测量数据编号123456789101112胰岛素17141912916182124171710血糖9.511.610.811.412.49.810.18.67.911.210.612.831. 某课题组测量了16名18~22岁男大学生的肺活量与身高,结果如下表,请进行直线相关与回归分析编号身高(m)x肺活量(L)y编号身高(m)x肺活量(L)y11.7424.65091.7084.02221.7184.278101.6984.07731.7144.420111.7144.31841.7124.379 121.6744.03951.7204.365131.6833.85061.7044.222141.6703.62571.7093.973151.6793.87 481.7294.290161.6923.91132 .某省卫生防病中心对10个城市进行肺癌死亡回顾调查,并对大气中苯并(a)芘进行监测,结果如下表,试检验两者有无相关城市编号12345678910肺癌标化死亡率(1/10万)5.6018.5016.2311.4013.808.1318.0012.1015.309.70苯并(a)芘(μg/100m3)0.051.171.050.100.750.500.651.200.950.65参考答案【A1型题】26.1. D2. A3. C4. E5. E6. B7. C8. D9. A10. B11. E【B型题】12.12. C13. B14. E15. A【X型题】16.16. BE17. CE18. ABCE【应用题】30.相关系数=-0.9037,P<0.05回归方程为=15.448-0.302x ,P<0.0531.相关系数=0.874,P<0.05回归方程为=-15.392+11.464x ,P<0.0532.rs=0.676,P<0.05???? ?? ??-7-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 相关与回归分析第一节 变量之间的相关关系 相关程度与方向·因果关系与对称关系 第二节 定类变量的相关双变量交互分类(列联表)·削减误差比例(PRE )·λ系数与τ系数 第三节 定序变量的相关分析同序对、异序对和同分对·Gamma 系数·肯德尔等级相关系数(τa 系数、τb与τc 系数)·萨默斯系数(d 系数)·斯皮尔曼等级相关(ρ相关)·肯德尔和谐系数第四节 定距变量的相关分析相关表和相关图·积差系数的导出和计算·积差系数的性质 第五节 回归分析线性回归·积差系数的PRE 性质·相关指数R 第六节 曲线相关与回归可线性化的非线性函数·实例分析(二次曲线指数曲线)一、填空1.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,依变量则一般是( 随机性 )变量。

2.变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的全部误差E 1,减去知道Y 与X 有关系时预测Y 的联系误差E 2,再将其化为比例来度量,这就是( 削减误差比例 )。

3.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y 围绕每个估计值c Y 是服从( );(2)分布中围绕每个可能的c Y 值的( )是相同的。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为( 变化根据 )的变量,因变量是随( 自变量 )的变化而发生相应变化的变量。

5.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为( 回归方程 ),并据以进行估计和预测。

这种分析方法,通常又称为( 回归分析 )。

6.积差系数r 是( 协方差 )与X 和Y 的标准差的乘积之比。

二、单项选择1.当x 按一定数额增加时,y 也近似地按一定数额随之增加,那么可以说x 与y 之间 存在( A )关系。

A 直线正相关B 直线负相关C 曲线正相关D 曲线负相关2.评价直线相关关系的密切程度,当r在0.5~0.8之间时,表示( C )。

A 无相关B 低度相关C 中等相关D 高度相关3.相关分析和回归分析相辅相成,又各有特点,下面正确的描述有( D )。

A在相关分析中,相关的两变量都不是随机的;B在回归分析中,自变量是随机的,因变量不是随机的;C在回归分析中,因变量和自变量都是随机的;D在相关分析中,相关的两变量都是随机的。

4.关于相关系数,下面不正确的描述是( B )。

≤r1时,表示两变量不完全相关;A当0≤B当r=0时,表示两变量间无相关;C两变量之间的相关关系是单相关;D如果自变量增长引起因变量的相应增长,就形成正相关关系。

5.欲以图形显示两变量X和Y的关系,最好创建( D )。

A 直方图B 圆形图C 柱形图D 散点图6.两变量X和Y的相关系数为0.8,则其回归直线的判定系数为( C )。

A 0.50B 0.80C 0.64D 0.907.在完成了构造与评价一个回归模型后,我们可以( D )。

A 估计未来所需样本的容量B 计算相关系数和判定系数C 以给定的因变量的值估计自变量的值D 以给定的自变量的值估计因变量的值8.两变量的线性相关系数为0,表明两变量之间( D )。

A 完全相关B 无关系C 不完全相关D 不存在线性相关9.身高和体重之间的关系是( C )。

A 函数关系B 无关系C 共变关系D 严格的依存关系10.在相关分析中,对两个变量的要求是( A )。

A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数11.在回归分析中,两个变量( D )。

A 都是随机变量B 都不是随机变量C 自变量是随机变量D 因变量是随机变量12.一元线性回归模型和多元线性回归模型的区别在于只有一个( B )。

A 因变量B 自变量C 相关系数D 判定系数13.以下指标恒为正的是( D )。

A 相关系数rB 截距aC 斜率bD 复相关系数14.下列关系中,属于正相关关系得是( A )。

A 身高与体重B 产品与单位成本C 正常商品的价格和需求量D 商品的零售额和流通费率三、多项选择1.关于积差系数,下面正确的说法是(ABCD )。

A 积差系数是线性相关系数B 积差系数具有PRE性质C 在积差系数的计算公式中,变量X和Y是对等关系D 在积差系数的计算公式中,变量X和Y都是随机的2.关于皮尔逊相关系数,下面正确的说法是()。

A 皮尔逊相关系数是线性相关系数B 积差系数能够解释两变量间的因果关系C r公式中的两个变量都是随机的D r的取值在1和0之间E 皮尔逊相关系数具有PRE性质,但这要通过r2加以反映3.简单线性回归分析的特点是(ABE )。

A 两个变量之间不是对等关系B 回归系数有正负号C 两个变量都是随机的D 利用一个回归方程,两个变量可以互相推算E 有可能求出两个回归方程4.反映某一线性回归方程y=a+bx好坏的指标有(ABD )。

A 相关系数B 判定系数C b的大小D 估计标准误E a的大小5.模拟回归方程进行分析适用于(ACDE )。

A 变量之间存在一定程度的相关系数B 不存在任何关系的几个变量之间C 变量之间存在线性相关D 变量之间存在曲线相关E 时间序列变量和时间之间6.判定系数r2=80%和含义如下(ABC )。

A 自变量和因变量之间的相关关系的密切程度B 因变量y的总变化中有80%可以由回归直线来解释和说明C 总偏差中有80%可以由回归偏差来解释D 相关系数一定为0.64E 判定系数和相关系数无关7.回归分析和相关分析的关系是(ABE )。

A 回归分析可用于估计和预测B 相关分析是研究变量之间的相互依存关系的密切程度C 回归分析中自变量和因变量可以互相推导并进行预测D 相关分析需区分自变量和因变量E 相关分析是回归分析的基础8.以下指标恒为正的是(BC )。

A 相关系数B 判定系数C 复相关系数D 偏相关系数E 回归方程的斜率9.一元线性回归分析中的回归系数b可以表示为(BC)A 两个变量之间相关关系的密切程度B 两个变量之间相关关系的方向C 当自变量增减一个单位时,因变量平均增减的量D 当因变量增减一个单位时,自变量平均增减的量E 回归模型的拟合优度10.关于回归系数b ,下面正确的说法是( )。

A b 也可以反映X 和Y 之间的关系强度。

; B 回归系数不解释两变量间的因果关系; C b 公式中的两个变量都是随机的;D b 的取值在1和-1之间;E b 也有正负之分。

四、名词解释1.消减误差比例变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的误差0E ,减去知道Y 与X 有关系时预测Y 的误差1E ,再将其化为比例来度量。

将削减误差比例记为PRE 。

2. 确定性关系当一个变量值确定后,另一个变量值夜完全确定了。

确定性关系往往表现成函数形式。

3.非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。

4.因果关系变量之间的关系满足三个条件,才能断定是因果关系。

1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。

5.单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。

三个或三个以上的变量之间的相关关系则称为复相关,又称多元相关。

6.正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。

7.散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X 与Y 的相互关系,即得相关图,又称散点图。

8.皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X 、Y 的标准差乘积的比率。

9.同序对 在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y Y <,则称这一配对是同序对。

10.异序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y >Y ,则称这一配对是异序对。

11.同分对如果在X 序列中,我们观察到i j X =X (此时Y 序列中无i j Y =Y ),则这个配对仅是X 方向而非Y 方向的同分对;如果在Y 序列中,我们观察到i jY =Y (此时X 序列中无i j X =X ),则这个配对仅是Y 方向而非X 方向的同分对;我们观察到i j X =X ,也观察到i j Y =Y ,则称这个配对为X 与Y 同分对。

五、判断题1.由于削减误差比例的概念不涉及变量的测量层次,因此它的优点很明显,用它来定义相关程度可适用于变量的各测量层次。

(√)2.不管相关关系表现形式如何,当r=1时,变量X和变量Y都是完全相关。

(√)3.不管相关关系表现形式如何,当r=0时,变量X和变量Y都是完全不相关。

(×)4.通过列联表研究定类变量之间的关联性,这实际上是通过相对频数条件分布的比较进行的。

而如果两变量间是相关的话,必然存在着Y的相对频数条件分布相同,且和它的相对频数边际分布相同。

(×)5.如果众数频数集中在条件频数分布列联表的同一行中, 系数便会等于0,从而无法显示两变量之间的相关性。

(√)6.从分析层次上讲,相关分析更深刻一些。

因为相关分析具有推理的性质,而回归分析从本质上讲只是对客观事物的一种描述,知其然而不知其所以然。

(×)六、计算题1.对某市市民按老中青进行喜欢民族音乐情况的调查,样本容量为200人,调查结果示于下表,试把该频数列联表:①转化为相对频数的联合分布列联表②转化为相对频数的条件分布列联表;③指出对于民族音乐的态度与被调查者的年岁有无关系,并说明理由。

2.已知十名学生身高和体重资料如下表,(1)根据下述资料算出身高和体重的皮尔逊相关系数和斯皮尔曼相关系数;(2)根据下述资料求出两变量之间的回归方程(设身高为自变量,体重为因变量)。

3.假定有不同文化程度的35~45岁育龄妇女100人的生育情况如下表,求文化程度与平均生育数的相关系数r。

4.某市有12所大专院校,现组织一个评审委员会对各校校园及学生体质进行评价,结果如下,试求环境质量与学生体质的关系的斯皮尔曼相关系数和肯得尔等级相关系数。

【斯皮尔曼相关系数:0.94,肯德尔等级相关系数:0.83】5.以下是婚姻美满与文化程度的抽样调查的结果,请计算婚姻美满与文化程度之Gamma 【τc =0.18】6.以下为两位评判员对10名参赛人名次的打分。

相关文档
最新文档