质粒DNA的提取、纯化与鉴定(最新整理)
质粒DNA的提取和纯化

质粒DNA的提取和纯化一、实验目的掌握碱法小量提取质粒DNA。
二、实验内容质粒DNA的小量提取。
三、实验原理所有分离质粒DNA的方法都包括三个基本步骤:培养细菌扩增质粒;收集和裂解细菌;分离和纯化质粒DNA。
将细菌悬浮液暴露于高pH值的强阴离子洗涤剂中,会使细胞壁破裂,将质粒DNA释放到上清液中。
碱性溶剂使碱基配对完全被破坏,闭环质粒DNA双链由于处于拓扑缠绕状态而不能彼此分开。
当pH值恢复到中性时,重新形成完全天然地超螺旋结构。
在裂解过程中,细菌蛋白质、破裂的细胞壁和变性的染色体DNA会相互缠绕成大型复合物,与PDS一起沉淀。
离心除去变性剂,从上清液中回收复性的质粒DNA。
四、实验方法与步骤㈠细菌培养和收集将带有pUC19质粒的大肠杆菌接种在LB固体培养基(含100μg/ml Amp)中,37℃培养12~24小时。
在超净工作台中用无菌的牙签挑取平板培养基上的单菌落接种到25ml LB液体培养基(含100μg/ml Amp)中,37℃振荡培养(220rpm)约18小时至对数生长后期(OD600=0.6)。
㈡碱法小量提取质粒DNA1、将菌液倒入1.5ml的微量离心管中,于4℃12000rpm离心30秒,弃去上清液,将剩余的培养物贮存于4℃。
重复3次,以得到较多的细菌沉淀(视具体情况而定)。
2、将微量离心管开口倒置在卫生纸上,使离心管底部的液体流尽。
3、加入100μl用冰预冷的溶液I,在涡旋振荡器上剧烈振荡,将沉淀彻底悬浮,然后室温放置5分钟。
4、加入200μl现配的溶液II,盖紧管口,轻轻快速颠倒离心管(不要振荡,以避免DNA断裂),使混合物混匀,冰浴2~5分钟。
5、加入150μl预冷的溶液III,盖紧管口,温和颠倒混匀,使粘稠地细菌裂解物均匀地分布于溶液III中,冰浴2~5分钟。
6、4℃,12000rpm离心10分钟。
将上清液转入另一只1.5ml离心管中,加入0.6倍体积的异丙醇,室温放置10分钟。
质粒DNA的抽提与纯化(附注问题非常详细)

质粒DNA的抽提与纯化(附注问题非常详细)第一篇:质粒DNA的抽提与纯化 (附注问题非常详细)质粒DNA的抽提与纯化(附注问题非常详细)目的:采用碱变性法,学习小规模制备质粒DNA的技术原理:碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。
在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
仪器与主要试剂仪器(见附录):主要试剂:溶液I:50 mmol/L 葡萄糖10 mmol/L EDTA 25 mmol/L Tris-HCl(pH 8.0)2毫克/毫升溶菌酶溶液II:200 mmol/L NaOH 1% SDS 溶液III:3 mol/L NaAc(pH4.8)溶液TE缓冲液:10 mmol/L Tris-HCl ,pH 7.5 1 mmol/L EDTA实验方法:1.将大肠杆菌菌落挑取一环接种在含有2毫升加入抗菌素的LB 液体培养基的10毫升试管里,37℃振培过夜,16~18小时2.转移以上菌液1.5毫升于EP管中,8000rpm离心30秒3.小心去除上清,并用吸水纸吸干残余液体,再将沉淀物在振荡器上振匀4.加入溶液I 100μl,盖紧EP管盖,翻转数次,冰上放置10分钟5.加入溶液II 200μl,温和翻转EP管5次(可观察到溶液逐步由混浊变为透明),冰上放置5分钟6.加入溶液III 150μl,将EP管盖紧后累累来回翻转23次,混匀后冰上放置20分钟7.12000rpm离心15分钟8.将上清转移到另一个EP管中(吸取时不可吸入底部的沉淀)。
质粒dna的提取与鉴定实验报告

质粒DNA的提取与鉴定实验报告引言质粒DNA的提取与鉴定是分子生物学实验中常用的技术之一。
质粒DNA是一种圆形的DNA分子,广泛存在于细菌和真核生物中。
提取和鉴定质粒DNA能够帮助研究人员进行基因克隆、基因表达调控等实验。
本实验旨在介绍质粒DNA的提取与鉴定步骤,以供初学者了解和学习。
实验材料•细菌培养物•质粒DNA提取试剂盒•去离子水• 1.5 mL离心管•微量离心管•离心机实验步骤步骤一:培养细菌并收获培养物1.取一支含有目标质粒的细菌培养物,将其接种至含有适当抗生素的培养基中。
2.在37℃恒温摇床上培养过夜,确保细菌得到充分生长。
步骤二:收获细菌培养物1.将培养基离心机中以12000转/分钟离心2分钟,以沉淀细菌细胞。
2.弃去上清液,将细菌细胞沉淀保留在离心管中。
步骤三:质粒DNA的提取1.选择一款质粒DNA提取试剂盒,按照说明书中的步骤操作。
不同试剂盒所用方法有所差异,详细操作请参照试剂盒说明书。
2.在质粒DNA提取试剂盒提供的试剂中加入细菌细胞,充分混合。
3.通过离心将细菌细胞裂解,释放出质粒DNA。
不同试剂盒所用离心条件有所不同,一般为高速离心1-3分钟。
4.弃去上清液,留下含有裂解细胞的混悬液。
步骤四:质粒DNA的纯化1.将质粒DNA混悬液转移到新的离心管中。
2.加入适量的洗涤缓冲液,充分混合。
3.通过离心将质粒DNA沉淀,弃去上清液。
4.加入适量的洗涤缓冲液,充分混合。
5.通过离心将质粒DNA沉淀,弃去上清液。
6.加入适量的洗涤缓冲液,充分混合。
7.通过离心将质粒DNA沉淀,弃去上清液。
8.加入适量的洗涤缓冲液,充分混合。
9.通过离心将质粒DNA沉淀,弃去上清液。
10.加入适量的洗涤缓冲液,充分混合。
11.通过离心将质粒DNA沉淀,弃去上清液。
12.使用去离子水溶解沉淀的质粒DNA,使其浓度适宜。
步骤五:质粒DNA的鉴定1.使用紫外可见光分光光度计测定溶解后的质粒DNA的浓度。
2.准备一份对照组,即只含有去离子水的样品。
(整理)质粒DNA的提取与检测

质粒DNA 的提取与检测1 概述细菌质粒是一些双链、闭环的DNA分子,其大小范围从1kb至2000kb不等。
已经存在形形色色的细菌类群中发现质粒,这些质粒都是独立于细菌染色体之外进行复制和遗传的遗传单位。
然而,它们又依赖于宿主编码的酶和蛋白质来进行复制和转录。
通常,质粒含有编码某些酶的基因,这些酶事实上在一定的环境下可能对细菌宿主有利。
由质粒产生的表型包括对抗生素的抗性、产抗生素、降解复杂有机化合物以及产生大肠杆菌素、肠毒素及限制酶与修饰酶等。
质粒DNA的复制由负责复制细菌染色体的多种酶来完成,但是不同的质粒在宿主体内所采用的酶迥然不同,而且在宿主中复制的程度也相差悬殊。
一些质粒的拷贝数可高达700个/细胞,而另一些则只能维持在每套宿主细胞染色体仅对应l个质粒分子的最低水平上。
控制质粒拷贝数的基因处于包括DNA 复制起点在内的一个质粒DNA 区域内。
通常情况下,一个质粒只含有一个复制起始区(复制子)。
目前使用的大多数载体都带有一个来源于pMB1质粒的复制子。
在正常生长条件下,每个细菌细胞中可维持至少15~20个拷贝(带有该复制子的质粒)。
一般认为,这种多拷贝的质粒是以松弛方式进行复制的。
pMB1 复制子的复制并不需要质粒编码的功能蛋白,而是完全依靠宿主提供的半寿期较长的酶。
因此,即使蛋白质合成并非正在进行,复制依然能够进行。
这样,当抑制蛋白质合成并阻断细菌染色体复制的氯霉素或壮观霉素等抗生素存在时,带有pMB1复制子的质粒将继续复制,最后每个细胞中可以积聚两三千个拷贝。
单向复制从DNA 复制起点开始,由一个RNA 引物所引导,该引物的启动子位于复制起点上游大约550bp处。
新生的RNA与DNA模板形成稳定的杂交体,作为RNA 酶H 的底物,由RNA 酶H 切割从而产生引导DNA 合成的引物。
而RNAⅡ的成熟则由另一个不翻译的RNA小分子(RNA I)所控制。
RNA I编码RNAⅡ的同一区段的DNA 的互补链转录而来,它可与RNA Ⅱ结合,并阻止RNA Ⅱ折叠为三叶草结构,而三叶草结构对于形成稳定的DNA-RNA 杂交体又是必不可少的。
质粒DNA的提取及鉴定

二、实验原理
当pH=4.8的乙酸钾将其pH调到中性时,变性的质粒 DNA又恢复到原来的构型,而染色体DNA不能复性, 形成缠绕的致密网状结构。同时,在反应体系中变性 的蛋白质会形成大量沉淀以及十二烷基磺酸钾沉淀, 染色体DNA会进一步缠绕在这些沉淀上。离心后,染 色体DNA与蛋白质-SDS复合物等一起沉淀下来而被除 去,质粒DNA留在上清里。
水平电泳装置
四、实验操作
1、用碱裂解法提取质粒DNA:挑选单菌落小规模扩增后, 将2 mL含相应抗生素的 LB加入到容量为15 mL并通气良好的 试管中,然后接种入一单菌落,于37℃剧烈振摇下培养过夜, 收集细菌。
2、将细菌团块重悬于100μL用冰预冷的溶液Ⅰ(150 mmol/L 葡萄糖,25 mmol/L Tris–HCl,pH8.0,10 mmol/L EDTA, pH8.0)中剧烈振荡。加200μL新配制的溶 液Ⅱ(0.2mol/L Na0H, 1%SDS)盖紧管口,快速颠倒离心管5 次,将离心管放置于冰上。
3)制备质粒过程中,所有操作必须缓和,不要剧烈振荡,以避免机械 剪切力对DNA的断裂作用。同时也应防止DNase引起DNA的降解。
4)加入醋酸钾溶液后,可用小玻棒轻轻搅开团状沉淀物,防止质粒 DNA可能被包埋在沉淀物内,不易释放出来。溶解DNA,加入等体积 酚/氯仿抽提,取水相再用乙醇沉淀DNA。
四、实验操作
3、对提取的质粒DNA进行纯化及酶切鉴定: 琼脂糖凝胶电泳检测质粒DNA,采用胶回收 试剂盒纯化质粒DNA;分析质粒DNA的限制 性酶切图谱,选择合适的限制性内切酶对质 粒DNA进行酶切,琼脂糖凝胶电泳鉴定酶切 产物。
五、 结果处理
利用凝胶成像系统进行检测
闭环(螺旋) 闭环(超螺旋) 开环(部分解链 )
(完整版)质粒DNA的提取、纯化与鉴定

(完整版)质粒DNA的提取、纯化与鉴定分子生物学实验报告题目:质粒DNA的提取、纯化与鉴定姓名:学号:班级:时间:一、实验目的:1.学习并掌握凝胶电泳进行DNA的分离纯化的实验原理。
2.学习并掌握凝胶的制备及电泳方法。
3.学习并掌握凝胶中DNA的分离纯化方法。
4.掌握碱变性提取发的原理及各种试剂的作用。
5.掌握碱变性法提取质粒DNA的方法。
二、实验原理:1.质粒DNA的提取——碱变性提取法:提取和纯化质粒DNA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard 法等。
其中,碱变性提取法最为经典和常用,适于不同量质粒DNA的提取。
该方法操作简单,易于操作,一般实验室均可进行。
提取质粒DNA纯度高,可直接用于酶切、序列测定及分析。
EB-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DNA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DNA多为超螺旋构型等优点,但提取成本高,需要超速离心设备。
少量提取质粒DNA还可用沸水浴法、Wizard法等,沸水浴法提取的质粒DNA中常含有RNA,但不影响限制性核酸内切酶的消化、亚克隆及连接反应等。
碱变性法提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。
在细菌细胞中,染色体DNA以双螺旋结构存在,质粒DNA以共价闭合环状形式存在。
细胞破碎后,染色体DNA和质粒DNA均被释放出来,但两者变性与复性所依赖的溶液pH值不同。
在pH值高达12.0的碱性溶液中,染色体DNA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。
当用pH值4.6的KAc(或NaAc)高盐溶液调节碱性溶液至中性时,变性的质粒DNA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DNA不能复性,而是与不稳定的大分子RNA、蛋白质-SDS 复合物等一起形成缠连的、可见的白色絮状沉淀。
实验十一 细菌质粒DNA的提取和纯化

实验十一细菌质粒DNA的提取和纯化一、实验目的:通过细菌质粒DNA的提取,掌握共价闭合环状DNA的提取方法。
二、实验原理:1、细菌中有两种DNA,即染色体DNA和质粒DNA。
2、质粒DNA的提取方法有三种:碱裂解法、煮沸法和去污剂(如Triton 和SDS)裂解法。
3、碱裂解法比较剧烈,可破坏碱基配对,使宿主细胞DNA变性,共价闭合环状DNA由于空间缠绕,两条链不会彻底分开。
当外界条件到达复性条件时,质粒DNA的双链又迅速恢复原状,而较大的线性染色体DNA难以复性。
当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。
纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。
例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。
对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在实验室中常用。
三、实验材料:含有PMD19质粒的大肠杆菌(E. coli.)菌液四、实验用具和药品:实验用具:摇床、离心机、移液器及枪头、玻璃试管(15mL)及塞子、离心管(1.5mL)。
实验药品:五、实验步骤:(一)细菌繁殖第1天晚上:吸取含质粒的菌液2μL,转移入2mL LB(加入相应抗生素),37℃,过夜振荡(200r/min)培养。
(二)菌体收集第2天早晨(时间:约2-3h左右): 1、将过夜培养的菌体转入1.5mL离心管,5000r/min离心30sec;2、弃上清(三)碱裂解法提取质粒DNA1、将上述沉淀重悬于100μL冰预冷的溶液Ⅰ中,剧烈震荡(须使沉淀完全分散) (葡萄糖:悬浮细胞;EDTA;抑制DNAase)10次,该过程应小2、加入200μL溶液Ⅱ,盖紧管口,轻柔颠倒离心管5~于5min;(NaOH:溶解细胞膜,释放DNA;SDS)10次,3、加入150μL冰预冷的溶液Ⅲ,盖紧管口,温和地颠倒离心管5~该过程大于5min;(乙酸钾:和SDS 反应生成PDS(十二烷基硫酸钾),沉淀蛋白,同时体积较大的染色体DNA也一起沉淀;冰乙酸:中和NaOH )4、10000r/min离心5min;5、上清转移到另一新1.5mL离心管中;6、加入2倍体积的无水乙醇,充分混匀,室温放置2min(若沉淀不充分,可加入1/10体积3mol/L的醋酸钠);7、10000r/min离心5min;9、弃上清,干燥沉淀;9、加TE溶解沉淀,保存。
质粒 的提取纯化及验证

一细菌的收获和裂解1.收获1)将2ml含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30℃剧烈振摇下培养过夜。
2)将1.5ml培养物倒入微量离心管中,用微量离心机于4℃以12000g离心30秒,将剩余的培养物贮存于4℃。
3)吸去培养液,使细菌沉淀尽可能干燥。
除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。
当液体从管中吸出时,尽可能使吸头远离细菌沉淀,然后继续用吸头通过抽真空除去附于管壁的液滴。
2.碱裂解法1)将细菌沉淀,所得重悬于100μl用冰预冷的溶液I中,剧烈振荡。
溶液I50mmol/L葡萄糖25mmol/L Tris.Cl(pH8.0)10mmol/LEDTA(pH8.0)溶液I可成批配制,每瓶约100ml,在10lbf/in2(6.895×104Pa)高压下蒸气灭菌15分钟,贮存于4℃。
须确使细菌沉淀在溶液I中完全分散,将两个微量离心管的管底部互相接触震荡,可使沉淀迅速分散。
2)加200μl新配制的溶液Ⅱ。
溶液Ⅱ0.2mol/L NaOH(临用前用10mol/L贮存液现用现稀释)1%SDS盖紧管口,快速颠倒离心管5次,以混合内容物。
应确保离心管的整个内表面均与溶液Ⅱ接触。
不要振荡,将离心管放置于冰上。
3)加150μl用冰预冷的溶液Ⅲ溶液Ⅲ5mol/L乙酸钾60ml冰乙酸11.5ml水28.5ml所配成的溶液对钾是3mol/L,对乙酸根是5mol/L.盖紧管口,将管倒置后和地振荡10秒钟溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。
4)用微量离心机于4℃12 000g离心5分种,将上清转移到另一离心管中。
5)可做可不做:加等量酚:氯念,振荡混匀,用微量离心机于4 ℃以12000g离心2分钟,将上清转移到另一良心管中。
有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA.6)用2倍休积的乙醇于室温沉淀双锭DNA.振荡混合,于室温放置2分钟。
质粒DNA的提取和纯化

实验三:质粒DNA的提取和纯化整合外源DNA并将其带入宿主细胞的过程是分子克隆的关键。
而在此过程中携带外源基因的工具为质粒载体。
质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。
质粒有1)在宿主细胞中具独立复制能力;2)带抗性等选择标记;3)有合适的限制性内切酶位点,可插入一定片段长度的外源DNA而不影响自身复制的特点。
质粒具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息,但它的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,离开宿主细胞则不能存活。
质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性、对一些有机物的降解利用等。
F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。
质粒在细胞内的复制一般有两种类型:严紧型(Stringent control)和松驰型(Relaxed control),严紧型只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子;松驰型在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。
在使用蛋白质合成抑制剂-氯霉素时,宿主细胞蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。
同一复制系统的不同质粒不能在同一宿主细胞中共同存在,这种现象称质粒的不相容性(Incompatibility);但不同复制系统的质粒则可以稳定地共存于同一宿主细胞中。
质粒载体是在天然质粒的基础上人工构建而成的。
与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因和一个有多个限制性内切酶识别位点的多克隆位点,去除了大部分非必需序列,分子量尽可能小。
质粒DNA的提取、纯化和电泳检测

质粒DNA的提取、纯化和电泳检测摘要本实验通过碱变性法提取E.coli DH5α(pUC19)的质粒DNA,并且通过一系列的分离纯化技术将其质粒DNA与染色体DNA、RNA、蛋白质等杂质分开从而得到纯化的质粒DNA分子。
通过琼脂糖凝胶电泳可以通过DNA条带的位置来大致判断其分子大小,也可以将实际电泳的结果和理论结果相对比,分析差异产生原因,从而完善实验方法,严谨实验步骤。
关键词碱变性法分离纯化技术琼脂糖凝胶电泳引言质粒是细菌细胞中与主染色体共存、可自主复制的一段大多数呈环形的DNA。
细菌质粒的相对分子质量大小从1kb至200kb以上不等。
一些质粒永远独立于染色体之外,另外一些质粒在一定条件下会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
质粒在基因工程中质粒常被用做基因的载体。
目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA分子(简称cccDNA)。
质粒在基因工程中是一类重要的载体,其作用主要是携带一些基因片段(可以是编码基因,也可以是调控区等),在细胞内环境中进行表达或参与通路的相互作用,通过将质粒转化到宿主细胞可以探究基因相互作用关系,取得蛋白产物,实现特定基因片段的克隆等。
总之,质粒在生物科学研究方面具有广泛的作用。
提取和纯化质粒DNA的方法很多,目前常用的有:碱裂解/碱变性法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。
其中,碱变性提取法最为经典和常用。
碱裂解/碱变性法是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的的分离方法。
在pH12.6的碱性条件下,染色体DNA 的氢键断裂,双螺旋结构解开而变性;质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。
当以pH4.8的KAc高盐缓冲液调节其pH 值至中性时,变性的质粒DNA恢复原来的构型,保存在溶液中;染色体DNA不能复性而形成缠连的网状结构,与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,通过离心被除去。
质粒DNA的提取和纯化实验报告

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载质粒DNA的提取和纯化实验报告地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容实验一、质粒DNA的提取和纯化一、实验目的:1、学习并掌握碱裂解法小量制备质粒DNA的方法。
2、初步了解DNA纯化的原理。
二、实验原理1、细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。
各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
2、质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。
目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。
3、碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。
4、纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。
例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。
对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。
三、实验步骤1、挑取单菌落接种到含Amp的LB液体培养基试管内(3.5ml/管)2、将试管放入恒温震荡培养箱中,37℃,200r/min培养12-16h。
第一章质粒DNA的分离,纯化和鉴定

第一章质粒DNA的分离、纯化和鉴定第一节概述把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。
细菌质粒是重组DNA技术中常用的载体。
质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。
质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。
质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。
质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。
F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。
质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed control)。
前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。
后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。
在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。
利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。
当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。
第一章质粒DNA的分离,纯化和鉴定

第一章质粒DNA的分离、纯化和鉴定第一节概述把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。
细菌质粒是重组DNA技术中常用的载体。
质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。
质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。
质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。
质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。
F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。
质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed control)。
前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。
后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。
在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。
利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。
当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。
质粒DNA的提取和鉴定

该技术通常具有快速、高效的特 性,能在短时间内处理大量样本。
高通量质粒DNA提取技术可以提 供标准化的操作流程,确保提取 的一致性和准确性。
质粒DNA的测序技术
下一代测序
质粒DNA的测序技术已发展到下一代测序 阶段,能够快速、准确地测定质粒DNA的 全序列。
深度覆盖
通过深度覆盖测序,可以获得质粒DNA更全面的序 列信息,有助于发现稀有变异和基因组结构变异。
注意事项
凝胶电泳检测质粒DNA时,需要注意电泳条件的选择,如电压、电流和时间等,以确保 分离效果最佳。同时,需要使用已知大小的DNA片段作为标准进行对比分析。
紫外分光光度法检测质粒DNA
01
原理
紫外分光光度法是通过测量物质在特定波长下的吸光度来分析物质浓度
的方法。质粒DNA在260nm波长下有最大吸收峰,通过测量吸光度可
基因组编辑
质粒DNA可以作为CRISPR-Cas9等基因组编辑技术的辅助工具,用于向细胞提 供指导编辑的RNA和Cas蛋白。通过将质粒导入细胞,可以实现对特定基因的敲 除、敲入或突变。
在生物技术和生物工程中的应用
生物制药
质粒DNA常被用于生产重组蛋白药物,如胰岛素、生长激素 等。通过在大规模细胞培养物中转染质粒,可以高效地生产 这些药物。
质粒DNA提取的注意事项
保证细菌的活性和纯度
在提取前应确保细菌处于对数生长期,并去除杂质和死细胞。
避免交叉污染
整个操作过程需在无菌条件下进行,并确保使用的工具和试剂无菌。
保证质粒的完整性
提取过程中应避免质粒断裂或降解,以确保后续实验的准确性。
02
质粒DNA的纯化
离心法纯化质粒DNA
原理
通过高速离心将质粒DNA与细 胞碎片、蛋白质等杂质分离,
实验十一 质粒DNA的提取与纯化

实验十一质粒DNA的提取与纯化一、实验目的与原理质粒多为一些双链、环状的DNA分子,是独立于细菌染色体之外进行复制和遗传的辅助性遗传单位。
质粒是进行分子生物学实验操作,进行遗传工程改良物种等工作时最主要的DNA载体。
提取质粒的基本步骤分为三步:①细菌的培养和质粒的扩增,②细菌菌体的裂解,③质粒DNA的纯化。
本实验采取的菌体裂解方法为碱解法,质粒纯化方法为梯度离心法。
二、材料与试剂1、材料:大肠杆菌2、仪器:超净工作台,培养箱,摇床,恒温水浴锅,台式离心机,取液器一套,低温冰箱,冷冻真空干燥机,电泳仪,水平电泳槽,紫外观测仪3、试剂:Solution I 25 mM Tris-Hcl(pH7.4)10 mM EDTA(pH8.0)50 mM葡萄糖高压灭菌,4℃保存Solution II 0.2 M NaOH, 1%SDS 现配现用Solution III 5 N KAc pH4.8高压灭菌,4℃保存3 M NaAc PH5.2, 高压灭菌,4℃保存。
异丙醇,溶菌酶(8 mg/ml),酚/氯仿,无水乙醇,70%乙醇,LB培养基,电泳试剂三、操作步骤1、细菌繁殖LB培养基,2 ml/20ml,37℃,200rpm,摇一摇,过夜2、离心10 min,5000 rpm, 4℃;弃上淸液3、沉淀(菌体细胞)预冷的TES缓冲液洗涤,离心10 min,5000 rpm, 4℃加入预冷的1 ml Solution I,冰浴,10 min4、重新悬浮,加入150 ul溶菌酶母液,室温放置5 min5、加入1.2 ml Solution II, 冰浴,5 min6、加入0.9 ml预冷乙酸钾,混匀,离心10 min,12000 rpm, 4℃7、加入1.5 ml异丙醇,-20℃冰箱内放置15 min8、离心10 min,12000 rpm, 4℃9、取沉淀,悬于400 ul TE缓冲液中10、加入40 ul,3 M NaAc11、酚/氯仿,抽提,乙醇沉淀12、离心10 min,12000 rpm, 4℃13、取沉淀,冷冻干燥,再悬浮于50 ul TE缓冲液中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子生物学实验报告题目:质粒DNA的提取、纯化与鉴定姓名:学号:班级:时间:一、实验目的:1.学习并掌握凝胶电泳进行DNA的分离纯化的实验原理。
2.学习并掌握凝胶的制备及电泳方法。
3.学习并掌握凝胶中DNA的分离纯化方法。
4.掌握碱变性提取发的原理及各种试剂的作用。
5.掌握碱变性法提取质粒DNA的方法。
二、实验原理:1.质粒DNA的提取——碱变性提取法:提取和纯化质粒DNA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。
其中,碱变性提取法最为经典和常用,适于不同量质粒DNA的提取。
该方法操作简单,易于操作,一般实验室均可进行。
提取质粒DNA纯度高,可直接用于酶切、序列测定及分析。
EB-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DNA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DNA 多为超螺旋构型等优点,但提取成本高,需要超速离心设备。
少量提取质粒DNA还可用沸水浴法、Wizard法等,沸水浴法提取的质粒DNA中常含有RNA,但不影响限制性核酸内切酶的消化、亚克隆及连接反应等。
碱变性法提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。
在细菌细胞中,染色体DNA以双螺旋结构存在,质粒DNA以共价闭合环状形式存在。
细胞破碎后,染色体DNA和质粒DNA均被释放出来,但两者变性与复性所依赖的溶液pH值不同。
在pH值高达12.0的碱性溶液中,染色体DNA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。
当用pH值4.6的KAc(或NaAc)高盐溶液调节碱性溶液至中性时,变性的质粒DNA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DNA不能复性,而是与不稳定的大分子RNA、蛋白质-SDS复合物等一起形成缠连的、可见的白色絮状沉淀。
这种沉淀通过离心,与复性的溶于溶液的质粒DNA分离。
溶于上清的质粒DNA,可用无水乙醇和盐溶液,减少DNA分子之间的同性电荷相斥力,使之凝聚而形成沉淀。
由于DNA与RNA性质类似,乙醇沉淀DNA的同时,也伴随着RNA沉淀,可利用RNase A将RNA降解。
质粒DNA溶液中的RNase A以及一些可溶性蛋白,可通过酚/氯仿抽提除去,最后获得纯度较高的质粒DNA。
2.凝胶电泳进行DNA分离纯化:电泳(electrophoresis)是带电物质在电场中向着与其电荷相反的电极方向移动的现象。
各种生物大分子在一定pH条件下,可以解离成带电荷的离子,在电场中会向相反的电极移动。
凝胶是支持电泳介质,它具有分子筛效应。
含有电解液的凝胶在电场中,其中的电离子会发生移动,移动的速度可因电离子的大小形态及电荷量的不同而有差异。
利用移动速度差异,就可以区别各种大小不同的分子。
因而,凝胶电泳可用于分离、鉴定和纯化DNA 片段,是分子生物学的核心技术之一。
凝胶电泳技术操作简单而迅速,分辨率高,分辨范围广。
此外,凝胶中DNA 的位置可以用低浓度荧光插入染料如溴化乙锭(ethidium bromide,EB)或SYBR Gold染色直接观察到,甚至含量少至20pg的双链DNA在紫外激发下也能直接检测到。
需要的话,这些分离的DNA条带可以从凝胶中回收,用于各种各样目的的实验。
分子生物学中,常用的两种凝胶为琼脂糖(agarose)和聚丙烯酰胺凝胶。
这两种凝胶能灌制成各种形状、大小和孔径,也能以许多不同的构型和方位进行电泳。
聚丙烯酰胺凝胶分辨率高,使用于较小分子核酸(5—500bp)的分离和蛋白质电泳。
它的分辨率非常高,长度上相差1bp或质量上相差0.1%的DNA都可以彼此分离,这也是采用聚丙烯酰胺凝胶电泳进行DNA序列分析的分子基础。
虽然它能很快地进行电泳,并能容纳较大的DNA上样量,但是与琼脂糖凝胶相比,在制备和操作上繁琐。
琼脂糖是从海藻中提取的长链状多聚物,由β-D-吡喃半乳糖与3,6-脱水-L-吡喃半乳糖组成,相对分子质量为104-105。
琼脂糖加热至90℃左右,即可溶化形成清亮、透明的液体,浇在模版上冷却后形成凝胶,其凝固点为40-45℃。
琼脂糖凝胶相对于聚丙烯酰胺凝胶分辨率低,但它的分离范围更大(50至百万bp),小片段DNA(50-20000bp)最适合在恒定轻度和方向的电场中水平方向的琼脂糖凝胶内电泳分离。
琼脂糖凝胶电泳易于操作,适用于核酸电泳,测定DNA的相对分子质量,分离经限制酶水解的DNA片段,进一步纯化DNA等。
琼脂糖凝胶电泳是一种常用的方法。
在溶液中,由于核酸有磷酸基而带有负电荷,在电场中向正极移动。
DNA在琼脂糖凝胶中的电泳迁移率主要取决于6个因素:样品DNA分子的大小、DNA分子的构象、琼脂糖浓度、电泳所用电场、缓冲液和温度。
三、主要仪器和材料试剂:1.仪器和材料:恒温振荡培养箱,高速冷冻离心机,旋涡振荡器,水浴锅,1.5mL离心管,50mL离心管,不同型号的吸头,微量移液器,微波炉,电泳仪,制胶槽,电泳槽,梳子,锥形瓶,电子天平,手套,紫外灯,Eppendorf管等。
菌体:E.coli DH5α受体菌,具有Amp r标记的质粒pUC19。
2.实验试剂:LB培养基,抗生素(氨苄青霉素),溶液Ⅰ,溶液Ⅱ,溶液Ⅲ,RNase A母液,TE缓冲液,饱和酚,氯仿/异戊醇混合液,酚/氯仿/异戊醇(PCI)混合液,预冷无水乙醇,TAE电泳缓冲液(10×),上样缓冲液(6×),琼脂糖,溴化乙锭(EB),DNA相对分子质量标准物DNA Marker λ/Hind Ⅲ,5mol/L pH 5.2的醋酸钠。
四、实验步骤:1.菌体培养:(1)配制40mL液体LB培养基(加入5%葡萄糖)、100mL固体LB培养基、并准备足量的移液管、200μl微量移液器头、1000μl微量移液器头、50mL离心管、1.5mL离心管,灭菌备用。
(2)向液体LB培养基移取32μl氨苄青霉素,混合均匀。
(3)将提前活化的E.coli DH5α受体菌,接种于液体LB培养基中。
将锥形瓶放入恒温震荡培养箱中,37℃,200r/min 培养12-16h 。
2.质粒DNA 的提取:(1)称量50mL 离心管重量W1,取30mL 菌液于已称重的50mL 离心管中,配平后6000r/min 离心5min 。
(2)弃上清,向离心管中加入5mL 溶液Ⅰ,涡旋振荡,6000r/min离心5min 。
(3)弃上清并称重W 2,求W=W 2-W 1。
(4)按照1.0mL/100mg 菌体的量加入溶液Ⅰ,充分涡旋振荡,冰浴5min ,再按照2.0mL/100mg 菌体的量加入溶液Ⅱ,温和颠倒混匀,冰浴2min ,然后再按照1.5mL/100mg 菌体的量加入溶液Ⅲ,温和颠倒混匀,冰浴10min ,平衡后12000r/min 离心15min 。
(5)取上清至新50mL 离心管内,记录体积,加入两倍体积的冰乙醇,混匀后在-20℃环境下保存30min 。
取出后12000r/min 离心15min ,弃上清,加入5mL70%乙醇,12000r/min 离心5min ,弃上清,加入5mL70%乙醇,12000r/min 离心5min ,弃上清,37℃放置5-10min 。
(6)取出离心管,加入1mLTE 溶液得到粗提物,加入RNase A 液,使溶液浓度为150μg/mL ,37℃保存60-120min 。
3.质粒DNA 的纯化:(1)取500μl 粗提物于1.5mL 离心管中,加入等体积的Tris 饱和酚,混匀,12000r/min 离心10min 。
(2)转移上清(体积V 1)至新管,加入等V 1的酚:氯仿:异戊醇溶液,混匀,12000r/min 离心5min 。
(3)转移上清(体积V 2)至新管,加入等V 2的氯仿:异戊醇溶液,混匀,12000r/min 离心5min 。
(4)转移上清(体积V 3)至新管,加入V 3的3M NaAc 溶液(pH5.2),110再加入2V 4(V 4=V 3+V 3)的冰乙醇,混匀,-20℃保存30-60min ,110取出后12000r/min 离心15min 。
(5)弃上清,加入500μl 70%乙醇,10000r/min 离心2min ,再加入500μl 70%乙醇,10000r/min 离心2min ,37℃保存5-10min 。
(6)取出离心管,向一只离心管中加入25μl TE 溶液,溶解沉淀后,转移入另一只离心管中,再取25μl TE 溶液加入第一只离心管中,溶解后再移入另一只离心管中,得到50μl 纯化质粒DNA 。
4.DNA 纯度检测:(1)取40mLTAE (1×)于300mL 锥形瓶中,加入0.4g 琼脂糖,放入微波炉内使其熔化,60℃时倒入准备好的制胶槽中。
(2)取5.0μl 纯化DNA 加入1.0μl 上样缓冲液,混合,进行点样。
(3)点样完毕后,100V ,200mA 条件下电泳30min 。
(4)电泳完毕后,进行EB 染色,用凝胶成像仪拍照,得到实验结果。
五、实验结果:凝胶成像仪拍照如下:1 2 3 4 5 6 7 8 9 10图1 DNA纯度检测凝胶成像结果(1号泳道:DNA marker λ/HindⅢ;2号泳道:超螺旋状态的pUC19质粒DNA;3号泳道:线性的pUC19质粒DNA;4号泳道:空泳道;5至9泳道:7至11组pUC19质粒DNA样品;10号泳道:λDNA)本组点样在第9泳道,照片显示各种杂质去除得较为彻底,得到了较高纯度的超螺旋状态的pUC19质粒DNA。
六、讨论:1.为获得高纯度的质粒DNA,必须彻底去除杂蛋白、染色体DNA和RNA。
在整个质粒提取过程中出去染色体DNA的关键步骤是加入溶液Ⅱ、溶液Ⅲ的变性和复性环节,应控制好变性和复性的时机。
加入溶液Ⅰ时,可剧烈震荡,使菌体沉淀转变成均匀的菌悬液,此时细胞尚未破裂,染色体不会断裂;加入溶液Ⅱ时,菌液变粘稠、透明,无菌块残留;加入溶液Ⅲ时,会立即出现白色沉淀。
加入溶液Ⅱ和溶液Ⅲ后,应缓慢上下颠倒离心管数次,切忌在旋涡振荡器上剧烈振荡,否则染色体DNA会断裂成小片段,不形成沉淀,而溶解在溶液中,与质粒DNA混合在一起,不利于质粒DNA提纯。
因此,操作时一定要缓慢柔和,采用上下颠倒的方法,既要使试剂与染色体DNA充分作用,又不破坏染色体的结构。
2.酚具有腐蚀性,能损伤皮肤和衣物,使用时应小心。
皮肤如不小心沾到酚,应立即用碱性溶液、肥皂或大量清水冲洗。
3.为最大限度去除上清,可在倒掉部分上清后,再将离心管放入离心机稍作离心,使残留在管壁的液体集中到离心管底部,再用移液器移除液体。