2010_考研数学基础班高等数学讲义(全全部)
高等数学考研讲义
高等数学考研讲义高等数学是考研数学中的重要组成部分,对于很多考生来说,是需要重点攻克的难关。
在这份讲义中,我们将系统地梳理高等数学的重要知识点,并通过典型例题帮助大家加深理解。
一、函数与极限函数是高等数学的基础概念之一。
函数的定义、性质(奇偶性、单调性、周期性、有界性等)需要熟练掌握。
极限是高等数学中的核心概念。
极限的定义、性质以及计算方法是重点。
1、极限的定义极限的ε δ 定义是理解极限概念的关键,但在实际计算中用得较少。
而对于一些简单函数的极限,可以通过直观的分析来理解。
2、极限的性质极限具有唯一性、局部有界性、局部保号性等性质。
3、极限的计算极限的计算方法有多种,包括四则运算、等价无穷小替换、洛必达法则、泰勒公式等。
例如,计算极限:lim(x→0) (sin x / x)我们可以利用等价无穷小替换,当x → 0 时,sin x ~ x ,所以该极限的值为 1 。
再如,计算极限:lim(x→∞)((x + 1) /(x 1) )^x这是一个1^∞ 型的极限,可以使用重要极限公式或者化为指数形式后用洛必达法则求解。
二、导数与微分导数反映了函数的变化率。
1、导数的定义函数在某一点的导数定义为该点处的切线斜率。
2、导数的计算基本初等函数的导数公式要牢记,同时掌握求导法则(四则运算、复合函数求导法则等)。
例如,求函数 y = sin(2x + 1) 的导数令 u = 2x + 1 ,则 y = sin u ,根据复合函数求导法则,y' = cos u u' = 2cos(2x + 1) 。
微分是函数增量的线性主部。
三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理。
1、罗尔定理如果函数 f(x) 满足:在闭区间 a, b 上连续;在开区间(a, b) 内可导;f(a) = f(b) ,那么在(a, b) 内至少存在一点ξ ,使得 f'(ξ) = 0 。
2010年全国硕士研究生入学统一考试数学考试参考书考试内容——数三
2010年全国硕士研究生入学统一考试数学参考书考试内容目录-数三第一篇微积分第一章函数、极限与连续性1.1.1函数1.1.2极限1.1.3连续性第二章一元函数微分学1.2.1 导数与微分1.2.2 微分中值定理1.2.3 洛必达法则1.2.4 导数的应用第三章一元函数积分学1.3.1 不定积分1.3.2 定积分1.3.3 反常积分1.3.4 定积分的应用第四章多元函数微积分学1.4.1 偏导数与全微分1.4.2 多元函数微分法的应用1.4.3 二重积分第五章无穷级数1.5.1 数项级数1.5.2幂级数第六章常微分方程与差分方程1.6.1一阶微分方程1.6.2二阶常系数线性微分方程1.6.3常系数差分方程初步第二篇线性代数第一章行列式2.1.1行列式的概念和性质及其计算2.1.2行列式计算的相关问题第二章矩阵2.2.1矩阵的概念和运算及逆矩阵2.2.2矩阵的初等变换和初等矩阵及矩阵的秩2.2.3分块矩阵及其运算第三章向量2.3.1向量的概念和线性运算及向量的线性表示、向量组的线性相关与线性无关2.3.2向量组的等价和极大线性无关组及向量组的秩2.3.3向量的内积及线性无关向量组的正交规范化第四章线性方程组2.4.1线性方程组有解和无解的判定及齐次线性方程组的基础解系和通解2.4.2非齐次线性方程组的性质和结构及通解第五章矩阵的特征值和特征向量2.5.1矩阵的特征值和特征向量的概念和性质及计算2.5.2相似矩阵和矩阵可相似对角化的条件及方法2.5.3实对称矩阵的相似对角化第六章二次型2.6.1二次型及其对应矩阵、用正交变换和配方法化二次型为标准形2.6.2二次型及其矩阵的正定性概念和判别法第三篇概率论与数理统计第一章随机事件和概率3.1.1 事件及其概率3.1.2 事件的独立性和独立试验第二章随机变量及其分布3.2.1 随机变量的概率分布3.2.2 随机变量函数的分布第三章多维随机变量的分布3.3.1 随机变量的联合分布3.3.2 随机变量函数的分布第四章随机变量的数字特征3.4.1 数学期望、方差和标准差3.4.2 矩、协方差和相关系数第五章大数定律和中心极限定律3.5.1 大数定律第六章统计推断的基本概念3.6.1 统计推断的基本概念3.6.2 正态总体抽样分布第七章参数估计3.7.1 未知参数的点估计。
10考研高等数学强化讲义(第三章)全
第三章 一元函数积分学§3. 1 不定积分(甲)内容要点一、基本概念与性质1.原函数与不定积分的概念设函数()x f 和()x F 在区间I 上有定义,若()()x f x F ='在区间I 上成立。
则称()x F 为()x f 在区间I 的原函数,()x f 在区间I 中的全体原函数成为()x f 在区间I 的不定积分,记为()⎰dx x f 。
原函数:()()⎰+=C x F dx x f其中⎰称为积分号,x 称为积分变量,()x f 称为被积分函数,()dx x f 称为被积表达式。
2.不定积分的性质 设()()⎰+=C x F dx x f ,其中()x F 为()x f 的一个原函数,C 为任意常数。
则(1)()()⎰+='C x F dx x F 或()()⎰+=C x F x dF 或⎰+=+C x F C x F d )(])([ (2)()[]()x f dx x f ='⎰或()[]()dx x f dx x f d =⎰(3)()()⎰⎰=dx x f k dx x kf (4)()()[]()()⎰⎰⎰±=±dx x g dx x f dx x g x f3.原函数的存在性一个函数如果在某一点有导数,称为可导;一个函数有不定积分,称为可积。
原函数存在的条件:比连续要求低,连续一定有原函数,不连续有时也有原函数。
可导要求比连续高。
⎰-dx ex这个不定积分一般称为积不出来,但它的积分存在,只是这个函数的积分不能用初等函数表示出来设()x f 在区间I 上连续,则()x f 在区间I 上原函数一定存在,但初等函数的原函数不一定是初等函数,例如()⎰dx x 2sin ,()⎰dx x 2cos ,⎰dx x x sin ,⎰dx x x cos ,⎰x dx ln ,⎰-dxe x 2等被积函数有原函数,但不能用初等函数表示,故这些不定积分均称为积不出来。
考研高数数学讲义
第一篇 高等数学第一章 函数、极限与连续一、大纲内容与要求【大纲内容】函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 【大纲要求】1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、知识网络Nε-”定义X-”定义δ-”定义数列整体有界函数局部有界两个重要的极限(数一、三)∞∞型、型∞-∞型、0∞⋅1∞、0∞、00型初等函数的连续性分段函数连续性的判定闭区间上连续函数的性质——左右极限都存在第二类——左右极限中至少有一个不存在跳跃间断点可去间断点关系极限连续性函数零点定理最值定理有界性、单调性、奇偶性、周期性1lim1nnen→∞⎛⎫+=⎪⎝⎭sinlim1xxx→=单调有界数列有极限夹逼定理三、基本内容(一)函数1.定义 设x 与y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作()y f x =.数集D 称为函数的定义域,由函数对应法则或实际问题的要求来确定,相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素. 2.几种特性(1)有界性 设函数()y f x =在数集X 上有定义,若存在正数M ,使得对于每一个x X ∈,都有()f x M ≤成立,称()y f x =在X 上有界,否则,即这样的M 不存在,称()f x 在X 上无界.所以函数在X 上无界,是对任何0M >,总存在0x X ∈,使0()f x M >.(2)单调性 设函数()y f x =在区间I 上有定义,若对于I 上任意两点1x 与2x ,当12x x <时,均有12()()f x f x < [或12()()f x f x >],称函数()f x 在区间I 上单调增加(或单调减少).如果其中的“<”(或“>”)改为“≤”(或“≥”),称函数()f x 在I 上单调不减(或单调不增). (3)奇偶性 设函数()y f x =的定义域为(,)(0)a a a ->,若对于任一x ∈(,)a a -,都有()()f x f x -=,称()f x 为偶函数,如常数2,,cos C x x 等,其图像关于y 轴对称;若对于任一(,),x a a ∈-都有()()f x f x -=-,称()f x 为奇函数,如3,,sin x x x 等,其图像关于坐标原点对称.(4)周期性 对函数()y f x =,若存在常数0T >,使得对于定义域内的每一个,x x T +仍在定义域内,且有()()f x T f x +=,称函数()y f x =为周期函数,T 称为()f x 的周期. 3.复合函数、反函数、隐函数与分段函数(1)基本初等函数与初等函数基本初等函数 常数函数;幂函数;指数函数;对数函数;三角函数;反三角函数.初等函数 由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个解析式表示的函数.(2)复合函数 设函数()y f u =的定义域为f D ,函数()u x ϕ=的值域为z ϕ,若集合f D 与z ϕ的交集非空,称函数[()]y f x ϕ=为函数()y f u =与()u x ϕ=复合而成的复合函数,u 为中间变量.对复合函数,重要的是会把它分解,即知道它是由哪些“简单”函数复合而成的.(3)反函数 设函数()y f x =的值域为f z ,定义域为f D ,则对于每一个f y z ∈必存在f x D ∈使()y f x =.若把y 作为自变量,x 作为因变量,便得一个函数()x y ϕ=,且[]()f y ϕ y =,称()x y ϕ=为()y f x =的反函数,但习惯上把()y f x =的反函数记作1()y f x -=.y()f x =与其反函数1()y f x -=的图像是关于直线y x =对称的.(4)隐函数 设有方程(,)0F x y =,若当x 在某区间内取任一值,便总有满足该方程唯一的值y 存在时,称由方程(,)0F x y =在上述区间内确定了一个隐函数()y y x =.(5)分段函数 若一个函数在其定义域的不同部分要用不同的式子表示其对应规律,如(),()(),x a x bf x x c x dϕψ<<⎧=⎨<<⎩称为分段函数. (二)极限 1.概念(1)定义1 设()y f x =在0x 的一个去心邻域010001(,)(,)x x x x δδ-+内有定义,若对于任意给定的0ε>,总存在0δ>,使得当上述去心邻域内任意x 满足00x x δ<-<时,不等式()f x a ε-<恒成立,则称常数a 为函数()f x 在0x x →的极限,记作0lim ().x x f x a →=或()f x a → (当0x x →).直观地说,即当x 无限趋近0x 时,函数()f x 无限趋近常数a .定义2 设()f x 在区域0x E >>内有定义,若对于任意给定的0ε>,存在0M >,使得当x M E >≥时,不等式()f x a ε-<恒成立,则称a 为当x →∞时函数()f x 的极限,记作lim ().x f x a →∞=直观地说,即当x 无限增大时,函数无限趋近常数a .(2)左极限与右极限 在定义1中,若把“00x x δ<-<”改为“00x x x δ-<<”,即自变量x 从0x 的左侧趋近于0x ,则称a 为函数()f x 当0x x →时的左极限,记作0lim ()(0);x x f x a f x a -→=-=或 相应把定义1中的“00x x δ<-<”改为00x x x δ<<+, a 便是函数()f x 当0x x →时的右极限,记作00lim ()(0).x x f x a f x a +→=+=或 极限存在的充分必要条件:当0x x →时,函数()f x 的极限存在的充分必要条件为其左、右极限存在并相等,即00(0)(0)f x f x -=+.在定义2中,把x M >改为x M >,便得到x →+∞时函数()f x 的极限的定义,即lim (),x f x a →+∞=以及把“x M >”改为x M <-,便得到lim ()x f x a →-∞=的定义.注 把数列{}n x 看作整数函数即()n x f n =(1,2,)n =,则数列极限的概念lim n n x a →∞=便是()f x 在x →+∞时极限的特殊情况:自变量x 取正整数.即对于任意给定的0ε>,总存在正整数N ,使当n N >时,不等式n x a ε-<恒成立,则称常数a 为数列{}n x 的极限,也称此数列收敛于a .2.性质(1)唯一性 在自变量的一个变化过程中(0x x →或x →∞),函数的极限存在,则此极限唯一. (2)有界性 若0lim ()[lim ()]x x x f x a f x a →→∞==或,则存在0x 的某去心邻域(或0x M >>),()f x 在此邻域(或0x M >>)内有界.(3)保号性 设0)lim ()x x f x a →→∞=(x ,0()lim ()x x x g x b →→∞=,若在0x 的某去心邻域(或0x M >>)内恒有()()f x g x <(或()()f x g x ≤),则a b ≤.3.极限存在准则夹逼准则:若在x 的某去心邻域(或0x M >>)内恒有()()()g x f x h x ≤≤, 且000()()()lim ()lim ()lim ().x x x x x x x x x g x h x a f x a →→→→∞→∞→∞===,则单调有界准则:单调有界数列必收敛. 4.两个重要极限(1)0sin lim 1.x x x→= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或10lim xx x e →=(1+). 5.极限的运算设在自变量的同一变化过程中(0x x →或x →∞),lim (),lim ()f x a g x b ==,则有(1)和差:[]lim ()()lim ()lim ()f x g x f x g x a b ±=±=±.(2)积:[]lim ()()lim ()lim ()f x g x f x g x a b ⋅=⋅=⋅.特别地,lim ()lim ()cf x c f x =ca = (其中c 为常数),[][]lim ()lim ()k kk f x f x a ==(其中k 为正整数).(3)商:若lim ()0g x b =≠,则()lim ()lim()lim ()f x f x ag x g x b==. (4)复合函数的运算法则:已知00lim (),lim ()u u x x f u A x u ϕ→→==⇒在有意义的情况下,lim [()]x x f x ϕ→.A =6.无穷小量与无穷大量(1)无穷小量的概念 若0()lim ()0x x x x α→→∞=,称()x α为0x x →(x →∞)时的无穷小,即极限为0的变量为无穷小量,以下简称无穷小.常数0也是无穷小.(2)无穷小量的性质 0lim ()x x f x a →→∞=(x )的充分必要条件为()()f x a x α=+,其中()x α为0x x →(x →∞)的无穷小.(3)无穷小量的运算1°加法:有限多个无穷小的和仍为无穷小; 2°乘法:有限多个无穷小的积仍为无穷小; 3°有界变量与无穷小的乘积亦为无穷小. (4)无穷小量的比较设()x α与()x β都是在同一个自变量变化过程中的无穷小,且()lim ()x x αβ也是在此变化过程中的极限:若()lim0()x x αβ=,称()x α是比()x β高阶的无穷小,记作()(())x o x αβ=; 若()lim()x x αβ=∞,称()x α是比()x β低阶的无穷小; 若()lim0()x c x αβ=≠(其中c 为常数),称()x α与()x β是同阶的无穷小;特别()lim1()x x αβ=,称()x α与()x β是等价无穷小,记作()~()x x αβ. 在求极限过程中,有时利用等价无穷小代换可以化简计算,所以应掌握几个常见的等价无穷小:当0x →时,sin ~~tan x x x ,ln(1)~x x +,1~x e x -11~x n ,211cos ~2x x -等等. (5)无穷大量的概念 设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义),如果对于任意给定的正数M (不论它多么大),总存在正数δ (或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >,则称函数()f x 为当0x x →(或x →∞)时的无穷大量,以下简称无穷大.(6)无穷小量与无穷大量之间的关系在自变量的同一变化过程中,若()f x 为无穷大,则其倒数1()f x 必为无穷小;反之,若()f x 为无穷小,且()0f x ≠,则其倒数1()f x 必为无穷大. 7.洛必达(L’Hospital)法则(1)00⎛⎫⎪⎝⎭型 (),()f x g x 在点0x 的某去心邻域内可导,()0g x '≠,若lim ()x x f x →=0lim ()x x g x →0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (2)∞⎛⎫⎪∞⎝⎭型 (),()f x g x在点0x 的某去心邻域内可导,()0g x '≠,若 0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim ()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (三)连续1.函数的连续性(1)连续性的概念 设函数()y f x =在点0x 某邻域内有定义,若当自变量增量x ∆=0x x -0→时,对应的函数值增量00()()0y f x x f x ∆=+∆-→,即0lim 0x y ∆→∆=,或0lim ()()x x f x f x →=,则称函数()f x 在0x 处连续.若00lim ()()x x f x f x -→=,称函数()f x 在0x 处左连续,00lim ()()x x f x f x +→=,称函数()f x 在0x 处右连续. 显然,函数()f x 在0x 处连续的充分必要条件是()f x 在0x 处既左连续又右连续.若函数()f x 在区间(,)a b 内每一处都连续,称()f x 在开区间(,)a b 内连续,也称()f x 是(,)a b 内的连续函数;若()f x 在(,)a b 内连续,又在a 点处右连续,b 点处左连续,则称()f x 在闭区间[,]a b 上连续.(2)运算1°加法 有限多个在同一点连续的函数之和,仍在该点处连续; 2°乘法 有限多个在同一点连续的函数之积,仍在该点处连续; 3°除法 若()f x 与()g x 均在点0x 处连续,且0()0g x ≠,则()()f xg x 在点0x 处连续. (3)复合函数与初等函数的连续性设函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,若函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处连续.一切初等函数在其定义区间上都是连续的. 2.函数的间断点(1)函数间断点的概念 设函数()f x 在点0x 的某去心邻域内有定义.在此前提下,如果函数()f x 有下列三种情形之一:1°在0x x =没有定义;2°虽在0x x =有定义,但()0lim x x f x →不存在;3°虽在0x x =有定义,且()0lim x x f x →存在,但()00lim (),x x f x f x →≠则函数()f x 在点0x 不连续,而点0x 称为()f x 的不连续点或间断点.(2)函数间断点的类型 设0x x =为函数()y f x =的间断点,若0lim ()x x f x -→与0lim ()x x f x +→都存在,称0x 为函数()f x 的第一类间断点,其他均称为第二类间断点.在第一类间断点中,左、右极限相等的称为可去间断点,不相等的称为跳跃间断点;无穷间断点与振荡间断点都是第二类间断点.3.闭区间上连续函数的性质(1)最大值和最小值定理 闭区间上的连续函数一定有最大值与最小值. (2)有界性定理 闭区间上的连续函数在该闭区间上一定有界.(3)介值定理 设函数()f x 在闭区[,]a b 上连续,且()()f a f b ≠,则对于()f a 与()f b 之间的任一常数C ,必在开区间(,)a b 内至少存在一点ξ,使得()f C ξ=.推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.(4)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号,则在开区间(,)a b 内至少存在函数()f x 的一个零点,即至少有一点(,)a b ξ∈使()0f ξ=.四、典型例题[例1.1]设函数11()01x f x x ⎧≤⎪=⎨>⎪⎩,,,,则[()]f f x =.[例1.2]已知2()sin ,[()]1,f x x f x x ϕ==-则()________x ϕ=,其定义域为 .[例1.3]设函数2sin ()(ln )(tan )x f x x x e =,则()f x 是( ).(A)偶函数.(B)无界函数.(C)周期函数.(D)单调函数.[例1.4]设对任意(,)∈-∞+∞x 有(1)()+=-f x f x ,则()f x 一定是( ).(A)奇函数.(B)偶函数.(C)周期函数.(D)单调函数.[例1.5]设函数21tan(3)()(1)(2)(3)x x f x x x x --=---,则()f x 在下列哪个区间内有界().(A)(0,1).(B)(1,2). (C)(2,3). (D)(3,4).[例1.6]设数列n x 与n y ,满足lim 0n n n x y →∞=,则下列叙述正确的是().(A)若n x 发散,则n y 必发散. (B)若n x 无界,则n y 必有界. (C)若n x 有界,则n y 必为无穷小量. (D)若1nx 为无穷小量,则n y 必为无穷小量. [例1.7]下列极限正确的是().(A)sin lim1x xxπ→=.(B)1lim sin1x x x→∞⋅=. (C)11limsin 1x x x→∞=. (D)sin lim1x xx→∞=.[例1.8]设n n x a y ≤≤,且lim()0n n n y x →∞-=,a 为常数,则数列{}n x 和{}n y ( ).(A)都收敛于a .(B)都收敛,但不一定收敛于a . (C)可能收敛,也可能发散.(D)都发散.[例1.9]设n n n x a y ≤≤,且lim()0n n n y x →∞-=,{}n x ,{}n y 和{}n a 均为数列,则lim n n a →∞( ).(A)存在且等于0.(B)存在但不一定等于0. (C)一定不存在. (D)不一定存在.[例1.10]22212lim 12n n n n n n n n n →∞⎛⎫+++=⎪++++++⎝⎭.[例1.11]30arctan sin limx x xx →-=.[例1.12]求极限limx [例1.13]求下列极限:2011lim()tan x x x x→-. [例1.14]设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a =.[例1.15]21ln(1)0lim(cos )+→x x x =.[例1.16]当0x →时,211()sin f x x x=是( ). (A)无穷小量.(B)无穷大量.(C)有界量非无穷小量.(D)无界但非无穷大量.[例1.17]设220ln(1)()lim 2x x ax bx x →+-+=,则().(A)1a =,52b =-. (B)0a =,2b =-. (C)0a =,52b =-. (D)1a =,2b =-. [例1.18]设当0x →时,()()21cos ln 1x x-+是比sin n x x 高阶的无穷小,而sin n x x 是比2(1)x e -高阶的无穷小,则正整数n 等于().(A)1. (B)2. (C)3. (D)4.[例1.19]当0x →时,求常数,c k 使得(I)3sin sin3~;kx x cx -~kcx .[例1.20]设110x =,1n x +=(1,2,n =),试证数列{}n x 极限存在,并求此极限.[例1.21]下列各式中正确的是( ).(A)01lim (1)1xx x+→+=. (B)01lim(1)e xx x+→+=. (C)1lim(1)e xx x→∞-=. (D)1lim(1)e xx x-→∞+=-.[例1.22]求极限21lim ln(1)→∞⎡⎤-+⎢⎥⎣⎦x x x x.[例1.23]()f x 在0x 点连续是()f x 在0x 点连续的( ). (A)充分条件,但不是必要条件. (B)必要条件,但不是充分条件.(C)充分必要条件.(D)既不是充分条件,也不是必要条件.[例1.24]函数1()tan ()x x e e xf x x e e +=⎛⎫- ⎪⎝⎭在[],ππ-上的第一类间断点是x =().(A)0.(B)1.(C)2π-. (D)2π. [例1.25]设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为().(A)不存在间断点. (B)存在间断点1x =. (C)存在间断点0x =. (D)存在间断点1x =-.[例1.26]设2(1)()lim1n n xf x nx →∞-=+,则()f x 的间断点为x =.[例1.27]设函数()tan 21e ,0arcsin 2e ,0xx x x f x a x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则________a =.[例1.28]设)(x f 在(+∞∞-,)内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩,则( ).(A)0=x 必是)(x g 的第一类间断点. (B)0=x 必是)(x g 的第二类间断点.(C)0=x 必是)(x g 的连续点.(D))(x g 在点0=x 处的连续性与a 的取值有关.[例1.29]设函数()f x 在[,]a b 上连续,且12n a x x x b <<<<<,证明:存在(,)a b ξ∈,使得12()()()()n f x f x f x f nξ+++=.[例1.30]设()f x 是[0,1]上非负连续函数,且(0)(1)0.f f ==证明:对任意实数r (01r <<),必存在0[0,1]x ∈,使得0[0,1]x r +∈,且00()()f x f x r =+.[例1.31]设()f x 在[0,1]上连续,(0)(1)f f =且 . (1)证明:存在[0,1],ξ∈使1()()2f f ξξ=+.(2)证明:存在[0,1],η∈使1()()f f nηη=+(2n >且n 为正整数).五、经典习题1.求⎪⎪⎭⎫⎝⎛-+→x x x sin 1)1ln(1lim 0. 【答案】212.求xx e e xx x sin lim tan 0--→.【答案】23.已知()01lim2=--++-∞→b ax x xx ,则___________,==b a .【答案】21,1--. 4.极限()()2lim xx xx a x b →∞⎡⎤=⎢⎥-+⎣⎦( )(A) 1.(B) e . (C) a be-.(D) b ae-.【答案】(C).5.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭. 【答案】43. 6.求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 【答案】1. 7.若()3sin 6lim0x x xf x x →+=,则()26limx f x x →+为( ).(A)0.(B)6.(C)36.(D)∞.【答案】(C).8.1lim1cosn n→∞++=________. 【答案】π.9.设103x <<,1n x +=(n =1,2,…),证明数列{}n x 的极限存在,并求此极限.【答案】证明{}n x 单调增加且有上界,3lim 2n n x →∞=. 10.设函数()f x 在0x =的某邻域内具有一阶连续导数,且()00f ≠,()00f '≠,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.【答案】2,1a b ==-.11.设函数()f x 在(,)-∞+∞内连续,且[()]f f x x =,证明在(,)-∞+∞内至少有一个0x 满足00()f x x =.【答案】利用反证法.第二章 一元函数微分学导数与微分是一元函数微分学中的两个重要概念,在高等数学中占有重要地位,其内涵丰富,应用广泛,是研究生入学考试的主要内容之一,应深入加以理解,同时应熟练掌握导数的各种计算方法.中值定理与导数的应用在高等数学中占有极为重要的位置,内容多,影响深远,是复习的重点也是难点,而且具有承上启下的作用,应熟练掌握.一、大纲内容与要求【大纲内容】导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 (弧微分;曲率的概念;曲率圆与曲率半径,数学三不要求). 【大纲要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,(了解导数的物理意义,会用导数描述一些物理量,数学一、二要求),理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径(数学一、二要求).二、知识网络三、基本内容(一)导数概念1.导数定义 设函数()y f x =在点0x 的某邻域内有定义,若自变量从0x 变到0x x +∆时,导数的定义左、右导数基本初等函数的导数导数的四则运算 复合函数的导数 反函数的导数隐函数的导数参数方程求导(数一、二)2阶导数n 阶导数 高阶导数导数的概念导数的计算罗尔定理拉格朗日中值定理 柯西中值定理 中值定理应用洛必达法则求极限 研究函数性质及几何应用单调性定理、函数的单调区间 函数的极值、最值曲线的凹凸性及拐点 渐近线、函数作图 边际、弹性经济中的最大值和最小值应用经济应用(数学三要求) 微分概念微分的计算 一阶微分形式不变性微分导数泰勒定理 曲率(数学一、二要求) 费马引理 切线、法线方程函数的增量00()()y f x x f x ∆=+∆-与自变量增量x ∆之比的极限0000()()limlim x x f x x f x yx x→∆→+∆-∆=∆∆存在,则称()y f x =在0x 处可导,此极限值称为()f x 在0x 处的导数,记作0()f x ',或00,x x x x dyy dx=='等.令0x x x =+∆,可得导数的等价定义0000()()()limx x f x f x f x x x →-'=-2.左导数 若000()()lim x f x x f x x -∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的左导数,记作0()f x -'.3.右导数 若000()()lim x f x x f x x+∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的右导数,记作0()f x +'.4.若函数()f x 在区间(,)a b 内任意点x 处的导数()f x '都存在,则称()f x 在(,)a b 内可导.5.若函数()f x 在(,)a b 内可导,且()f a +'及()f b -'都存在,称()f x 在闭区间[,]a b 上可导. (二)函数可导的条件1.()f x 在x =0x 处可导的必要(非充分)条件是()f x 在x =0x 处连续.2.()f x 在x =0x 处可导的充分与必要条件是0()f x -'与0()f x +'存在且相等. (三)导数的几何意义与物理意义1.设函数()f x 可导,则0()f x '等于曲线y =()f x 在点00(,())x f x 处切线的斜率.曲线y =()f x 在点00(,())x f x 处的切线与法线方程分别是:000()()()y f x f x x x '--=和0001()(),()y f x x x f x -=--'其中0()0f x '≠. 2.设一质点作变速直线运动,若其位移s 随时间t 的变化规律为函数()s s t =,则导数0()s t '表示该质点在时刻0t 的瞬时速度.注 导数的物理意义有多种,如细棒状物质的线密度,电路中的电流强度,转动物体的角速度等.(四)导数的计算1.基本初等函数的导数公式 (1)()0()c c '=为常数(2)1()()x x μμμμ-'=为实数(3)()ln (01)xxa a a a a '=>≠, (4)();x x e e '=(5) 1(log ||)(0,1);ln a x a a x a '=>≠ (6) 1(ln ||);x x'= (7)(sin )cos ;x x '= (8)(cos )sin ;x x '=- (9)2(tan )sec ;x x '= (10)2(cos )csc x x '=-(11)(sec )sec tan ;x x x '= (12)(csc )csc cot ;x x x '=-(13)(arcsin )x '=(14)(arccos )x '=(15)21(arctan );1x x'=+ (16)21(arccot ).1x x-'=+ 2.导数的四则运算法则 设函数(),()u x v x 都可导,则 (1)();u v u v '''±=±(2)()uv u v uv '''=+,特别()cu cu ''=(c 为常数).(3)2(0).u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭3.复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应的()u x ϕ=处可导,则复合函数[()]y f x ϕ=在x 处可导,且{[]}()(),f x f u x ϕϕ'''=()即d .y dy dudx du dx=⋅ 4.反函数的导数若()x y ϕ=在某区间内单调、可导,且()0y ϕ'≠,则其反函数()y f x =在对应的区间内也可导,且1()()f x y ϕ'='. 5.隐函数的导数设()y f x =是由方程(,)0F x y =所确定的可导函数,注意到x 是自变量,y 是x 的函数,y 的函数是x 的复合函数,在方程的两边同时对x 求导,可得到一个含有y '的方程,从中解出y '即可.注 y '也可由多元函数微分法中的隐函数求导公式x y F dydx F '=-'得到,这里()y x 是由方程(,)0F x y =确定的函数.6.高阶导数(1) 函数()y f x =导数的导数,称为函数()f x 的二阶导数,即(),y y ''''=记作()y f x ''''=,或2(2)2,d y y dx.一般地,函数()y f x =的n 阶导数为()(1)(),n n y y-'=也可写作()()n n n d y fx dx或.(2)设(),()u x v x 具有n 阶导数,则有()()()[()()]()()n n n au x bv x au x bv x +=+(,a b 为常数);()()1(1)()()()[()()]()()()()()()()().n n n k n k k n n n u x v x u x v x C u x v x C u x v x u x v x --'=+++++7.由参数方程所确定的函数的导数(数学一、二要求)设()y y x =是由参数方程()()()x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则()()dy t dx t ψϕ'='. (2)若()()t t ϕψ,二阶可导,且()0t ϕ'≠,则223()1()()()()()()()td y t t t t t dx t t t ψψϕψϕϕϕϕ''''''''⎡⎤-=⋅=⎢⎥'''⎣⎦. (五)微分1.微分定义 设函数()y f x =在点x 的某邻域内有定义,若对应于自变量的增量x ∆,函数的增量y ∆可以表示为()y A x o x ∆=∆+∆,其中A 与x ∆无关, ()o x ∆是x ∆的高阶无穷小,则称函数()y f x =在点x 处可微,并把A x ∆称为()f x 在点x 处的微分,记作dy 或()df x ,即dy =A x ∆.2.函数()y f x =在点x 处可微的充分必要条件是()f x 在x 处可导,此时()A f x '=,即有()dy f x dx '=.3.一阶微分形式的不变性 设()y f u =可微,则微分()dy f u du '=,其中u 不论是自变量还是中间变量,以上微分形式保持不变. (六)微分中值定理1.费马(fermat)引理 若()f x 在0x 的某邻域0()U x 内有定义,且在0x 处可导,如果对任意0()x U x ∈,有0()()f x f x ≤(或0()()f x f x ≥),则0()0f x '=.2.罗尔(Rolle)定理 若函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且f (a )=f (b ),则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3.拉格朗日(Lagrange)中值定理 若函数()f x 在闭区间上连续,在开区间(,)a b 内可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()().f b f a f b a ξ'-=-4.柯西(Cauchy)中值定理 若函数()f x 和()g x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()0g x '≠,则在开区间(,)a b 内至少存在一点ξ,使得()()().()()()f b f a fg b g a g ξξ'-='-5.泰勒(Taylor)定理(1)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶的导数,则()20000000()()()()()()()()(),2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中(1)10()()(),(1)!n n n f R x x x n ξξ++=-+是0x 与x 之间的某个值,此公式称为带有拉格朗日型余项的泰勒公式.(2)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到n 阶的导数,则()200000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x o x x n '''⎡⎤=+-+-++-+-⎣⎦, 此公式称为带有佩亚诺型余项的泰勒公式.注 当00x =时,以下两公式称为麦克劳林(Maclaurin)公式,即()21(0)(0)(1)()()(0)(0)(01)2!!(1)!n n n f f f n x f x f f x x x x n n θθ+''+'=+++++<<+和 ()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x o x n '''=+++++.(七)洛必达(L ’Hospital)法则 1.00⎛⎫⎪⎝⎭型 0()()()0,f x g x x g x '≠设,在点的某去心邻域内可导,若0lim ()lim ()x x x x f x g x →→=0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. 2.∞⎛⎫⎪∞⎝⎭型 设()()f x g x ,在点0x 的某去心邻域内可导,()0g x '≠,若0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (八)利用导数研究函数及平面曲线的性态1.单调性定理 设函数()f x 在[,]a b 上连续,在(,)a b 内可导,若对任一x ∈(,)a b ,有()0(0)f x '><,则()f x 在[,]a b 上单调增加(减少).注 若将上面的不等式()0(0)f x '><,改为()0(0)f x '≥≤,且使()0f x '=的点(驻点)只有有限个,则结论仍成立.2.极值(1)极值的定义 若()f x 在0x 的某邻域0()U x 内有定义,且对该邻域内任意异于0x 的点x 都有0()()f x f x <(或0()()f x f x >),则称0x 的极大(或小)值点,0()f x 称为()f x 的极大(或小)值.(2)判断极值的第一充分条件 设函数()f x 在点0x 的某邻域00(,)x x δδ-+内连续,0x 是()f x 的驻点或不可导点,在00(,)x x δ-及00(,)x x δ+内()f x 均可导.1°若在00(,)x x δ-内()0(0)f x '<>而在00(,)x x δ+内()0(0)f x '><则()f x 在0x 处取21极小值(极大值);2°若在00(,)x x δ-和00(,)x x δ+内()f x '符号相同,则()f x 在0x 处不取得极值. (3)判断极值的第二充分条件 设函数()f x 在x =0x 处 ,一阶导数0()0f x '=,二阶导数0()f x ''存在且不等于零,则当0()0f x ''>时,()f x 在0x 处取得极小值;当0()0f x ''<时,()f x 在0x 处取得极大值.3.取到极值的唯一性定理 若()f x 在区间I 上可导,驻点唯一,且该驻点是极值点,则该驻点一定是最值点.4.曲线凹凸性及拐点(1)凹凸性的定义 设()x f 在区间I 上连续,若对任意不同的两点21,x x ,恒有()()()()12121212112222x x x x f f x f x f f x f x +⎛+⎫⎛⎫⎛⎫>+<+⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭或则称()x f 在I 上是凸(凹)的.(2)凹凸性的判断 若函数()f x 在区间I 上()0(0)f x ''><则曲线()y f x =在I 上凹 (凸)的.(3)拐点的定义 在连续曲线上,凹凸部分的分界点00(,())x f x 称为曲线的拐点.(4)拐点的第一充分条件 设函数()f x 在点0x 的某邻域内连续且在该去心邻域内二阶可导,若()f x 在0x 的左右两边()f x ''的符号相反,则点00(,())x f x 是曲线)(x f y =的拐点.(5)拐点的第二充分条件:设函数()f x 在点0x 的某邻域内连续,0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 是曲线)(x f y =的拐点.5.曲线的渐近线(1)若lim ()x f x C →∞=(或x →+∞或x →-∞)(C 为常数),则y C =是曲线()y f x =的一条水平渐近线;(2)若0lim ()x x f x →∞=(或0x x +→,或0x x -→),则0x x =是曲线()y f x =的一条铅直渐近线; (3)若()lim,0,x f x a a x→∞=≠且lim[()],x f x ax b →∞-=则y ax b +=是曲线()y f x =的斜渐近线.22(九)平面曲线的曲率(数学一、二要求) 1.弧微分设()y f x =是平面内的光滑曲线,则弧微分.ds = 若曲线方程为(),(),x x t y y t =⎧⎨=⎩则弧微分为.ds =2.曲率(1)设M 和N 是曲线上不同的两点,弧MN 的长为s ∆,当M 点沿曲线到达N点时,M点处的切线所转过角为α∆,则称极限0lims K sα∆→∆=∆为该曲线在点M 处的曲率. (2)曲率计算公式若曲线方程为()y f x =,则曲率23/2(1)y K y ''='+. 若曲线由参数方程()()x x t y y t =⎧⎨=⎩给出,则曲率223/2()t t t t t t x y y x K x y ''''''-=''+. (3)曲率半径1(0)R K K=≠. 三、典型题型[例2.1]已知(3)2f '=,则0lim 2h h→=______________.[例2.2]设函数()f x 在0x =处连续,且201lim (1cos )1h f h h→-=,则().(A)(0)1-'=f .(B)(0)2-'=f .(C)(0)1+'=f . (D)(0)2+'=f .[例2.3]设函数()f x 可导,()(sin 2)()xF x e x f x =+,则(0)0f =是()F x 在0x =处可导的( )条件.(A)充要. (B)充分非必要. (C)必要非充分.(D)非充分非必要.[例2.4]设周期函数()f x 在),(+∞-∞内可导,周期为4,0(1)(1)lim2x f f x x→--=1-,则曲线()y f x =在点))5(,5(f 处的法线斜率为(). (A)21. (B)0.(C)1 .(D)2-.[例2.5]设函数()f x 在区间(,)δδ-内有定义,若当x ∈(,)δδ-时,恒有2()f x x ≤,则23x 0=必是()f x 的( ).(A)间断点.(B)连续而不可导的点. (C)可导的点,且(0)0'=f . (D)可导的点,且(0)0'≠f .[例2.6]设()(1)(2)()f x x x x x n =+++,则(0)________.f '=[例2.7]设函数0()y f x x x ==在处可导,0()1f x '=-,则0limx y dydy∆→∆-=_______.[例2.8] 设函数()f x 处处可微,且有()01f '=,且对任何,x y 恒有()()x f x y e f y +=()x e f y +, 求().f x[例2.9]设函数()f x 在(,)-∞+∞上有定义,对任意,x y ,()f x 满足关系式()()[()1]()f x y f x f x y y α+-=-+,其中0()lim0y y yα→=.又已知(0)2,f =则(1)f =.[例2.10]设()()(),()F x g x x x ϕϕ=在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的()条件.(A) 充要. (B) 充分非必要.(C) 必要非充分.(D) 非充分非必要. [例2.11]函数32()2arctan f x x x x x =+-的不可导点的个数是( ). (A)3.(B)2.(C)1.(D)0.[例2.12]设函数11,0()1,0x x f x x e k x ⎧-≠⎪=-⎨⎪=⎩连续,求常数k 的值,并求()f x '.[例2.13] 求下列函数的导数(1)arctanx y e=-(2)2()ln |2a f x x =.24[例2.14]设2sin[()]y f x =,其中f 具有二阶导数,求22,dy d ydx dx . [例2.15]设函数1,()21,x f x x ⎧≥=⎨<⎩,()()y f f x =,则x edy dx ==_____________.[例2.16]设函数()f u 可导,2()y f x =当自变量x 在1=-x 处取得增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)'=f _________________.[例2.17] (数一、二)设()2arctan ,25t x t y y x y ty e =⎧⎪=⎨-+=⎪⎩由所确定,求.dy dx[例2.18]设22411x y x -=-,求(100)y .[例2.19]设函数()y f x =由方程23ln()sin +=+x y x y x 确定,则==x dy dx_________.[例2.20]设()()()nf x x a x ϕ=-,其中()x ϕ在x a =处具有1n -阶连续导数,试求()()n f a (2)n ≥.题型三 利用导数研究函数的性态[例2.21]设当a x b <<时函数()f x ,()g x 是大于零的可导函数,且()()f x g x '-()f x ()0g x '<,则当a x b <<时,有().(A)()()()()f x g b f b g x >.(B)()()()()f x g a f a g x >.(C)()()()()f x g x f b g b >.(D)()()()()f x g x f a g a >.。
考研数学基础班讲义1
----高等数学----第一章函数、极限、连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节数列极限与函数极限【大纲内容】数列极限与函数极限的定义以及它们的性质;函数的左极限与右极限;无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较;极限的四则运算;极限存在的两个准则;单调有界准则和夹逼准则;两个重要极限:;洛必达()法则。
【大纲要求】理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系;掌握极限的性质及四则运算法则;掌握极限存在的两个准则,并会利用它们求极限;掌握利用两个重要极限求极限的方法;理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限;掌握用洛必达()法则求未定式极限的方法。
【考点分析】数列极限的考点主要包括:定义的理解,极限运算法则的理解,单调有界准则和夹逼准则求极限,利用定积分的定义求和式的极限等等。
函数极限的考点主要包括:用洛必达法则求未定式的极限,由已知极限求未知极限,极限中的参数问题,无穷小量阶的比较等等。
一、数列的极限1.数列的极限无穷多个数按一定顺序排成一列:称为数列,记为数列,其中称为数列的一般项或通项。
设有数列和常数A 。
若对任意给定的,总存在自然数,当n>N 时,恒有,则称常数A 为数列的极限,或称数列收敛于A,记为或。
没有极限的数列称为发散数列。
收敛数列必为有界数列,其极限存在且唯一。
2.极限存在准则(1)定理(夹逼定理)设在的某空心邻域内恒有,且有,则极限存在,且等于A .注对其他极限过程及数列极限,有类似结论.(2)定理:单调有界数列必有极限.3.重要结论:(1)若,则,其中为任意常数。
(2)。
(3)。
【考点一】(1)单调有界数列必有极限.(2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞.(3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞.【评注】(1)在应用【考点一】进行证明时,有些题目中关于单调性与有界性的证明有先后次序之分,需要及时进行调整证明次序。
考研数学之高等数学讲义第五章(考点知识点+概念定理总结)
82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。
《高等数学讲义》(上、下册)--目录 樊映川等编
第一篇解析几何《高等数学讲义》 (上、下册) -- 目录第五章极坐标樊映川等编12.平面束的方程第一章行列式及线性方程组1.二阶行列式和二元线性方程组2.三阶行列式3.三阶行列式的主要性质4.行列式的按行按列展开5.三元线性方程组6.齐次线性方程组7.高阶行列式概念第二章平面上的直角坐标曲线及其方程1.轴和轴上的线段2.直线上点的坐标数轴3.平面数的点的笛卡儿直角坐标4.坐标变换问题5.两点间的距离6.线段的定比分点7.平面上曲线方程的概念8.两曲线的交点第三章直线与二元一次方程1.过定点有定斜率的直线方程2.直线的斜截式方程3.直线的两点式方程4.直线的截距式方程5.直线的一般方程6.两直线的交角7.直线平息及两直线垂直的条件8.点到直线的距离9.直线束第四章圆锥曲线与二元一次方程1.圆的一般方程2.椭圆及其标准方程3.椭圆形状的讨论4.双曲线及其标准方程5.双曲线形状的讨论6.抛物线及其标准方程7.抛物线形状的讨论8.椭圆及双曲线的准线9.利用轴的平移简化二次方程10.利用轴的旋转简化二次方程11.一般二元二次方程的简化1.极坐标的概念2.极坐标与直角的关系3.曲线的极坐标方程4.圆锥曲线的极坐标方才第六章参数方程1.参数方程的概念2.曲线的参数方程3.参数方程的作图法第七章控件直角坐标与矢量代数1.间点的直角坐标2.基本问题3.矢量的概念矢径4.矢量的加减法5.矢量与数量的乘法6.矢量在轴上的投影投影定理7.矢量的分解与矢量的坐标8.矢量的模矢量的方向余弦与方向数9.两矢量的数量积10.两矢量的夹角11.两矢量的矢量积12.矢量的混合积第八章曲面方程与曲线方程1.曲面方程的概念2.球面方程3.母线平行于坐标的柱面方程二次柱面4.控件曲线作为两曲面的交线5.空间曲线的参数方程6.空间曲线在坐标面上的投影第九章空间的平面于曲线1.过一点并已知一法线矢量的平面方程2.平面的一般方程的研究3.平面的截距式方程4.点到平面的距离5.两平面的夹角6.直线作为两平面的交线7.直线的方程8.两直线的夹角9.直线与平面的夹角10.直线与平面的交点11.杂例第十章二次曲面1.旋转曲面2.椭秋面3.单叶双曲面4.双叶双曲面5.椭圆抛物面6.双曲抛物面7.二次锥面第二篇第一章函数及其图形1.实数与数轴2.区间3.实数的绝对值邻域4.常量与变量5.函数概念6.函数的表示法7.函数的几种特性8.反函数概念9.基本初等函数的图形10.复合函数初等函数第二章数列的极限及函数的极限1.数列及其简单性质2.数列的极限3.函数的极限4.无穷大无穷小5.关于无穷小的定理6.极限的四则运算7.极限存在的准则两个重要极限8.双曲函数9.无穷小的比较第三章函数的连续性1.函数连续性的定义2.函数的间断点3.闭区间上连续函数的基本性质4.连续函数的和积及商的连续性5.反函数与复合函数的连续性6.初等函数的连续性第四章导数及微分1.几个物力学上的概念2.导数概念3.导数的几何意义4.求导数的例题导数的基本公式表5.函数的和积商的导数6.反函数的导数7.复合函数的导数8.高阶导数9.参数方程所确定的函数的导数10.微分概念11.微分的求法微分形式不变性12.微分应用与近似计算及误差的估计第五章中值定理1.中值定理2.罗必塔法则3.泰勒公式第六章导数的应用1.函数的单调增减性的判定法2.函数的极值及其求法3.最大值及最小值的求法4.曲线的凹性及其判定法5.曲线的拐点及其求法6.曲线的渐进线7.函数图形的描绘方法8.弧微分曲率9.曲率半径曲率中心10.方程的近似解第七章不定积分1.原函数与不定积分的概念2.不定积分的性质3.基本积分表4.换元积分法5.分步积分法6.有理函数的分解7.有理函数的积分8.三角函数的有理式的积分9.简单无理函数的积分10.二项微分式的积分11.关于积分问题的一些补充说明第八章定积分1.曲边梯形的面积变力所作的功2.定积分的概念3.定积分的简单性质中值定理4.牛顿-莱布尼兹公式5.用换元法计算定积分6.用分部积分法计算定积分7.定积分的近似公式8.广义积分第九章定积分的应用1.平面图形的面积2.体积3.曲线的弧长4.定积分在物力力学上的应用第十章级数I. 常数项级数1.无穷级数概念2.无穷级数的基本性质收敛的必要条件3. 正项级数收敛性的充分判定法4.任意项级数绝对收敛5.广义积分的收敛性6.T- 函数II. 函数项级数7.函数项级数的一般概念8.一致收敛及一致收敛级数的基本性质III 幂级数9.幂级数的收敛半径10.幂级数的运算11.泰勒级数12.初等函数的展开式13.泰勒级数在近似计算上的应用14.复变量的指数函数欧拉公式第十一章傅立叶级数1.三角级数三角函数系的正交性2.欧拉-傅立叶公式3.傅立叶级数4.偶函数及奇函数的傅立叶级数5.函数展开为正弦和余弦级数6.任意区间上的傅立叶级数第十二章多元函数的微分法及其应用1.一般概念2.二元函数的极限及连续性3.偏导数4.全增量及全微分5.方向导数6.复合函数的微分法7.隐函数及其微分法8.空间曲线的切线及法平面9.曲面的切平面及法线10.高阶偏导数11.二元函数的泰勒公式12.多元函数的极值13.条件极值--拉格朗日乘数法则第十三章重积分1.体积问题二重积分2.二重积分的简单性质中值定理3.二重积分计算法4.利用极坐标计算二重积分5.三重积分及其计算法6.柱面坐标和球面坐标7.曲面的面积8.重积分在静力学中的应用第十四章曲线积分及曲面积分1.对坐标的曲线积分2.对弧长的曲线积分3.格林公式4.曲线积分与路线无关的条件5.曲面积分6.奥斯特罗格拉特斯公式第十五章微分方程1.一般概念2.变量可分离的微分方程3.齐次微分方程4.一阶线性方程5.全微分方程6.高阶微分方程的几个特殊类型7.线性微分方程解的结构8.常系数齐次线性方程9.常系数非齐次线性方程10.欧拉方程11.幂级数解法举例12.常系数线性微分方程组。
第1讲 高等数学(一)(2010新版)
联系QQ1165557537第一章高等数学第一节空间解析几何一、向量代数(一)向量及其线性运算既有大小又有方向的量,如位移、速度、力等这类量,称为向量,向量 a 的大小称为向量 a 的模,记作| a |。
向量的加减法、向量与数的乘法统称为向量的线性运算。
向量a与向量 b 的和 a + b 是一个向量 c ,利用平行四边形法则或三角形法则可得向量c,如图1-1-1 ,图 1-1-2 所示。
向量的加法符合下列运算规律:①交换律 a + b = b + a②结合律(a + b)+c= a +(b+c)向量 b 与向量 a 的差 b - a 定义为向量b 与 a 的负向量-a 的和,即b - a = b + (-a)由向量加法的三角形法则可知:向量 a 与实数λ的积记作λa,它是一个向量,它的模它的方向当λ> 0 时,与向量 a 相同;当λ< 0 时,与向量 a 相反。
向量与数的乘积符合下列运算规律:由向量与数的乘积的定义,可得以下定理:定理 设向量 a ≠0 ,那么,向量 b 与向量 a 平行的充分必要条件是:存在惟一的实数λ,使 b =λa 。
(二)向量的坐标设有空间直角坐标系 O - xyz , i 、 j 、 k 分别表示沿 x 、 y 、 z 轴正向的单位向量, 12a M M = 是以1111(,,)M x y z 为起点,2222(,,)M x y z 为终点的向量,则向量a 可表示为其中212121x x y y z z ---、、称为向量 a 的坐标。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法运算如下:非零向量 a 与三条坐标轴正向的夹角αβγ、、称为它的方向角。
向量的模、方向角与坐标之间关系:其中cos cos cos αβγ、、称为向量 a 的方向余弦。
利用向量的坐标可得向量的模与方向余弦如下:。
(完整word版)高等数学讲义(一)
高等数学基础高等数学基础课程的学习内容微积分学,它是创建于十七世纪的一门数学学科,创始人是英国数学家牛顿(Newton )和德国数学家莱布尼茨(Leibniz )。
用著名学者的话来形容“微积分、或者数学分析,是人类思维的伟大成果之一。
它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具”。
“微积分的创立,与其说是数学史上,不如说是人类历史上的一件大事。
时至今日,它对工程技术的重要性就像望远镜之于天文学,显微镜之于生物学一样。
第1讲 函数1.2 函数要知道什么是函数,需要先了解几个相关的概念。
一、常量与变量先看几个例子:圆的面积公式2πr S =自由活体的下落距离2021gt t v s += 在上述讨论的问题中,g v ,,π0是常量,t s r S ,,,是变量。
变量可以视为实属集合(不止一个元素)。
二、函数的定义定义1.1 设D 是一个非空数集。
如果有一个对应规则f ,使得对每一D x ∈,都能对应于唯一的一个数y ,则此对应规则f 称为定义在集合D 上的一个函数,并把数x 与对应的数y 之间的对应关系记为)(x f y =并称x 为该函数的自变量,y 为函数值或因变量,D 为定义域。
实数集合},)(;{D x x f y y Z ∈==称为函数f 的值域。
看看下面几个例子中哪些是函数:}6,3,1{=Xf}9,8,6,2{=Yf 是函数,且2)1(=f ,8)3(=f ,6)6(=f定义域}6,3,1{=D ,值域}8,6,2{=Z ,一般地Y Z ⊂。
}7,6,3,1{=X}9,8,6,2{=Yf 不是函数。
}6,3,1{=X}9,8,6,2{=Yf 是函数,且2)1(=f ,8)3(=f ,8)6(=f定义域}6,3,1{=D ,值域}8,2{=Z 。
}6,3,1{=X}9,8,6,2{=Yf 不是函数。
由函数定义可以得出,函数的对应规则和定义域是确定函数的两个要素,用解析法表示的函数的对应规则就是由表达式确定的,而定义域就是使表达式有意义的所有x 轴上的点。
高等数学讲义(基础班)
第一章 求极限极限的定义: A x f x =→)(lim [] (唯一性、局部保号性、局部有界性)若0>A ,则([])0U x →有f(x)>0。
极限存在的充要条件:)()()(lim lim lim 0x f x f A x f x x x x x x -+→→→=⇔=求极限的方法 1. 四则运算若A x f x =→)(lim [],B x g x =→)(lim [],则(1).B A x g x f x g x f x x +=±=±→→→)]()([)()(lim lim lim [][]x [](2).B A x g x f x g x f x x x •=•=•→→→)()()()(lim lim lim [][][](3).若0≠B ,则BAx g x f x g x f x x x ==→→→)()()()(lim lim lim [][][]若A x f x =→)(lim [],)(lim []x g x →不存在,则)()(lim []x g x f x ±→一定不存在,)()(lim []x g x f x •→不一定存在。
例:01sin lim 0=•→xx x若]()([lim [])x g x f x ±→存在,则)(lim []x f x →,)(lim []x g x →都存在或者都不存在。
若C x g x f x =±→)]()([lim [],A x f x =→)(lim [],则)(lim []x g x →一定存在。
2. 函数的连续性⇔=→)()(0lim 0x f x f x x f(x)在0x 是处连续的。
初等函数在其定义域内都是连续的。
两个重要的极限:1sin lim 0=→xx x ,e xx x =+→)11lim(0(证明过程)3. 洛必达、泰勒公式 (求未定式型,,,,,,∞•∞∞∞∞∞∞001-0000) 以上指数形式用对数转化,即)([])(lim x g x x f →=A e x g x f x e=→)()(ln lim []若''[])()(lim x g x f x →不存在,也不是∞,则''[])()(lim x g x f x →一定不存在。
基础班讲义(高数)
一 函数、极限与连续 (一)本章重点内容1.本章的重点内容是极限,既要准确理解极限的概念和极限存在的充要条件,又要能正确求出各种极限,求极限的方法很多,在考试中常用的主要方法有: (1)利用极限的四则运算法则及函数的连续性; (2)利用两个重要极限,两个重要极限即11lim 1lim 1n xn x e n x →∞→∞⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭0sin lim1x x x →= (3)利用洛必达法则及泰勒公式求未定式的极限;(4)利用等价无穷小代替(常会使运算简化); (5)利用夹逼定理;(6)先证明数列的极限存在(通常会用到“单调有界数列必有极限”的准则),再利用关系式求出极限;(7)利用定积分求某些和式的极限; (8)利用导数的定义;(9)利用级数的收敛性证明数列的极限为零。
这里需要指出的是:题型与方法并不具有确定的关系,一种题型可以有多种计算法,一种方法也可能用于几种题型,有时在一个题目中要用到几种方法,所以还要具体问题具体分析,方法要灵活.2.由于函数的连续性是通过极限定义的,所以判断函数是否连续、判断函数的间断点类型等问题本质上仍是求极限,因此这部分也是重点。
3.在函数这部分内,重点是复合函数和分段函数以及函数记号的运算,以及常用的4类函数及函数的8种表现形式.通过历年试题归类分析,本章常见的典型题型有:1.直接计算函数的极限值或给定函数极限值求函数表示式中的常数;2.讨论函数的连续性、判断间断点的类型;3.无穷小的比较;4.讨论连续函数在给定区间的零点,或方程在给定区间有无实根;5.求分段函数的复合函数。
(二)题型分析主要是求未定式的极限及反求参数 主要方法:①洛必达法则 ②等价无穷小替换 ③8个重要极限的应用 ④左右极限法⑤未定型中1∞型的解题技巧⑥两边夹准则的应用 ⑦递归法求极限⑧利用连续性反求极限 ⑨利用导数求极限 ⑩利用定积分求极限⑾利用级数反求极限(4个反求极限) ⑿利用函数极限求数列极限 ⒀利用泰勒公式求极限1.关于无穷小例1. 比较当0x →时,()ln 1sin x +6,1ln x的阶. 例2.记住① 当n →+∞时ln n ,n ,ne ,!n ,nn ,()2!n 趋于+∞的速率为依次递增. ② 当n →+∞时1ln n ,1n ,1n e ,1!n ,1n n ,()21!n 趋于零的速率为依次递增. 例3. ()()220ln 1ln 1limsin x x x x x x x→+++-+例4. sin 0lim x xx +→练习 arctan 0lim arctan x x x e e x x →--;lim x +→ 2.关于洛必达法则例1. 2220100cos limsin x x x t dtx→-⎰例2. ()22220023limxt x t xe dte dt→∞⎰⎰例3.确定a,b,c 使 ()3sin limln 1x x bax xc t dtt→-=+⎰3. 1∞型中一个重要技巧例1. 210arctan lim x x x x →⎛⎫ ⎪⎝⎭例2. 21lim sin cos xx x x →∞⎛⎫+ ⎪⎝⎭4.左右极限法①用于分段函数分界点处极限的处理②用于函数左右极限不相等情况的处理.如10lim xx e →,01lim arctanx x→ ③特别带绝对值符号的情况的处理。
历年考研数学高等数学基础讲义
考研数学高等数学基础讲义目录第一讲极限 (1)第二讲高等数学的基本概念串讲 (9)第三讲高等数学的基本计算串讲 (13)第四讲高等数学的基本定理串讲 (24)第五讲微分方程 (27)第六讲多元函数微积分初步 (29)1 第一讲 极限核心考点概述1.极限的定义2.极限的性质3.极限的计算4.连续与间断内容展开 一、极限的定义1. lim 是什么? lim 是什么?x →∙n →∞(1)lim 的情况:x →∙①“ x → ∙ ”代表六种情形: x → x , x → x +, x → x -, x → ∞, x → +∞, x → -∞②函数极限运算的过程性——必须保证在作极限运算的过程中函数处处有定义,否则极限过程便无从谈起,于是极限就不会存在了。
比如下面这个例子:sinx sin 1 x【例】计算lim x →0. x sin 1x事实上,在 x = 0 点的任一小的去心邻域内,总有点 x = → 0(| k | 为充分大的正整数),k πsin x s in 1 sin x s in 1 x x 使 在该点没有定义,故lim不存在. x sin 1 x x →0x sin 1x(2)lim 是什么?n →∞2.极限的定义(1)函数极限的定义:lim f (x ) = A ⇔ ∀ε > 0, ∃δ > 0, 当0 < x →x 0x - x 0< δ 时,恒有f (x ) - A < ε1n n12注:趋向方式六种(2)数列极限定义:lim x = a ⇔ ∀ε > 0, ∃N > 0, 当n > N 时,恒有 x - a < ε n →∞注:趋向方式只有一种【例】以下三个说法,(1)“ ∀ε > 0 ,∃X > 0 ,当 x > X 时,恒有件;εf (x ) - A < e 10”是“ lim x →+∞f (x ) = A ”的充要条( 2 )“ ∀ 正整数 N , ∃ 正整数 K ,当 0 <“ lim f (x ) = A ”的充要条件;x →x 0x - x 0 ≤ K时,恒有 f (x ) - A ≤ 1 ” 是 2N(3)“ ∀ε ∈ (0,1) , ∃ 正整数 N ,当n ≥ N 时,恒有| x n - a |≤ 2ε ”是“数列{x n } 收敛于a ” 的充要条件;正确的个数为()(A )0 (B )1(C )2(D )3二、极限的性质1.唯一性(1) lim e x= ∞, lim e x= 0 ,(2)limsin x 不存在(3)lim arctan x 不存在(4)lim [x ]x →+∞x →-∞x →0xx →∞x →0不存在1- π e x 1【例】设k 为常数,且 I = lim x →0+k ⋅ arctan 存在,求 k 的值,并计算极限 I 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数、极限、连续第二章§1.1 函数(甲)内容要点 一、函数的概念1.函数的定义设D 是一个非空的实数集,如果有一个对应规划f ,对每一个x D ∈,都能对应惟一的一个实数y ,则这个对应规划f 称为定义在D 上的一个函数,记以y =f (x ),称x 为函数的自变量,y 为函数的因变量或函数值,D 称为函数的定义域,并把实数集{}|(),Z y y f x x D ==∈称为函数的值域。
2.分段函数如果自变量在定义域内不同的值,函数不能用同一个表达式表示,而要用两上或两个以上的表达式来表示。
这类函数称为分段函数。
例如21<1() -115 >1x x y f x x x x x +-⎧⎪==≤≤⎨⎪⎩是一个分段函数,它有两个分段点,x =-1和x =1,它们两侧的函数表达式不同,因此讨论函数y =f (x )在分段点处的极限、连续、导数等问题时,必须分别先讨论左、右极限,左、右连续性和左、右导数。
需要强调:分段函数一般不是初等函数,不能用初等函数在定义域内皆连续这个定理。
3.隐函数形如y =f (x )有函数称为显函数,由方程F (x ,y )=0确定的y =y (x )称为隐函数,有些隐函数可以化为显函数(不一定是一个单值函数),而有些隐函数则不能化为显函数。
4.反函数如果y =f (x )可以解出()x y ϕ=是一个函数(单值),则称它为f (x )的反函数,记以1()xfy -=。
有时也用1()y fx -=表示。
二、基本初等函数1.常值函数 y =C (常数)2.幂函数y xα=(α常数)3.指数函数xy a =(a >0,a ≠1常数)xy e=(e =2.7182…,无理数)4.对数函数 log a y x=(a >0,a ≠1常数)常用对数 10log lg y x x == 自然对数 log ln e y x x ==5.三角函数sin ;cos ;tan .y x y x y x ===cot ;sec ;csc .y x y x y x ===6.反三角函数 arcsin ;cos ;y x y arc x ==arctan ;cot .y x y arc x ==基本初等函数的概念、性质及其图像非常重要,影响深远。
例如以后经常会用lim arctan x x →+∞;lim arctan x x →-∞;1lim xx e +→;1lim xx e -→;0limln x x+→等等,就需要对arctan y x =,xye=,ln y x =的图像很清晰。
三、复合函数与初等函数 1.复合函数 设()y f u =定义域U()u g x =定义域X ,值域U* 如果*U U⊂,则[()]y f g x =是定义在X 上的一个复合函数,其中u 称为中间变量。
2.初等函数由基本初等函数经过有限次四则运算和复合所构成的用一个分析表达式表示的函数称为初等函数。
四、函数的几种性质1.有界性:设函数y =f (x )在X 内有定义,若存在正数M ,使x X∈都有()f x M≤,则称f (x )在X 上是有界的。
2. 奇偶性:设区间X 关于原点对称,若对x X∈,都有()()f x f x -=-,则称()f x 在X 上是奇函数;若对x X∈,都有()()f x f x -=,则称()f x 在X上是偶函数。
奇函数的图像关于原点对称;偶函数图像关于y 轴对称。
3. 单调性:设()f x 在X 上有定义,若对任意1212x X x X x x ∈∈<,,都有()()12f x f x <()()12fx fx >⎡⎤⎣⎦,则称()f x 在X上是单调增加的⎡⎤⎣⎦单调减少的;若对任意1212x X x X x x ∈∈<,,都有()()()()1212fx f x f x f x ≤≥⎡⎤⎣⎦,则称()f x 在X 上是单调不减⎡⎤⎣⎦单调不增。
(注意:有些书上把这里单调增加称为严格单调增加;把这里单调不减称为单调增加。
)4. 周期性:设()f x 在X 上有定义,如果存在常数0T≠,使得任意x X∈,x TX+∈,都有()()f x T f x +=,则称()f x 是周期函数,称T 为()f x 的周期。
由此可见,周期函数有无穷多个周期,一般我们把其中的最小正周期称为周期。
(乙)典型例题 一、求函数的定义域【例1】 求函数()ln ln ln f x x =+的定义域。
解 ln ln ln x 要有定义,x e >,210010x x ≤≤,,因此,()f x 的定义域为(]10e ,【例2】 求1ln 5y x =-的定义域。
解要有定义,1x ≥和0x =1ln 5x -要有定义,546x x x ≠≠≠,,,因此,定义域为{}[)()()()01445566+∞ ,,,, 【例3】 设()f x 的定义域为[]()0a a a ->,,求()21fx-的定义域。
解 要求21a x a-≤-≤,则211a x a -≤≤+,当1a≥时,10a -≤ ,∴21x a≤+,则x≤当01a <<时,10a ->,x ∴≤≤x ≤≤或x ≤≤【例4】 设()102224x g x x ≤<⎧=⎨≤≤⎩,,求()()()21f x g x g x =+-的定义域,并求32f⎛⎫ ⎪⎝⎭. 解 ()g x 的定义域为[]04,,要求024x ≤≤,则02x ≤≤;要求014x ≤-≤,则15x ≤≤,于是()fx 的定义域为[]21,。
又()31321322f g g ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭二、求函数的值域 【例1】求y=解 我们先求出反函数,它的定义域就是原来函数的值域。
331ln 1,ln y x y=-=x =它的定义域0y >,且1y ≠所以原来函数的值域为(0,1)(1,)+∞ 。
三、求复合函数有关表达式1.已知f (x )和g (x ),求f [g (x )]. 【例1】 已知()1x f x x =-,求1()1ff x ⎡⎤⎢⎥-⎣⎦.解1()1111xf x x x -=-=--,11()1x f x =-- (1x ≠)于是,111(1)()1(1)12x x ff x f x x x ⎡⎤--=-==⎢⎥----⎣⎦(1,2x x ≠≠)【例2】设()f x =,求[](())()n f f f x f x = .n 重复合解[]2()()f x ff x ====,若()k f x =1()k f x +===根据数学归纳法可知,对正整数n,()n f x =2.已知g (x )和f [g (x )],求f (x ). 【例1】 设2(1)x xx f e ee x +=++,求f (x ).解 令1xe u +=,ln(1)x u =-22()(1)(1)ln(1)ln(1)f u u u u u u u =-+-+-=-+-于是 2()ln(1)f x x x x =-+-【例2】 已知()x xf e xe-'=,且(1)0f =,求f (x ).解 令,ln xe t x t==,因此ln ()()x t f e f t t''==,2211ln 11()(1)ln ln 22x xt f x f dt tx t-===⎰∵(1)0f =,∴21()ln 2f x x=四、有关四种性质 【例1】 设()()F x f x '=,则下列结论正确的是().(A )若f (x )为奇函数,则F (x )为偶函数 (B )若f (x )为偶函数,则F (x )为奇函数 (C )若f (x )为周期函数,则F (x )为周期函数(D )若f (x )为单调函数,则F (x )为单调函数 解 (B)不成立,反例32(),()13xf x x F x ==+(C)不成立,反例()cos 1,()sin f x x F x x x =+=+ (D)不成立,反例2()2,()(,)f x x F x x ==-∞+∞在内(A)成立。
证明 0()(0)(),x F x F f t d t f=+⎰为奇函数, 00()(0)()(0)()()xx F x F f t dt F f u d u --=+=+--⎰⎰(0)()()xF f u du F x =+=⎰∴()F x 为偶函数。
【例2】 求151[()ln(.x x I x x e e x dx --=+-+⎰解1()x xf x e e-=-是奇函数,∵112()(),()ln(xxf x ee f x f x x --=-=-=+是奇函数,∵222()ln(lnf x x -=-+=2ln 1ln(()x f x =-+=-因此()ln(x x x e e x --+是奇函数。
于是116612027I x dx x dx -=+==⎰⎰。
【例3】 两个周期函数之和是否仍是周期函数? 解 不一定 (1)()sincos23x x f x =+1()sin2x f x = 周期为4π2()os3x f x c = 周期为6π∵4π和6π的最小公倍数为12π∴()f x 是以12π为周期的函数(2)()sin 2cos f x x x π=+1()sin 2f x x= 周期为π 2()os f x c xπ= 周期为2∵π和2没有最小公倍数 ∴()f x 不是周期函数(3)()sin 2(1sin 2)f x x x =+-1()sin 2f x x= 周期为π2()1sin 2f x x =-周期为π虽然1()f x ,2()f x 不但都是周期函数,而且它们的周期有最小公倍数。
但是12()()()1f x f x f x =+=,却不是周期函数。
(因为没有最小正周期。
)【例4】 设()f x ,()g x 是恒大于零的可导函数,且()()()()f xg x f x g x ''-<,则当a x b <<时,下列结论成立的是( )(A)()()()()f x g b f b g x >(B)()()()()f x g a f a g x > (C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >解 ∵2()1[()()()()]0()()f x f x g x f x g x g x g x '⎡⎤''=-<⎢⎥⎣⎦,∴()()f xg x 单调减少于是x <b ,则有()()()()f x f bg x g b >,故(A)成立。