正四面体外接球面上点的有趣性质
30.四面体

四面体与平行六面体一、一般四面体的性质性质1.任意四面体六个二面角的平分面交于一点,这点到四面体四个面的距离相等,称该点为四面体内切球球心(简称四面体的内心)。
内切球与四面体四个面内切。
若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似的有,,B C D S S S ,则内切球半径3A B C DVr S S S S =+++.性质2.任意四面体六条棱的垂直平分面交于一点,这点到四面体顶点的距离相等,该点称为四面体外接球球心(简称四面体外心)。
外接球通过四面体四顶点。
性质3.任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且该点是中线的四等分点。
性质4.四面体体积公式一:11113333A A B B C C D D V S h S h S h S h ==== 性质5.四面体体积公式之二:1||||sin ,6V AB CD d AB CD =⋅⋅⋅<> (其中d 为AB 、CD 距离)性质6.四面体体积公式二:2sin 2sin 2sin 2sin 2sin 2sin 333333C D AB A D BC A B CD B C DA B D AC A C BDS S S S S S S S S S S S V AB BC CD DA AC BDθθθθθθ======二、特殊四面体的性质(1) 正四面体:各边均相等;(2) (3) 等腰四面体:三组对边分别相等。
三、平行面体像平行四边形是平面图几何的基础一样, 平行六面体是立体几何的基本图形。
性质1.平行六面体的四条体对角线交于一点,且在这一点互相平分,称该点为平行六面体的中心; 性质2.平行六面体的所有体对角线的平方和等于所有棱的平方和。
推论1:平行六面体的所有侧面对角线的平方和等于其所有体对角线平方和的两倍。
推论2:平行六面体的每一侧棱的平方和等于等于与这一侧共面的两侧面四条对角线的平方减去与这一侧棱不共面而共端点的两条侧面对角线平方和所得差的14。
正四面体有趣性质的简单证明

正四面体有趣性质的简单证明
王志和
【期刊名称】《中学教研:数学版》
【年(卷),期】2004(000)010
【摘要】本刊文(1)中给出了正四面体的一个性质:定理正四面体的各个顶点到其外接球面上任何一点的切面的距离之和为定值.
【总页数】2页(P18-19)
【作者】王志和
【作者单位】上海市奉贤中学201400
【正文语种】中文
【中图分类】G633.63
【相关文献】
1.抛物线的几个有趣性质的推广与证明 [J], 李芋宏;李晓菁
2.基础R0-代数的一组有趣性质及其证明 [J], 乔希民
3.数量积与正四面体的一个有趣性质 [J], 陈世明
4.数量积与正四面体的一个有趣性质 [J], 陈世明
5.数学题集锦——1.正四面体的一个有趣性质的证明 [J], 段春华
因版权原因,仅展示原文概要,查看原文内容请购买。
探求正四面体外接球、内切球半径求法知识讲解

探求正四面体外接球、内切球半径求法探求正四面体外接球、内切球半径正四面体是特殊的正三棱锥,所有的棱长都相等,四个面是全等的等边三角形,有外接球、内切球,且球心重合.已知正四面体ABCD 棱长为a ,设外接球半径为R ,内切球半径为r ,球心为O ,则正四面体的高h a a 即34R h =;内切球a 即14r h =. 外接球半径是内切球半径的3倍. 下面从不同角度、用不同方法进行探求:方法一:(勾股定理)作 平面于点,则点H 是的中心,AH BCD H BCD ⊥V高3h AH a ==,设O 为球心,则.O AH ∈ 连结,.BH BO 在Rt BOH V 中,222BO BH OH =+,即222()()33R a a R =+-,,.R a r h R a a a ∴==-=-= 方法二:(三角正切倍角公式)作 平面于点,则点H 是的中心,AH BCD H BCD ⊥V高3h AH a ==,设O 为球心,则.O AH ∈ 连结,.BH BO = ,2.AO BO ABO BAO BOH θθ=∴∠=∠∠=Q在Rt ABHV中,tan,23aBHAHθ===在Rt OBHV中,3tan2,3aBHOH r rθ===23r⨯∴==,.r a R h r a a a∴==-=-=方法三:(分割等体积)作平面于点,则点H是的中心,AH BCD H BCD⊥V高3h AH a==,设O为球心,则.O AH∈连结,,,BO CO DO得到四个以O为顶点的小棱锥,它们的底面是正四面体的一个面,高是内切球的半径r,设正四面体每个面的面积为S,则4,O BCD A BCDV V--=即114,33S r S AH⨯=g g11,4412.3124r AH h aR h r a a a∴====-=-=方法四:(侧棱、高相似或三角)作平面于点,则点H是的中心,AH BCD H BCD⊥V22tantan2,1tanθθθ=-Q高3h AH a ==,设O 为球心,则.O AH ∈ 设M 是AB 的中点,连结,,,OM OB BHAO BO OM AB =∴⊥QAMO AHB Rt ∴∠=∠=∠,又MAO HAB ∠=∠,AMO AHB ∴V :V , AM AO AH AB∴=, 即,aR a =,.R a r h R a a a ∴==-=-= 或:设BAH MAO θ∠=∠=,则在Rt ABH V中,3cos a AH AB aθ==, 在Rt AMO V 中,2cos .aAM AO Rθ==32a aa R∴= , 以下同上. 方法五:(斜高、高相似或三角)作 平面于点,则点H 是的中心,AH BCD H BCD ⊥V高h AH a ==,设O 为球心,则.O AH ∈ 设E 为BC 中点,连结,AE EH ,作ON AE ⊥于N 点,则N 是ABC V 中心,N 是AE 的三等分点,平面,ON 是内切圆半径r,ON ABC ⊥且 ,Rt ANO Rt AEH V :VAN AO AH AE ∴=,32a R = ,,.43412R a r h R a a a ∴==-=-= 或:设EAH NAO θ∠=∠=,则在Rt AEH V中,cos 2a AH AEθ==, 在Rt ANO V中,3cos .a AN AO Rθ==3aa R∴=, 以下同上. 方法六:(斜高、侧棱相似或三角)作 平面于点,则点H 是的中心,AH BCD H BCD ⊥V高h AH a ==,设O 为球心,则.O AH ∈ 设E 为BC 中点,连结,,AE DE DO ,延长DO 交AE 于N ,则N 是AE 的三等分点,.H DE ∈ 且DN ⊥平面.ABC则,Rt ODH Rt DNE V :V OH OD NE DE∴= 即 OH OD = NE DE 13=, 13r R ∴=, 3.R r ∴=又,R r AH h a +===13,.41244r h a R h a ∴==== 或:在Rt DNE V 中,1sin ,3NE NDE DE ∠== 在Rt DOH V 中,sin sin ,OH NDE ODH OD∠=∠= 13OH OD ∴=, 即13r R =, 3.R r ∴=又,3R r AH h a +===13,.41244r h a R h a ∴==== 方法七:(构造正方体)正四面体的四个顶点是正方体的顶点,此时正四面体的外接球也是正方体的外接球,正四面体的棱长为a的棱长为.2a 正方体的体对角线等于外接球直径,有22a R ⨯=,,.43412R a r h R a a a ∴==-=-= 方法八:(相交弦定理)设外接球球心为O ,半径为R ,过A 点作球的直径,交底面BCD V 于H ,则H 为BCD V 的外心,求得,,33AH a BH a == 由相交弦定理得2(2)).333a R a a -=g解得.4R a =.r h R a a a ∴=-=-= 以上从不同角度针对正四面体的外接球半径、内切球半径作了讨论,从而从不同方面对思维作了训练,不仅对正四面体的外接球半径、内切球半径有了透彻的认识,同时对解题能力的提高是有帮助的.。
与正四面体有关的有趣定值

+ n c c 日 一 一 一 口 c n—
4 + . 2
特 别地 , 若 = 4 , 时平面 即为正 四面 体 此 外接 球 的切 面 ,就 可 以得 到 以下 : 推论 1正 四面 体各 顶点 到其外 接 求 的任 一切 面 的 距 离 的 平 方 之 和 等 该 正 四 面 体 棱 长 的 平 方 的 两
・ :
:
4 z, y
d +d 七d
d
[ 一 +_ 口 + 日 z , ( - 咖 ( 一 】 2
44y z+ +。 ( +4 4 (+ z x +) 。 )
ff 。
。
(一= + + Z P) 一e【 ( ( Z, c ・ - - ) o - ] 鲁
( 研 F 6 - _ 删 肘 [ ( 卅 一 ) Z, ]
=
8 + z ( z+ ) 1I
由(… +4 。 于 ( … : , _ 孚
( )y +( … 22 一 )y =a Y2 22 2
,
4x + + 2。 (2 +Z) (2 Z) + + 2
心 ,如 图所 示 ,以 D为
原 点 ,以平 行于 正 方 体
+ . + . + . 两 历
l I
各 表 面 的平 面 为坐 标 平
面如 图建 立空 间直 角 坐 标 系 ,则
( 口,4 口 ,4 ( 一
一
( +P +而 )一 砑 一 B+ .P O
. ..— . . . . .. . . . .. . . . . . . . . . . , —. . . . . 一 .. . . . . . . . . . . . . . 。 . . . . — .. . . . .
正四面体外接球公式

正四面体外接球公式为了推导正四面体外接球的半径公式,首先我们需要先了解一些正四面体的性质。
一、正四面体的性质:1.正四面体的面积公式:一个正四面体的面积可以通过以下公式计算:A=√3*a²,其中a是正四面体的一个边长。
2.正四面体的高公式:一个正四面体的高可以通过以下公式计算:h=(√6/3)*a,其中a是正四面体的一个边长。
3.正四面体的体积公式:一个正四面体的体积可以通过以下公式计算:V=(√2/12)*a³,其中a是正四面体的一个边长。
4.正四面体的垂直高公式:一个正四面体的垂直高可以通过以下公式计算:H=(√6/4)*a,其中a是正四面体的一个边长。
二、正四面体外接球的性质:1.正四面体外接球的半径R,可以通过以下公式计算:R=(√6/4)*a,其中a是正四面体的一个边长。
这是一个重要的结论,可以称之为正四面体外接球半径公式。
推导过程:我们首先使用勾股定理来证明正四面体外接球半径公式。
我们知道正四面体的高是等边三角形高线段的1/3,所以正四面体的高为(√6/3)*a。
又根据正四面体外接球的性质,球的半径,也就是外接球的半径R,正好是正四面体垂直高的2/3倍。
所以我们有:R=(2/3)*(h)。
我们可以把h代入R的公式中,得到:R=(2/3)*((√6/3)*a)=(√6/9)*a。
然而,这个结果与我们之前提到的正四面体外接球半径公式不相符。
所以我们需要检查我们之前提到的正四面体外接球半径公式有没有错误。
我们可以使用三角函数来验证正确性。
正四面体的一个面上的顶角是60度,所以它的两个邻边与外接球的半径之间的夹角也是60度。
根据正余弦定理:cos(60) = a / (2R)。
根据余弦函数的性质:cos(60) = 1/2所以我们可以得到:1/2=a/(2R)即:R=(1/2)*a这可以证明我们的正四面体外接球半径公式是正确的。
综上所述,正四面体外接球半径公式为:R=(1/2)*a或R=(√6/4)*a。
四面体的特殊性原理

四面体的特殊性原理四面体是一个具有四个面的多面体,每个面都是一个三角形。
它是空间中最简单的多面体之一,具有许多特殊性质和原理。
1.形状特性:四面体的最基本特性是其形状。
正四面体是最常见的四面体类型,其四个面都是等边三角形,并且所有的内角也相等。
正四面体具有对称性,每个面都等效地相对于其他三个面。
这种形状特性使得正四面体具有优秀的稳定性和抗力特性。
2.内外共点性:四面体的一个重要特性是其四个顶点共面且共点。
换句话说,四面体的顶点均位于同一平面上,这被称为“共点性”。
这个特性很容易证明,只需考虑四面体的两个对角线,它们必定会相交于一个点。
3.顶点对称性:四面体的另一个重要特性是其顶点的对称性。
四面体的顶点分别对称于其他三个顶点,具有相同的距离和角度关系。
这种对称性使四面体在空间中具有优雅和美学上的特殊性。
4.重心性质:四面体的重心是四个顶点的平均值,即四个顶点的坐标均值。
重心在许多应用中起着重要的作用,例如在计算力学性质时,求解质心是简化计算和分析的关键步骤。
每个面的重心位于该面的中心,而整个四面体的重心位于整个四面体内部的一个点上。
5.体积与高度的关系:四面体的体积可以根据其底面积和高度计算得出。
四面体的高度是从底面到对面顶点上垂线的距离。
根据勾股定理,四面体的高度可以通过底边长和平行于对面底边的高边的长度计算得出。
四面体的体积是其底面积和高度的乘积的1/3倍。
6.四面体剖分:四面体可以通过不同的剖分方式展示其特殊性质。
例如,当将四面体通过从顶点到对面底边作垂线分成两个小的四面体时,这两个小的四面体与原始四面体具有相似性质。
该剖分方式可以应用于几何中的许多问题,例如计算体积和表面积。
7.点与平面的关系:一个点可以描述为一个四面体的顶点,而四面体的三个面可以描述为三个相交的平面。
这种关系在几何学和图形学中得到广泛应用,例如在计算射线与平面的交点时。
8.斜四面体的稳定性:斜四面体是指四个面都是三角形,但不满足等边性质的四面体。
球内接四面体与球外接四面体

球内接四面体与球外接四面体四面体是一种特殊的多面体,具有四个面和四个顶点。
在四面体中,我们可以找到两种特殊情况:球内接四面体和球外接四面体。
本文将讨论这两种四面体及其特点。
一、球内接四面体球内接四面体是指四面体的四个顶点都处于同一个球的表面上且该球同时与四面体的四个面相切。
换句话说,球心在四面体的内部,球面与四面体的相切。
例子1:正四面体是一个球内接四面体。
它的四个顶点位于一个以中心为球心的球面上,且四个面都与该球面相切。
在球内接四面体中,我们可以观察到以下特点:1. 球心到四个顶点的距离相等:由于四个顶点都在同一个球面上,因此球心到每个顶点的距离相等。
2. 四边形的性质:任意三个顶点决定一个平面,该平面与球心构成的直线垂直相交,因此四个面都是三角形,相邻面之间的边构成四个边相等的四边形。
3. 体积关系:球内接四面体的体积可以通过以下公式计算:V =(r^3) * (4/3) * π,其中r为球内接四面体的球半径。
二、球外接四面体球外接四面体是指四面体的四个面都与同一个球的表面相切,球心位于四面体所在的平面外部。
例子2:正二十面体是一个球外接四面体。
四面体的四个面都与外接球的球面相切。
在球外接四面体中,我们可以观察到以下特点:1. 球心至四面体各面的距离相等:由于四个面都与同一个球表面相切,因此球心到每个面的距离相等。
2. 三个顶点共面:在球外接四面体中,任意三个顶点都共面,即它们处于同一个平面上。
3. 体积关系:球外接四面体的体积可以通过以下公式计算:V =(a^3) * (4/3) * √2 / 12,其中a为球外接四面体的棱长。
综上所述,球内接四面体和球外接四面体分别具有不同的特点和性质。
球内接四面体的四个顶点位于一个球面上,而球心在四面体内部;而球外接四面体的四个面与同一个球的球面相切,球心位于四面体所在的平面外部。
对于这两种四面体而言,它们的体积与边长之间存在一定的关系,可通过相应的公式计算得出。
正四面体相关结论

正四面体相关结论正四面体是一种具有特殊性质的几何图形,它由四个相等的正三角形组成,每个角都是60度。
在正四面体中,有一些重要的结论和性质,这些结论和性质在解决相关的几何问题时非常有用。
1、中心与顶点之间的关系正四面体的中心到四个顶点的距离相等,也就是说,中心是四个顶点所组成的菱形的中心。
这个结论可以用于计算正四面体的半径和中心到顶点的距离。
2、边长与高之间的关系正四面体的边长和高之间有一个重要的关系,即高是边长的2/3。
这个结论可以用于计算正四面体的高,也可以用于解决与正四面体的边长和高有关的问题。
3、体积与半径之间的关系正四面体的体积与半径之间有一个重要的关系,即体积是半径的立方根。
这个结论可以用于计算正四面体的体积,也可以用于解决与正四面体的体积和半径有关的问题。
4、三个两两垂直的平面相交于一点在正四面体中,三个两两垂直的平面相交于一点,这个结论可以用于解决与正四面体的三个两两垂直的平面相交有关的问题。
5、相对的两条边互相垂直在正四面体中,相对的两条边互相垂直,这个结论可以用于解决与正四面体的相对的两条边互相垂直有关的问题。
正四面体的一些重要结论和性质在解决相关的几何问题时非常有用,这些结论和性质可以帮助我们更好地理解和解决正四面体的问题。
正四面体外接球和内切球的半径的求法在几何学中,正四面体是一种具有特殊性质的几何形态。
它由四个相等的正三角形构成,每个面都是一个等边三角形。
这种几何形态在许多领域都有广泛的应用,包括物理学、化学、工程学等。
在解决实际问题时,我们常常需要找出正四面体的外接球和内切球的半径。
下面将介绍两种求法。
第一种方法是通过几何计算直接求解。
首先,我们需要找到正四面体的中心点。
这个点可以通过连接正四面体的四个顶点并取其中间位置来找到。
一旦找到了中心点,我们就可以通过连接这个点和正四面体的各个顶点,找到外接球的球心。
外接球的半径就是从球心到正四面体顶点的距离。
内切球的半径则是从球心到正四面体四个面的中心的距离。
正四面体的性质最终版

正四面体的性质:设正四面体的棱长为a ,则这个正四面体的(1)全面积 S 全2a ; (2)体积3; (3)对棱中点连线段的长d=2a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。
) (4)相邻两面所成的二面角 α=1arccos 3(5)对棱互相垂直。
(6)侧棱与底面所成的角为β=1arccos3(7)外接球半径a ; (8)内切球半径r=12a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质有一个三面角的各个面角都是直角的四面体叫做直角四面体.如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形;②直角顶点O 在底面上的射影H 是△ABC 的垂心; ③体积 V= 16a b c ; ④底面面积S △ABC⑤S 2△BOC =S △BHC ·S △ABC ; ⑥S 2△BOC +S 2△AOB+S 2△AOC =S2△ABC⑦22221111OH a b c =++;⑧外接球半径⑨内切球半径 r=AOBBOC AOC ABCS S S S a b c∆∆∆∆++-++四面体的性质探究如果从面的数目上来说,四面体是最简单的多面体。
一.四面体性质ABCDO HA BDCOS 1S 2S 3 S 41.四面体的射影定理:如果设四面体ABCD 的顶点A 在平面BCD 上的射影为O ,△ABC 的面积为S 1,△ADC的面积为S 2,△BCD 的面积为S 3,△ABD 的面积为S 4,二面角A-BC-D 为θ1-3,二面角A-DC-B 为θ2-3,二面角A-BD-C 为θ3-4,二面角C-AB-D 为θ1-4,二面角C-AD-B 为θ2-4,二面角B-AC-D 为θ1-2,则S 1 = S 2cosθ1-2 + S 3cosθ1-3 + S 4cosθ1-4 S 2 = S 1cosθ1-2 + S 3cosθ2-3 + S 4cosθ2-4 S 3 = S 1cosθ1-3 + S 2cosθ2-3 + S 4cosθ3-4 S 4 = S 1cosθ1-4 + S 2cosθ2-4 + S 3cosθ3-42.性质2(类似余弦定理)S 12= S 22+ S 32+S 42- 2S 2S 3 cosθ2-3 - 2S 2S 4 cosθ2-4 - 2S 3S 4 cosθ3-4 S 22= S 12+ S 32+S 42- 2S 1S 3 cosθ1-3 - 2S 1S 4 cosθ1-4 - 2S 3S 4 cosθ3-4 S 32= S 12+ S 22+S 42 - 2S 1S 2 cosθ1-2 - 2S 1S 4 cosθ1-4 - 2S 2S 4 cosθ2-4 S 42= S 12+ S 22+S 32- 2S 1S 2 cosθ1-2 - 2S 1S 3 cosθ1-3 - 2S 2S 3 cosθ2-3特别地,当cosθ1-2 = cosθ1-4 = cosθ2-4 = 0,即二面角C-AB-D 、 C-AD-B 、B-AC-D 均为直二面角(也就是AB 、AC 、BC 两两垂直)时,有S 32= S 12+ S 22+S 42, 证明:S 32= S 3S 1cosθ1-3 + S 3S 2cosθ2-3 + S 3S 4cosθ3-4= S 1 S 3cosθ1-3 + S 2 S 3cosθ2-3 + S 3 S 4cosθ3-4= S 1(S 1 - S 2cosθ1-2 + S 4cosθ1-4)+S 2(S 2 - S 1cosθ1-2 + S 4co sθ2-4)+ S 4(S 4 - S 1cosθ1-4 + S 2cosθ2-4)= S 12+ S 22+S 42- 2S 1S 2 cosθ1-2 - 2S 1S 4 cosθ1-4 - 2S 2S 4 cosθ2-4二.正四面体的性质设正四面体的棱长为a ,则这个正四面体的 (1)全面积S 全2a ;(2)体积V=312a ;(3)对棱中点连线段的长 a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。
2023年高考数学-----正四面体外接球规律方法与典型例题讲解

2023年高考数学-----正四面体外接球规律方法与典型例题讲解【规律方法】如图,设正四面体ABCD的的棱长为a,显然正四面体和正方体有相同的外接球.正方体外接球半径为==R,即正四面体外接球半径为=R.【典型例题】−外接球O表面积为54π,则例4.(2022·黑龙江·哈九中模拟预测(理))已知正四面体P ABC该正四面体棱长为______;若M为平面ABC内一动点,且PM=,则AM最小值为______.【答案】 6【解析】设该正四面体棱长为a,过点P作PD⊥面ABC,则点D为ABC的重心,则AD=,PD=,又正四面体P ABC −外接球O 表面积为54π,则2454R ππ= ,则R =即PO AO ==, 又222AO AD OD =+,则222)=+, 解得:6a =;又M 为平面ABC 内一动点,且PM =则DM ==,即点M 的轨迹为以D 为圆心,又AD =则由点与圆的位置关系可得AM 最小值为:故答案为:6;例5.(2022·江苏南京·高三开学考试)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.【解析】设外接球半径为r ,外接球球心到底面的距离为h ,则2243h r r h +==+,所以r两球相交形成的图形为圆,如图,在PDO △中,661cos DPO +−∠=sin DPO ∠=,在1PDO △中,1sin DO PD DOP =∠=所以交线长度为2π=.例6.(2022·福建·福州三中模拟预测)表面积为 )A. B .12π C .8π D.【答案】B【解析】设正四面体的棱长为a24⨯=a=该正四面体的外接球与棱长为2的正方体的外接球的半径相等,2=⨯=.Sππ412故选:B.本课结束。
什么是四面体的外接球?

什么是四面体的外接球?四面体,是一种由四个三角面组成的多面体。
在数学中,四面体具有许多有趣的性质和特征。
其中之一就是它的外接球。
什么是四面体的外接球?在本文中,我们将深入探讨这个问题,并揭示外接球对于四面体的重要意义。
一、外接球的定义及性质外接球,顾名思义,即可以与四面体的四个顶点共面,并且还能与四个顶点相切的球。
具体而言,四面体的外接球的球心必然在四面体的平面内,而半径则是球心到四个顶点的距离的最大值。
外接球具有许多有趣的性质。
首先,四面体的外接球是唯一确定的,这意味着无论四面体的形状如何变化,其外接球的半径和球心位置都是不变的。
其次,四面体的外接球的半径与四面体的边长有着密切的关系,可以通过数学公式予以表达。
此外,外接球的球心到四个顶点的距离之比也是一个重要的性质,被称为外接球的半径比。
二、外接球在三维几何中的应用外接球在三维几何中有着广泛的应用。
首先,外接球被用来描述四面体的形状和结构。
通过外接球的半径和球心位置,我们可以获得有关四面体的重要信息,如体积、表面积等。
此外,外接球还可以用来判断四面体的稳定性。
如果外接球的半径很大,那么四面体的形状就会更加稳定。
另外,外接球还与四面体的分割和分类密切相关。
通过外接球,我们可以将四面体分为正四面体和非正四面体等不同类型。
外接球的性质也可以用来解决包围球问题,即找到一个能够同时包围一组点的最小球。
三、外接球的实际应用外接球不仅在数学研究中起到重要作用,还有着广泛的实际应用。
例如,在计算机图形学中,外接球常被用来生成逼近球面的多边形网格,以便进行渲染和显示。
此外,外接球还可以应用于物理模拟和机器人运动规划等领域。
外接球还在材料科学和化学领域中发挥着重要作用。
通过研究外接球的性质,科学家能够更好地理解分子的空间结构和化学反应。
外接球还可以被应用于新材料的设计和合成,以及药物分子的筛选和分析等方面。
结语四面体的外接球是一个充满魅力的数学概念。
它的定义和性质为我们提供了深入理解四面体的重要线索,同时也为许多实际应用提供了便利。
正四面体的外接球与内切球PPT讲稿

解题小结:
(1) V1:V2=R13:R23; S1:S2=R12:R22.
(2) 注意扩大与扩大到的区别.
(3) 解这类问题的关键:找到变化前 后半径的大小关系.
例3. 长方体的三个相邻面的面积分别为2,3, 6,这个长方体的顶点都在同一个球面上,求这个 球的表面积。
例4.在球心同侧有相距9cm的两个平行截面,它们的面 积分别为49πcm²和400πcm²,求球的表面积。
若将“球心同侧”这个条件去掉,又如何?
O₂
A
O₁
B
O
题组二:
1、一个四面体的所有2的棱都
一球为面上,,则四此个球顶的点表在面同积
( ) A 3л
B 4л C
3 3
D 6л
2、若正四体的棱长都为6,内有一 切球。与求四球个的面表都面相积。
1、一个四面体的所有的2 棱都
一球为面上,,则四此个球顶的点表在A面同积
的外接球,此时球的直径
为 3,
D
S球 =4 (
3 )2 2
3 ,
选A
A
C1 B1
C B
2、若正四体的棱长都为6,内有一
切球,与求四球个的面表都面相积。
解:作出过一条侧棱PC和高PO的截面,则截面三
角形PDC的边PD是斜高,DC是斜高的射影,球被截
P
成的大圆与DP、DC相切,连结EO,设球半径为r,
R2 2 ( 3
2 R)2,解得R 3
3 2
, 所以S球
4
R2
3 .
1、一个四面体的所有的2 棱都 一 (A为球3л面)上,B则四4л 此个C 球顶的点表在3 面同3 积 D 6л
解法2 构造棱长为1的正 方体,如图。则A1、C1、B、D
正四面体外接球和内切球球心

设正四面体为A-BCD.作三角形BCD 中,CD 边的中线BE,BC 边的中线DF. BE,DF 相交于G,连接AG.以下讨论AG 的性质.连接AE,AF. 由于BC 垂直于AE, BC 垂直于AF,故BC 垂直于平面ADF,(垂直于平面上的两相交直线,就垂直于这平面) 从而BC 垂直于AG.(垂直于平面,就垂直于平面上的任何直线)同理,CD 垂直于AG,即知AG 垂直于平面BCD. 即AG 是过三角形BCD 的外心且垂直这三角形所在平面的直线.故其上任何一点到三点BCD 等距离.(1) 再者,平面ABE 是二面角平面C-AB-D 的平分面.即:二面角C-AB-E = E-AB-D 由此知,平面ABE 上任何点到平面ABC 和平面ABD 的距离相等.同理:平面ADF 是二面角平面C-AD-B 的平分面.知:平面ADF 上任何点到平面ABD 和平面ACD 的距离相等.而AG 在是上述两平面的交线,,故AG 上的任何点到,此到三平面ABC,ABD,ACD 的距离相等的距离相等(2) 同理,设三角形ADC 的中心为H,连接BH, 则BH 有相应的性质:(1a)其上任意点其上任意点到三点ADC 的距离相等;(2a)其上任意一点到三平面:BCD,BCA,BAD 距离相等.. AG, BH 都在同一平面ABE 中,设它们相交于O,则O 点到四点:A,B,C,D 距离相等,且O 点到四面ABC,ABD, BCD,ACD 距离相等.即O 点既是外接球的中心,又是内切球的中心.求证:空间中两条异面直线有且只有一条公垂线!即已知:直线a 和直线b 为异面直线为异面直线求证:它们有且只有一条公垂线它们有且只有一条公垂线我问过很多同学和老师他们都写不出来我问过很多同学和老师他们都写不出来.........注意证明公垂线的存在性和唯一性注意证明公垂线的存在性和唯一性注意证明公垂线的存在性和唯一性! ! 存在性证明存在性证明过直线b 作平面A 平行于a ,将a 向A 投影得a'交b 于点p过点p 作直线c 垂直于A∵c ⊥A∴c ⊥b 且c ⊥a'∵aǁa'且c∩a'=p∴c ⊥a=p'则c 即为a,b 公垂线公垂线唯一性证明唯一性证明假设公垂线不唯一,过b 上任一点m 作公垂线交a 于n∵mn ⊥a aǁa'∴mn ⊥a'又∵mn ⊥b∴mn ⊥A∵mn∩a=n 且mn ⊥a'∴mn∩a'=n'过平面外一点有且只有一条直线垂直于平面过平面外一点有且只有一条直线垂直于平面∴m=n'=p(三点重合)得过点p 有两条直线与A 垂直,与定理(过平面上一点有且只有一条直线垂直于平面)矛盾,故假设不成立.唯一性得证.。
八个有趣模型——搞定空间几何体的外接球与内切球

八个有趣模型——搞定空间几何体的外接球与内切球一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、与台体相关的,此略.五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 解: 162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .π36 解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(3)题-1(引理)AC(3)题-2(解答图)AC(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+=οBC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V 球,类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. (6)题图(6)题直观图P图2-1第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .π229 解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S (3)正四面体的各条棱长都为2,则该正面体外接球的体积为 (3)解答题解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题解答图(4)题解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可1)21()23(222=+=R ),1=R ,球的体积为34π=球V ; (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .解:32=BC ,4120sin 322==οr ,2=r ,5=R ,π20=S ; (3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 .π16 解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ; 法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r , 3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-3图4-41.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);(3)题第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 . 解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V . (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A .433 B .33 C .43 D .123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==οaR ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ; (4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π 解:选D ,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ; (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )AA.6 BC.3 D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球 类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( )C A .π3 B .π2 C .316πD .以上都不对解:选C , 法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==οR ,下略;第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)俯视图侧视图正视图解答图图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . 解:如图,3460sin 22221===οr r ,3221==r r ,312=H O , 35343121222=+=+=r H O R ,315=R ; 法二:312=H O ,311=H O ,1=AH , 352121222=++==O O H O AH AO R ,315=R ; (2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为 π4(2)题-2(2)题-1→A(3)题解:如图,易知球心在BC的中点处,π4=表S ;(1)题(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为 π6 解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO , 33sin 21=∠O OO ,36cos 21=∠O OO , 22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ; 法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为 π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d , 法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM , 4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角CBD A --(4)题图的平面角的大小为ο120,则此四面体的外接球的体积为 解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,→抽象化(5)题解答图-2(5)题解答图-11B32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O , ∴2121=O O ,72120sin 21==οO O OM , 法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ; 法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V . 类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,ο90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是 62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则 2622313133aa V V ABC P =⋅==-正方体,又Θr a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-, ∴263332a r a =,62a r =,∴内切球的表面积为(1)题D图8-1A图8-26422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为37解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCDS ⋅+==-328431表, ∴3743284=⋅+r , 771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则32解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABC P V , 另一表达体积的方式是r r S V ABC P ⋅++==-347331表, ∴3323473=⋅++r ,∴47332++=r习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 解:【A 】616164)2(2=++=R ,3=R【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 .332π(2)题(3)题B解:260sin 32==οr ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅ 【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .解:ABC ∆外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==οR ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V , 4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:PAC ∆的外接圆是大圆,3460sin 22==οR ,32=R , 5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,81216)97(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为 .解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。
正四面体边长与外接球半径的关系

正四面体边长与外接球半径的关系好呀,今天咱们来聊聊正四面体、边长和外接球半径之间的关系。
你知道吗,正四面体就是那种每个面都是等边三角形的立体,听起来是不是有点拗口?其实它长得就像一个小金字塔,底下三角形,上面再一个三角形。
这玩意儿可不仅仅是个模型,还是个有趣的数学家伙,跟我们生活中不少东西都有联系。
先说说边长吧。
正四面体的每一条边都是一样长的,想象一下,如果你用一根小棍子把四个角连起来,那每根棍子都要一样长,才能形成那个完美的形状。
边长大概有多重要呢?就像你盖房子,砖头都得大小一样,才能不歪不斜。
越长的边,四面体的体积也会随之变大。
就好像你在厨房里,做一个大蛋糕,材料越多,蛋糕越大,越诱人,哈哈!再来说说外接球。
这个概念乍一听有点晦涩,别担心,简单说就是一个球,把正四面体包得严严实实。
你可以想象成正四面体被一层软绵绵的棉花包裹着,那球的半径就是从中心到正四面体某个顶点的距离。
听起来是不是有点好玩?正四面体外接球的半径其实跟边长有很大关系,边长长,外接球半径自然也跟着大。
就像你吃冰淇淋,球越大,吃起来就越爽。
公式是怎样的呢?不想让你感到无聊,简单说一下吧。
外接球半径 R 是边长 a 的某个倍数,具体公式就是R = a / √2。
你看,这样一来,边长越长,R 自然也就越大。
就像你买衣服,尺码越大,穿起来就越舒服,哈哈。
你也许会问,为什么会是这个样子?这背后其实是有几何关系在作怪,正四面体的几何特性让它的外接球半径跟边长之间形成了这样的比例关系。
咱们不妨想象一下,正四面体就像个神秘的小宇宙,边长和外接球半径就像宇宙中的星星。
它们彼此关联,却又各自独立。
边长是基础,外接球半径是结果,二者就像锅里的米和水,水多了米就会变软,米少了水就会泛滥,这就是生活的奥妙。
数学不止于此。
这玩意儿在设计和工程中可是有着广泛的应用哦。
建筑师们常常会用正四面体的形状来设计一些独特的建筑,想想那些现代感十足的博物馆或者展览馆,正四面体的灵感随处可见。
初中数学竞赛专题-第二十三章特殊四面体的性质及应用

第二十三章 特殊四面体的性质及应用【基础知识】特殊四面体包括垂心四面体(四条高线交于一点的四面体),直角四面体(有一个三面焦是直三面角的四面体,或过同一顶点的三条棱互相垂直的四面体),拟腰四面体(两对对棱相等的四面体),等面四面体(三对对棱相等的四面体),正四面体(六条棱长相等的四面体)等.特殊四面体除了具有一般四面体的性质外,还具有各自独特的性质. 1.垂心四面体性质1垂心四面体的对棱互相垂直.反之亦然.事实上,若四面体ABCD 为垂心四面体,垂心为H ,则AH ,BH 均与CD 垂直,从而AB CD ⊥. 同理,AC BD ⊥,AD BC ⊥.反之,由AB CD ⊥,过AB 作CD 的垂面交CD 于E ,设H 为ABE △的垂心,则AH BE ⊥,AH CD ⊥,所以AH 是面BCD 的垂线.同样,BH 是面ACD 的垂线,四面体ABCD 的每两条高交于一点,每三条高不共面,所以四条高必交于同一点.于是H 为四面体的垂心,即四面体为垂心四面体. 性质2垂心四面体的高过底面的垂心,反之亦然.事实上,由性质1,设顶点A 在底面BCD 上的射影为F ,由于AB CD ⊥,所以AB 的射影BF CD ⊥.同样CF BD ⊥,即F 为BCD △的垂心.性质3垂心四面体对棱的平方和相等.反之亦然.事实上,由性质2,知A 在面BCD 上的射影F 为BCD △的垂心.设BF 交CD 于E ,则 22222222AC AD CF DF CE DE BC BD --==-=-,即有2222AC BD AD BC +=+.同理,2222AC BD AB CD +=+.性质4垂心四面体连接对棱中点的线段相等.反之亦然. 事实上,由性质3,设E ,F 分别为AB ,CD 的中点,则()22222222222114222EF AF BF AB AC AD CD BC BD CD AB =+-=+-++--()222222AC BD BC AD AB CD =+=+=+.即证.反之,考察过对棱的相互平行的六个平面构成的平行六面体,六面体的棱长恰好等于连结四面体对棱中点的线段,因此,六面体的棱均相等,各面为菱形,菱形对角线(即四面体的对棱)互相垂直. 由于从性质1⇒性质2⇒性质3⇒性质4⇒性质1,从而性质2,3,4的反之亦然.上述性质中的反之亦然,其实也是垂心四面体的四条判定定理.由性质4的证明中可知有性质5垂心四面体的外接平行六面体(四面体的棱为平行六面体的侧面对角线)各面是菱形. 性质6平行于四面体任一组对棱的平面截其余四条棱的截口面为矩形. 性质7垂心四面体对棱之公垂线共点于垂心.性质8垂心四面体的外心、重心、垂心共线,且外心到重心的距离等于重心到垂心的距离. 2.直角四面体直角四面体有如下判定定理和性质:判定定理对棱都垂直且有一个面角为直角的四面体是直角四面体.事实上,在四面体ABCD 中,若90DAC ∠=︒,则由AD BC ⊥,知AC ⊥面ABC ,从而AD AB ⊥,即90DAB ∠=︒.又由AB CD ⊥,知AB ⊥面ACD ,有90BAC ∠=︒.即证. 推论1两组对棱垂直且有一个面角为直角的四面体是直角四面体.推论2四面体一顶点到对面的射影是该面的垂心,且该顶点的三面角的面角中有一个为直角,那么这个四面体是直角四面体.显然,上述判定定理及推论的逆命题也是直角四面体的性质.为了方便讨论直角四面体的一系列性质引进一些记号:设直角四面体PABC 的直三面角是三面角P ABC -,其体积为V ,棱PA a =,PB b =,PC c =.顶点x 所时的面的面积记为x S ;以棱y 为二面角棱的二面角大小记为y θ;四面体PABC 的内切球、外接球的半径分别记为x r .由于直角四面体是垂心四面体,因此,可得性质1直角四面体具有垂心四面体的所有性质.性质2三对对棱中点的连线共点(设为G ,且此点称为四面体的重心)且互相平分;三对对棱中点的连线长相等, 性质3不含直角的侧面三角形是锐角三角形,且这每一个面角的正切值等于这个面的面积的2倍与该面角所对的棱长平方之比;这每一面角的余弦值等于与此面共顶点的另两个面角余弦值之积. 性质4(1)cos cos cos P A BC B AC C AB S S S S θθθ=⋅+⋅+⋅; (2)cos A P BC S S θ=⋅,cos B P AC S S θ=⋅,cos C P AB S S θ=⋅; (3)222cos cos cos 1BC AC AB θθθ++=;(4)34AB BC AC θθθπ<++<π. 下面只给出(4)式的证明思路: 由(3)式有222cos cos cos cos cos cos cos 0BC AC AB AB AC AB AC θθθθθθθ---⋅+>==()(). 又cos cos 0AB AC θθ->,则cos cos 0AB AC θθ+<,故2AB AC θθπ<+.同理还有两式,相加即证(4)式左端.又()()cos cos AB AC AB AC θθθθ⎡⎤π++=-+⎣⎦,在[]0,π内余弦函数递减,有cos[]cos[]cos AB AC AB AC AB AC θθθθθθπ-+π--<-()=()(),即有()22cos cos BC AB AC θθθ⎡⎤>π-+⎣⎦,由此即证得(4)式右端.由性质4(3)及幂平均、算术一几何平均值不等式,我们有推论(1)cos cos cos AB BC AC θθθ++(2)cos cos cos AB BC AC θθθ⋅⋅ (3)cos cos cos cos cos cos 1AB BC BC AC AB AC θθθθθθ⋅+⋅+⋅≤;(4)sin sin sin AB BC AC θθθ++;(5)sin sin sin AB BC AC θθθ⋅⋅; (6)sin sin sin sin sin sin 2AB BC BC AC AB AC θθθθθθ⋅+⋅+⋅≤.性质5含直角的侧面面积是它在不含直角的侧面上的射影面积与这不含直角的侧面面积的比例中项.性质62222P A B C S S S B =++.性质7二面角大小为θ(90θ≠︒)的两侧面中,含直角的侧面面积S 与不含直角的侧面面积P S 之比为cos θ.特别地,60θ=︒时,12P S S =∶∶;45θ=︒时,22P S S =∶∶;30θ=︒时,32P S S =∶∶;3arccos3θ=时,33P S S =∶∶. 性质8222222sin sin sin B CA CA BP ABBCACS S S S S S S θθθ+++===.性质91263A B C V abc S S S ==⋅⋅. 性质10设S 为直角四面体的全面积,L 为6条棱长的乘积,则32333362S V +⋅⋅≥;722L V ≥. 性质11直角四面体的四顶点与其所对侧面重心的四条连线共点,共点于三对对棱中点连线的交点.亦即七线共点于直角四面体重心.性质12直角四面体的四顶点与其所对的侧面垂心的四条连线共点,共点于其直三面角顶点P ,此点为直角四面体的垂心.由此也可知直角四面体是垂心四面体.性质13非直三面角体的三顶点与其所对的侧面外心的三条连线共点,共点于不含直角的侧面三角形的重心.性质14过含直角的侧面三角形的外心,且与该侧面垂直的三直线共点,共点于直角四面体的外心. 性质15设A m 、B m 、C m 、P m 分别为直角四面体四顶点与所对面的重心的连线长(或称四面体的4条中线长),则()222222243A B C P m m m m a b c +++=++. 分析如图23-1,设1G 为侧面ABC △的重心,设1PG E α∠=.由三角线中线长公式,有()22214PE b c =+,()2222144AE a b c =++.又()2222222211222222cos 2cos 333333P P P P P PE PA AE m AE m AE m AE m m AE αα⎡⎤⎡⎤⎛⎫⎛⎫+=+-⋅⋅⋅+++⋅⋅⋅=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦由此即有()222219P m a b c =++.类似可求()2222199A m a b c =++,()2222199B m a b c =++,()2222199C m a b c =++,由此即获结论. 性质16R 且与对棱中点的连线长相等;外接球的球心是分别过直三面角的三条棱与其所对棱中点的三个平面的公共点.性质17()2A B C P A B C P S S S S abcr S S S S a b c ++-==+++++;内切球的球心是其棱不共顶点的三个二面角平分面的公共点. 性质18()2A B C P P A B C P S S S S abcr S S S S a b c+++==++-++;()2A P B C A B C P A S S S S abcr S S S S b c a +--==++-+-;()2B P A C B A C P B S S S S abcr S S S S a c b +--==++-+-;()2C P A B C A B P C S S S S abcr S S S S a b c+--==++-+-.旁切球的球心是其相切侧面与另三个延展切面所成二面角平分面(其中只须其棱不共顶点的三个二面角的平分面即可)的公共点. 证明思路只推证A r ,其余类似推证.作外切于侧面PBC 的旁切球的外切三棱台B C P BCP '''-,得新四面体AB C P ''',如图23-2.图23-2A'由()22C A B P AB C P A S S S S a S S S S a r ====''''+及()()()3313123A B C P ABCD AB C P A A A B C P r S S S S V a V a r r S S S S '''''''+++=='++++. 并注意到性质6、性质17,即可推证A r 的关系式. 推论1r 最小,P r 最大,且11112A B C P r r r r r+++=或 2A B C PA B C A B P A C P B C P r r r r r r r r r r r r r r r r r⋅⋅⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅=推论2()32P V abc r r a b c a b c ⋅==++++或1111P A B C r r S S S =++⋅.推论3记()1122A B C P S S S S S S '==+++,则()()()()2222233333A AB BC C P P V S r S S r S S r S S r S S r '''''==-⋅=-⋅=-⋅=-⋅.推论4记四顶点到所对面的距离为A h 、B h 、C h 、P h ,则11111A B C P h h h h r +++=; 11111A B C P Ph h h h r ++-=. (*)还有类似(*)式的三式.此略. 推论5令l 为四面体六条棱长之和,()12A B C P S S S S S '=+++,则)2l ≤;2S ';(39V r +≥;32V . 性质19设am S 、bm S 、cm S 是分别过棱PA 及BC 的中点,过棱PB 及AC 的中点,过棱PC 及AB 的中点的截面面积,则am S =bm S =cm S =,且222212am bm cm PS S S S ++=. 性质20设maS '、mb S ',mc S '是分别过棱BC 及PA 的中点,过棱AC 及PB 的中点,过棱AB 及PC 的中点的截面面积,则maS '=mb S '=,mc S ',且222232ma mb mc P S S S S '''++=. 性质21设ad S 、bd S 、cd S 分别为过棱PA 与BC 垂直、过棱PB 与AC 垂直、过棱PC 与AB 垂直的截面面积,则/ad B C S S S =⋅bd A C S S S =⋅cd A B S S S =⋅且 2222221111112ad bd cd AB C S S S S S S ⎛⎫++=++ ⎪⎝⎭. 性质22设at S 、bt S 、ct S 分别为过棱PA 及BPC ∠的平分线,过棱PB 及APC ∠的平分线,过棱PC 与APB∠的平分线的截面面积,则B Cat B CS S S S ⋅=+,A C bt A CS S S S ⋅=+,A B ct A BS S S S ⋅=+,且111111at bt ct AB C S S S S S S ⎫++=++⎪⎭. 性质23在直角四面体中,(1)斜面上任一点与直角顶点的连线和三条直角棱所成角的余弦的平方和等于1; (2)斜面上任一点与直角顶点的连线和三个直角面所成的角的余弦的平方和等于2; (3)斜面上每一条棱与三条直角棱所成角的余弦的平方和等于1; (4)斜面上每一条棱与三个直角面所成的角的余弦的平方和等于2; (5)三条直角棱与斜面所成角的余弦的平方和等于2;(6)三条直角棱的平方的倒数和等于直角顶点到斜面的距离的平方的倒数. 性质24直角四面体的外接平行六面体,(1)当四面体的六条棱均成为平行六面体的侧面对角线时,平行六面体是菱形六面体;(2)当四面体的直三面角的三条棱成为平行六面体的棱,其余三条棱成为平行六面体的侧面对角线时,平行六面体是长方体. 3.直棱四面体三条相连棱形成三边直角折线(即空间直角四边形)的四面体,称为直棱四面体. 显然,直棱四面体每个面都是直角三角形,若令1ADC β∠=,2ADB β∠=,3BDC β∠=, 则(1)123cos cos cos βββ⋅=; (2)321sin sin sin sin sin CD AD βββθθ==;(3)3sin cos sin ADCDθβθ=; (4)1tan tan sec AD CD θθβ⋅=.直角四面体和直棱四面体,都可以看作从长方体上截下的一部分,在部分多面体过程中,在棱、锥、台的计算中,它们经常出现.由于它有多方面的垂直关系和比较多的等量关系,有人称之为基本四面体.它们可以看作直角三角形在空间的自然推广,是工具性的四面体. 4.等腰四面体从某一顶点出发的三条棱(称为腰)相等的四面体称为等腰四面体,这一顶点称为腰顶点. 性质1等腰四面体的腰顶点在所对的面的射影为该面的外心.反之亦然. 性质2等腰四面体的腰顶点出发的三条棱与该点所对的面成等角.反之亦然. 性质3等腰四面体的底面为正三角形时,则该四面体为垂心四面体.性质4等腰四面体的底面为正三角形,且其边长为腰的压时,则该四面体是等腰直角四面体. 5.拟腰四面体两组对棱分别相等的四面体称为拟腰四面体.性质1两对对棱分别相等的四面体的充要条件是它的棱均成为侧面对角线的外接平行六面体为直平行六面体.证明设四面体ABCD 的外接平行六面体为1111ACB D AC BD -,AD BC =,AC BD =⇔侧面11A DD A 与侧面11CB BC 为全等矩形,侧面11A CC A 与侧面11DB BD 为全等矩形1111ACB D AC BD -为直平行六面体. 推论1两对对棱分别相等的四面体的充要条件是另一对对棱中点的连接线段垂直于此二棱.推论2两对对棱分别相等的四面体的充要条件是这两对对棱中点的连接线段均与第三对对棱中点的连接线段垂直.推论3两对对棱分别相等的四面体的充要条件是四面体在平行于这两对对棱中的每一对对棱的每一个平面上的射影为矩形.性质2两对对棱分别相等的四面体的充要条件是两侧面面积相等,且另两侧面面积也相等,或四侧面分成等面积的两组.证明此定理即为:在四面体ABCD 中,AD BC =,ACD BCD AC BD S S =⇔=△△,ABC ABD S S =△△. 必要性(⇒):显然.充分性(⇐):如图23-3,作四面体ABCD 的外接平行六面体1111ACB D AC BD -.此时A 、B 到底面11A CB D 的距离1AH 、2BH 相等,作AE CD ⊥于E ,BF CD ⊥于F ,连1H E ,2H F .图23-321则由ACD BCD S S =△△,有AE BF =,从而12AEH BFH ∠∠=,即二面角1A CD A --等于二面角1B CD B --,此时二面角A CD B --的平分面α垂直于底面11A CB D ,也就垂直于面11AC BD ,且面α交AB 于其中点1O . 又可证A 、B 两点到此平分面α的距离相等. 设此平分面α交AB 于1O ,则1O 为上底面中心.同理,由ABC ABD S S =△△,有二面角C AB D --的平分面β也垂直于两底面,也交CD 于其中点2O .此时12O O αβ=∩且垂直于两底面,故平行六面体1111ACB D AC BD -为直平面六面体.由性质1即证得了充分性.性质3两对对棱分别相等的四面体的充要条件是另一对对棱每条棱所张的二个面角分别相等. 证明此性质即为:在四面体ABCD 中,AD BC =,AC BD CAD CBD =⇔∠=∠,ACB ADB ∠=∠. 必要性(⇒):显然. 充分性(⇐):如图23-3,作四面体ABCD 的外接平行六面体1111ACB D AC BD -.由题设CAD CBD ∠=∠,又A 、B 、C 、D 四点共球O ,则ACD △和BCD △所在的平面截球O 的截面圆是等圆.而A 、B 两点到面11A CB D 的距离相等,则过CD 及AB 中点1O 的截面圆必是球O 的大圆.从而1O 、O 及CD 的中点2O 在过CD 的球O 的大圆面内.同理,1O 、O 、2O 也在过棱AB 的球O 的大圆面内.故1O 、O 、2O 三点共线于这两个大圆面的交线上.又1OO AB ⊥,2OO CD ⊥,则111OO A B ⊥,211OO C D ⊥,从而12O O 垂直于平行六面体的两底面11A CB D 、11AC BD ,故知此平行六面体为直平行六面体,由性质1,充分性获证.此性质的充分性也可以这样证:设CAD CBD α∠=∠=,ACB ADB β∠=∠=,令AC a =,AD b =,BC c =,BD d =,CD x =,AB y =.对ADC △和BDC △应用余弦定理可得()()()22222222cos a b x c d y ab cd x bc ad ac bd ab cd α+-+-==⇒-=--.① 同理,得()()()2ad bc y cd ab ac bd ---=.②由①、②可知,若0ab cd -=,则0ad bc a c -=⇒=,b d =.因此论断获证.若0ab cd -≠,则0ad bc -≠,0ac bd -≠,于是由①、②推得()222x y ac bd =-⇒或xy bd ac +=,或0xy ac by +-=. ③由托勒密定理及③式,可知A 、B 、C 、D 四点共圆,与题设矛盾.因此充分性获证. 性质4两对对棱分别相等的四面体的充要条件是其外心(外接球球心)在另一对对棱中点的连线上(重心亦在此连线上). 必要性(⇒):设在四面体ABCD 中,AD BC =,AC BD =,作四面体ABCD 的外接平行六面体如图23-3.由性质1,即知此平行六面体为直平行六面体,从而上、下底面中心1O 、2O 的连线既是AB 、CD 中点的连线,又是AB 、CD 的公垂线,亦即既是AB 的中垂线,又是CD 的中垂线,因而四面体ABCD 的外心在12O O 上.充分性(⇐):由题设,四面体的外心在一对对棱AB 、CD 的中点1O '、2O '的连线上,则12O O ''是AB 、CD 的中垂线,从而12O O '':垂直于四面体ABCD 的外接平行六面体1111ACB D AC BD -的两底面,故此外接平行六面体是直平行六面体.由性质1,充分性获证.性质5两对对棱分别相等的四面体的充要条件是其内心(内切球球心)在另一对对棱中点的连线上(重心亦在此连线上). 证明必要性(⇒):设在四面体ABCD 中,AD BC =,AC BD =.作四面体ABCD 的外接平行六面体如图23-3,则此平行六面体为直平行六面体,故11A DC B CD S S =△△.又ADC BDC S S =△△,则二面角1A DC A --等于二面角1B DC B --.而上、下底面中心1O 、2O 所在直线与DC 两相交线所在对角面垂直于两底面,即知此对角面平分二面角A DC B --.同理,12O O 与AB 所在对角面也平分二面角C AB D --.故四面体内心I 在12O O 上.充分性(⇐):设四面体ABCD 的内心I 在12O O 上,则1O 到面ACD 、BCD 的距离相等,从而A 到面BCD的距离与B 到面ACD 的距离相等(都等于点1O 到这两个面的距离的两倍).由13V Sh =得BCD ACD S S =△△.同理ABD ABC S S =△△.由性质2即证.性质6四面体有两对对棱相等的充要条件是,以这两对对棱为棱的二面角,分别相等.证明在四面体ABCD 中,AD BC =,AC BD =的充要条件是二面角B AD C --等于二面角D BC A --,二面角B AC D --等于二面角A BD C --.必要性(⇒):设AD θ、BC θ分别表示二面角B AD C --、二面角D BC A --的平面角的大小,由AD BC =、AC BD =,有DAC DBC △≌△,ABC BAD △≌△,如图23-4.图23-4H GI DABCEFMN于是DAC DBC ∠=∠,BAC ABD ∠=∠,BAD ABC ∠∠=.由三面角余弦公式(如cos cos cos cos sin sin AD BAC BAD DACBAD DACθ∠-∠⋅∠=∠⋅∠)或三面角全等定理,有AD BC θθ=,即二面角B AD C --等于二面角D BC A --.同理,可证二面角B AC D --等于二面角A BD C --. 充分性(⇐):记I 为四面体ABCD 的内心,从I 向各侧面引垂线,垂足为E 、F 、G 、H ,如图23-4,设过IE 、IF 的平面交AC 于M ,过IG 、IH 的平面交BD 于N ,则EMF ∠,GNH ∠分别为二面角B AC D --、二面角A BD C --的平面角,由题设有EMF GNH ∠=∠. 在Rt IMF △和Rt ING △中,IF IG =,1122IMF EMF GNH ING ∠=∠=∠=∠,从而IM IN =.故I 在对棱AC 、BD 的公垂线段的中垂面α内.同理,I 又在对棱AD 、BC 的公垂线段的中垂面β内,故I 在α与β的交线上.作四面体ABCD 的外接平行六面体如图23-3,知α与β的交线就是平行六面体上、下底面中心1O 、2O 的连线.由性质5即证得充分性.性质7两对对棱分别相等,则四面体的内切球切侧面于第三对对棱的中垂线上.证明此性质即为:在四面体ABCD 中,若AD BC =,AC BD =,则四面体ABCD 的内切球I 切ACD △、BCD △于CD 的中垂线上,切ACB △、ADB △于AB 的中垂线上.如图23-5,由性质6的充分性证明中可推知12O M O N =,①其中1O 、2O 为球I 切侧面ACD △、BCD △的切点,M 、N 为I 在棱AC 、BD 上的射影.图23-5O 1O 2DABCEFMNI设过1IO 、2IO 的平面交CD 于E ,连1O E 、2O E ,则由球的切线长定理,知12O E O E =.②又由ACD BDC △≌△有MCE NDE ∠∠=,而1O E CD ⊥,2O E CD ⊥,则M 、C 、E 、1O 共圆,E 、D 、N 、2O 共圆.故12MO E EO N ∠=∠.③由①、②、③知ME EN =,从而12sin sin ME ENO C O D MCE EDN===∠∠,∴12Rt Rt CO E DO E CE ED ⇒=△≌△. 故1O E ,2O E 均是CD 的中垂线段.同理,球I 切侧面ACB △,ADB △于AB 的中垂线上. 6.等面四面体我们称三组对棱分别相等的四面体为等面四面体.为了讨论问题的方便,先引进一些记号:等腰四面体ABCD 中,设BC AD a ==,AC BD b -=,AB CD c ==;设()12p a b c =++,()222212k a b c =++;以BC 、BD 、CD 为棱的两侧面所成二面角的大小依次为α、β、γ;四面体的体积记为V ,其内切、外接球半径分别记为r 、R ;顶点x 所对的面的面积记为x S ;外切于顶点x 所对的面,且与其余侧面的延展面相切的旁切球的半径记为x r .性质1等面四面体对棱所成角的余弦值可表示为()222cos ,b c a a a -=,()222,cos b c a b b -=,()222cos ,a b c c c -=.性质2等面四面体中,对棱中点的连线共点(此点为四面体的重心),且互相平分;连结对棱中点的每一线段均垂直于此二棱,或者说,当四面体绕这样的线段旋转180︒则与本身重合;连结对棱中点的三线段彼此互相垂直.且后两个结论的逆命题也是成立的.推论四面体为等面四面体的充要条件是三对对棱的公垂线两两相互垂直. 性质3设a d 、b d 、c d 分别为等面四面体对棱中点连线的长,则a d =b d =cd =性质4四面体为等面四面体的充要条件是四面体各面为全等的三角形. 性质5等面四面体所有的面角均为锐角,或者说各侧面是锐角三角形.(见本章练习题A 第7题)性质6四面体为等面四面体的充要条件是过四面体的每一顶点的三条棱长的m (m ∈R 且0m ≠)次方之和相等.分析只证充分性:令BC a =,AC b =,AB c =,AD x =,BD y =,CD z =,由m m m m m m m m m m m m b c x c a y a b z x y z ++=++=++=++,即推得a x =,b y =,c z =.推论四面体为等面四面体的充要条件是四面体的每一顶点的三条棱长之和相等.性质7四面体为等面四面体的充要条件是四面体各侧面三角形边长的m (m 为非零实数)次方之和相等.推论四面体为等面四面体的充要条件是四面体各侧面三角形的周长相等.性质8四面体为等面四面体的充要条件是四面体各侧面三角形的三条中线长的平方和相等.性质9四面体为等面四面体的充要条件是四面体每一顶点处的三个面角之和为180︒.性质10四面体为等面四面体的充要条件是过每对对棱的二面角相等(即三对二面角分别相等). 性质11cos cos cos 1αβγ++=.性质1222sin sin sin 3x S a b cVαβγ===(其中x 可表示A 、B 、C 、D ,后面亦同). 性质13()()()22222222222224cos cos cos 222xa k ab k bc k c S αβγ---===. 性质14在等面四面体ABCD 中,A B C D S S S S ===性质15四面体为等面四面体的充分必要条件是各面的面积相等.分析四面体的各二面角的大小分别用α、β、γ、α'、β'、γ'表示,如图23-6.图23-6β'γ'α'γβαD OABC由cos cos cos D C B A S S S S αβγ⋅+⋅+⋅=及D C B A S S S S ===有cos cos cos 1αβγ++=.同理,有cos cos cos 1γβα''++=,cos cos cos 1αβγ''++=,cos cos cos 1βαγ''++=.由上推出,cos cos αα'=,cos cos ββ'=,cos cos γγ'=,而0α<,β,γ,α',β',γ'<π,所以αα'=,ββ'=,γγ'=,由此即证. 性质16等面四面体的体积V =其中()222212k a b c =++. 分析作四面体ABCD 的外接平行六面体,使四面体的棱成为平行六面体的侧面对角线,如图23-7.由四面体对棱相等,可证得平行六面体侧面均为矩形,即为长方体,于是列方程组求得长方体共顶点的三条棱长,由此即证.图23-7DABC性质17记等面四面体共顶点的三个面角分别为1θ、2θ、3θ,则V =分析如图23-8,设1BDC θ∠=,2ADC θ∠=,3ADB θ∠=.又设A 点在面BCD 内的射影为E ,作AH CD ⊥于H ,连EH ,则AHE γ∠=.由12B S CD AH =⋅,有2B AH S c =⋅,则2sin sin B AE AH S cγγ=⋅=⋅⋅.图23-8γabc D ABCEH注意到31212cos cos cos cos sin sin θθθγθθ-⋅=⋅,有1233A A B V S AE S S c=⋅=⋅123θθθ++=π及()222123123121cos cos cos 2cos cos cos cos θθθθθθθθ---+⋅⋅=-+()()()212312123cos cos cos cos cos θθθθθθθθ⋅--+++-⋅=⎡⎤⎣⎦1234cos cos cos θθθ⋅⋅, 11sin 2A S bc θ=⋅,21sin 2B S ac θ=⋅,由此即证.性质18等面四面体的体积为 222222sin sin sin 333x x x V S S S c b a γβα=⋅=⋅=⋅;或43x V S r =⋅. 性质1912R k =. 性质20r性质21四面体为等面四面体的充要条件是四面体的外心(外接球球心)与重心重合(见本章例13证明部分).或者,四面体各顶点和外心的连线与对面的交点为该面的重心.性质22四面体为等面四面体的充要条件是四面体的外心与内心(内切球球心)重合.(见本章例12) 性质23四面体为等面四面体的充要条件是四面体的内心与重心重合.或者,各顶点和内心的连线与对面的交点为该面的重心.推论若四面体的外心、内心、重心中任意两个相重合,则第三个也必和它们重合. 性质24在等面四面体中,2A B C D r r r r r =====.(提示:设顶点x 到所对面的距离为x h ,则可证2x x x h rr h r⋅=-,由此即推得)性质25四面体为等面四面体的充要条件是四面体的四条高长之和等于内切球半径的16倍(即16A B C D h h h h r +++=). 分析充分性:由以3x x V h S =及16A B C D h h h h r +++=有1111316AB C D V r S S S S ⎛⎫⋅+++= ⎪⎝⎭. 注意到()13A B C D V S S S S r =+++⋅, 则()111116A B C D A B C D S S S S S S S S ⎛⎫++++++= ⎪⎝⎭.而()111116A B C D AB C D S S S S S S S S ⎛⎫++++++ ⎪⎝⎭≥,取等号是当且仅当A B C D S S S S ===.由此即证.推论42x x h r r ==.注对外接球半径也有一条性质见本章例13.性质26四面体为等面四面体的充要条件是它的切点四面体(内切球切侧面的切点)为等腰四面体. 分析充分性:设O 为四面体ABCD 的内心,亦即它是切点四面体A B C D ''''的外心.当A B C D ''''为等腰四面体时,由性质2的推论推之.性质27四面体为等面四面体的充要条件是四面体的内切球与各侧面的切点为该面的外接圆圆心. 性质28四面体为等面四面体的充要条件是四面体的重心(或外心)在各侧面内的射影为该面的外接圆圆心.性质29四面体为等面四面体的充要条件是各侧面都具有相等外接圆半径的锐角三角形. 性质30四面体为等面四面体的充要条件是四面体各侧面外接圆半径与内切圆半径之积相等. 分析充分性:在四面体ABCD 中,设BC a =,AC b =,AB c =,1DA a =,1DB b =,1DC c =,R ',r '分别为侧面三角形外接、内切圆半径,则2abcR r a b c ''=++.同理,1111111111112ab c a bc a b c R r a b c a b c a b c ''===++++++. 由此得()()()()11110c a c b b b b a c c +-++-=, ()()()()11110c c b a a a b a c c +-++-=, ()()()()11110b b c a a a a c b b +-++-=.将上述三式看作1a a -,1b b -,1c c -为未知数的三元一次方程组,它只有唯一的一个零解.即证. 性质31四面体为等面四面体的充要条件是四面体的四条中线长相等(中线长即为四面体的每一顶点和对面重心的连结线段长).分析充分性:注意到中线长相等及四面体重心性质,推得重心与外心重合. 性质32. 性质33四面体为等面四面体的充要条件是四面体的四条中线长的平方和等于2649R . 分析由性质31及25推导.性质34四面体为等面四面体的充要条件是四面体的四条高线长相等(即A B C D h h h h ===).性质35等面四面体的过某棱及所对棱中点的截面,就是过此棱及与所对棱垂直的截面,也就是过此棱且平分此棱所在二面角的截面.性质36在等面四面体ABCD 中,设分别过棱BC 、BD 、CD 且平分α、β、γ的截面面积为a S 、S β、S γ,则cos2x S S αα=⋅,cos2x S S ββ=⋅,cos 2x S S γγ=⋅,且22222xS S S S αβγ++=. 性质37四面体为等面四面体的充要条件是其棱均作为外接平行六面体的侧面对角线时,平行六面体为长方体.性质38四面体为等面四面体的充要条件是四面体在平行于两对棱的每一个平画上的射影为矩形. 性质39四面体为等面四面体的充要条件是四面体的展开图是一个引出了三条中位线的锐角三角形. 性质40四面体为等面四面体的充要条件是四面体内任意一点到各侧面的距离之和为定值.分析充分性:设定值为l ,取点为内心时有4l r =,再取点为重心时有4A B C D h h h h l +++=,再由性质25即证.7.正四面体称六条棱相等的四面体为正四面体.性质1正四面体的每个面是正三角形.反之亦然. 性质2正四面体是三组对棱都垂直的等面四面体. 推论正四面体是两组对棱垂直的等面四面体.性质3正四面体的对棱中点的连线都互相垂直且相等,2倍,反之亦真. 性质4正四面体的各棱的中点是正八面体的六顶点.性质5正四面体的每个三面角均是面角为60︒的三面角,因而都是全等的三面角,且每个三面角的特征值2,即 ()22221cos cos cos 2cos cos cos S x αβγαβγ=---+⋅⋅=性质6正四面体的六个二面角都相等.若记其大小为θ,则1arccos 3θ=或22其逆命题亦成立.性质73,12倍,即23S a 全,32V =. 推论设S △为侧面三角形面积,则4228cos 2a S θ=⋅⋅△;22sin 3S a V θ=⋅⋅△;6V S =⋅全. 性质8正四面体的内切球与其外接球是同心球,内切球半径6r =(等于高线的14);外接球半径6R =;两球面面积之比为1∶9. 性质9在各类四面体的比值R r ∶中,以正四面体的比值3R r =∶为最小.性质10正四面体的体积与其内切球的内接正四面体的体积之比为27.且若内切球半径为r ,则其体积为383r .性质11正四面体的四个旁切球半径均相等,等于内切球半径的2倍,即x r =,或等于正四面体高线的一半.性质12正四面体的内切球与各侧面的切点是侧面三角形的外心,或内心,或垂心,或重心.除外心外,其逆命题均成立.性质13正四面体的外接球球心到四面体四顶点的距离之和,小于空间中其他任一点到四顶点的距离之和.分析利用正四面体的外接球球心O 是过四面体的一棱AB 与对棱CD 中点N 的平面(共有六个这样的平面)的交点的特性,我们将指出,如果点P (空间中任一点)不在这些平面之一上即如果它不是O ,则和S PA PB PC PD =+++不是最小.由此得出结论:使S 最小的点位于所有这些平面上,因此最小值只可能在点O 达到.假定P 不在平面ABN 上,设l 为过P 平行于CD 的直线,因此垂直于平面ABN ,且设P '为l 和ABN 的交点,则PC PD P C P D ''+>+.①事实上,CPD △和CP D '△有相同的底和高,但后者是等腰三角形,它有较小的周长.又PA P A '>,PB P B '>.② 因为PA 是Rt APP '△的斜边,PB 是Rt BPP '△的斜边,把①和②中三个不等式加起来,得PA PB PC PD P A P B P C P D ''''+++>+++,这就是我们要证的.性质14四面体为正四面体的充要条件是,存在五个球与四面体的六条棱或其延长线相切. 此性质的充分性证明见本章例14.性质15正四面体内任意一点到各侧面的垂线长的和等于这四面体的高.性质16对于四个相异的平行平面,总存在一个正四面体,其顶点分别在这四个平面上.性质17以正四面体的每条棱为直径作球,设S 是所作六个球的交集,则S 中含有两点,倍棱长.性质18 性质19四面体为正四面体的充要条件是,其棱均作为外接平行六面体的侧面对角线时,平行六面体为正方体.性质20四面体为正四面体的充要条件是,其共顶点三棱作为外接平行六面体的棱时,平行六面体为一个三面角面角均为60︒的菱形六面体.性质21囚面体为正四面体的充要条件是,四面体在平行于两棱的每一个平面上的射影是正方形. 性质22四面体为正四面体的充要条件是,四面体的展开图是一个引出了三条中位线的正三角形.性质23正四面体每条高的中点与底面三角形三顶点均构成直角四面体的四顶点,且高的中点为直三面角顶点.性质24正四面体是垂心四面体(四条高共点的四面体),且四面体的垂心、重心、内心、外心这四心合一.性质25设P 为正四面体1234A A A A 的外接球面上任一点,R 为该球的半径. (I )42218i i PA R ==∑;(Ⅱ)若1B ,2B ,…,6B 分别为23A A ,34A A ,24A A ,12A A ,13A A ,14A A 的中点,则42218i i PB R ==∑;(Ⅲ)若i O 为i A 所对面的中心(1,2,3,4i =),则22409i PO R =∑. 证明(I )设i O 为正四面体1234A A A A 的中心,则。
正四面体的性质及应用

正四面体的性质及应用正四面体是立体几何中的基本几何体,它蕴涵着极为丰富的线面的位置、数量关系.在近年来各类考试中,正四面体倍受命题者青睐,命题者常以正四面体中的线面问题为载体,借以考察学生的数学思维能力和思维品质.因此,一线师生在教学过程中,应对这个几何体引起足够的重视.笔者在长期的教学中对正四面体进行了深入研究、潜心挖掘,得出了一些优美、简洁的结论.下面给出正四面体的相关结论,并利用这些结论解决问题,以期能对同学们学习立体几何有所启示.一、理顺正四面体性质——固本清源不妨设正四面体ABCD的棱长为a,则存在着以下定理:定理1.正四面体的3对异面棱均互相垂直,任意一对异面棱之间的距离均为;定理2.正四面体的高为;定理3.正四面体的内切球半径为,外接球半径为,且有;略证:如图1,易知正四面体的外接球心与内切球心重合为点O,并且位于正四面体的高AH上,连结BO、CO、DO,易知,且,从而AO、BO、CO、DO两两所确定的平面将正四面体分割成四个形状相同的正三棱锥:,,且每一个小正三棱锥的高都是内切球的半径,于是有,即,亦即有,所以,.故定理4.正四面体的全面积为,体积为;定理5.正四面体底面内任一点O到三个侧面的距离的之和;正四面体内任意一点到四个侧面的距离之和(仿定理3利用体积分割法易证).定理6.正四面体的侧棱与其底面所成的线面角大小为;定理7.正四面体相邻侧面所成的二面角的大小为;略证:设相邻两个侧面所成的角为,由于四个侧面的面积均相等,所以由射影面积公式知.定理8.设正四面体的侧棱与底面所成的角为,相邻两个侧面所成的二面角记为,则有略证:如图1所示,易知,,由H为的中心,易知,从而.定理9.正四面体的外接球的球心与内切球的球心O重合且为正四面体的中心;中心与各个顶点的四条连线中两两夹角相等,其大小为,此角即为化学中甲烷分子结构式中的键位角.略证:如图1,在三角形AOB中,,,由余弦定理可求得,于是.同理可得.定理10.正四面体内接于一正方体,且它们共同内接于同一个球,球的直径等于正方体的对角线.二、运用正四面体性质——化繁为易1.巧算空间距离例1.一个球与正四面体的6条棱都相切,若正四面体的棱长为a,则求此球的体积.分析一:由定理10知,将正四面体嵌于正方体的内部,然后再利用正四面体的棱与球相切,则该半径与正方体的内切半径相等进行求解.解法一.如图2所示,将正四面体补成正方体,易知与正四面体的各棱相切的球即为正方体的内切球.∵正四面体的棱长为a,∴正方体的棱长为.∴正方体的内切球半径.∴.分析二:根据正四面体的对称性,结合定理1可知,该球的球心应位于正四面体的中心,其直径即为正四面体相对棱之间的距离.解法二.∵正四面体的棱长为a,∴由定理1可知,相对棱间的距离为.即该球的半径为.∴.例2.在棱长为2的正四面体木块ABCD的棱AB上有一点P(),过P点要锯出与棱AB垂直的截面,当锯到某个位置时因故停止,这时量得在面ABD上锯痕,在面ABC上的锯缝,求锯缝MN的值.解:如图3,取AB的中点E,连结CE,DE,则为正四面体相邻两面的二面角的平面角,由条件知∠MPN也是正四体相邻两面的二面角的平面角,即∠NPM=∠CED,由定理7可知,于是,在中,由余弦定理得,∴2.妙求空间角例3.设P为空间一点,PA、PB、PC、PD是四条射线,若PA、PB、PC、PD两两所成的角相等,则这些角的余弦值为.解:如图4,构造正四面体ABCD,设P为四面体的中心,则PA、PB、PC、PD两两所成的角相等,设,由正四面体的性质,可知余弦值为例4.如图5,在正四面体ABCD中,E、F分别为棱AD、BC的中点,连结AF、CE.⑴求异面直线直线AF和CE所成的角;⑵求CE与面BCD所成的角.解:⑴连结FD,在平面AFD内,过点E作EG∥AF交DF于点G.则是异面直线AF与CE所成的角(或其补角).设正四面体ABCD的棱长为a,可得,,.由余弦定理可求得.故异面直线AF与CE所成的角为.⑵由已知易知平面AFD⊥平面BCD,在平面AFD内,过点E作EH⊥FD于点H,连结CH,则∠ECH为CE与平面BCD所成的角.∵EH为正四面体高的一半,由正四面体性质的定理2知.∴.∴CE与底面BCD所成的角为.例5.如图6,正四面体ABCD的四个顶点在同一个球面上,CC1和DD1是该球的直径,求面ABC与面AC1D1所成角的正弦值.解:由正四面体性质定理10知正四面体内接于一球,该正方体也内接于此球,且正方体的对角线为此球的直径,如图所示,即CC 1、DD 1为该球的直径.连结C 1D 1,交AB 于点M ,连结MC .∵ MC ⊥AB ,MD 1⊥AB ,∴ ∠CMD 1为平面ABC 与平面AC 1D 1所成的角.设正方体棱长为a ,在中,.∴ 平面ABC 与平面ACD 所成的角的正弦值为.归纳反思:正四面体是立体几何中一个重要的数学问题载体,在平时的学习过程中若能有意识地研究它、利用它,就能较好地培养我们数学思维的“方向感”和思路的“归属感”,有助于促进自己数学思维空间的拓展、数学品质的提升.1.在正四面体中,、、分别是、、的中点,下面四个结论中不P ABC -D E F AB BC CA成立的是 ② .①面;//BC PDF ②面面;PDF ⊥ABC ③面;DF ⊥PAE ④面面.PAE ⊥ABC2.正四面体中,与平面ABCD AB ACD3.如图,正四面体的棱长为2,点,分别为棱,的中点,则的值ABCD E F AD BC EF BA为 ()A .4B .C .D .24-2-选:.C 4.以下说法①三个数,,之间的大小关系是;20.3a =2log 0.3b =0.32c =b a c <<②已知:指数函数过点,则;()(0,1)x f x a a a =>≠(2,4)log 41a y =③;3④已知函数的值域是,,则的值域是,;()y f x =[13]()(1)F x f x =-[02]⑤已知直线平面,直线在内,则与平行.//m αn αm n 其中正确的序号是 ①③ .5.在正四面体中,为的中点,则直线与所成角的余弦值为 A BCD -M AB CM AD ()A .BCD .1223选:.C 6.在正四面体中,、分别为棱、的中点,连接、,则异面直线ABCD E F AD BC AF CE 和所成角的正弦值为 AF CE ()A .B .CD 1323选:.D【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.本题易错点在于要看清是求异面直线和所成角的正弦值,而不是余弦值,不要错选答AF CE 案.B 7.如图所示,在正四面体中,是棱的中点,是棱上一动点,A BCD -E AD P AC BP PE +,则该正四面体的外接球的体积是 ()A B .C D .6π32π选:.A 8.棱长为1的正四面体中,为棱上一点(不含,两点),点到平面ABCD E AB A B E ACD和平面的距离分别为,,则的最小值为 BCD a b 11a b+【考点】:基本不等式及其应用7F 【专题】31:数形结合;35:转化思想;:空间位置关系与距离;:不等式5F 5T 【分析】设点是正三角形的中心,连接,作,垂足为点.交O ACD OB EF AO ⊥F AO CD于点,则点为的中点.设.,,M M CD (01)AE AB λλ=<<23AO AM =AM =.由,可得.同理可得:BO =//EF BO EF BO a λ===.代入利用基本不等式的性质即可得出.)b EN λ==-【解答】解:如图所示,设点是正三角形的中心,连接,作,垂足为点.交于点O ACD OB EF AO ⊥F AO CD ,则点为的中点.M M CD 设.(01)AE AB λλ=<<2233AO AM ===BO ∴==,//EF BO.EF BO a λ∴===同理可得:.)b EN λ==-当且仅当时取等号.∴2111111()11(1)()2a b λλλλλλ+=+==+---…12λ=故答案为:9.已知是正四面体棱的中点,是棱上异于端点,的任一点,则下列M ABCD AB N CD C D 结论中,正确的个数有 ()(1);(2)若为中点,则与所成角为;MN AB ⊥N MN AD 45︒(3)平面平面;(4)存在点,使得过的平面与垂直.CDM ⊥ABN N MN AC A .1个B .2个C .3个D .4个【考点】:异面直线及其所成的角;:空间中直线与直线之间的位置关系;:LM LO LW 直线与平面垂直;:平面与平面垂直LY 【专题】14:证明题【分析】连接、,可证明出平面,从而,得(1)正确;取CM DM AB ⊥CDM MN AB ⊥AC 中点,连接、,利用三角形中位线定理证明出、所成的直角或锐角,E EM EN EN NM 就是异面直线、所成的角,再通过余弦定理,可以求出与所成角为MN AD MN AD ,故(2)正确;根据(1)的正确结论:,结合平面与平面垂直的判定定45︒MN AB ⊥理,得到(3)正确;对于(4),若存在点,使得过的平面与垂直,说明存在N MN AC 的一个位置,使.因此证明出“不论在线段上的何处,都不可能有N MN AC ⊥N CD ”,从而说明不存在点,使得过的平面与垂直.MN AC ⊥N MN AC 【解答】解:(1)连接、CM DM正中,为的中点ABC ∆M AB CM AB∴⊥同理,结合DM AB ⊥MC M D M= 平面,而平面AB ∴⊥CDM MN ⊆CDM,故(1)是正确的;MN AB ∴⊥(2)取中点,连接、AC E EM EN中,、分别是、的中点ADC ∆ E N AC CD ,.//EN AD ∴12EN AD =、所成的直角或锐角,就是异面直线、所成的角EN ∴NM MN AD设正四面体棱长为,在中,2a MCD ∆2CM DM a ===则中Rt MNC ∆122CN a a =⨯=∴MN ==在中,MNE ∆122ME EN a a ==⨯=∴222cos 2EN MN EM ENM EN MN +-∠==⨯⨯,即异面直线、所成的角是,故(2)正确;45ENM ∴∠=︒MN AD 45︒(3)由(1)的证明知:平面AB ⊥CDM平面AB ⊂ ABN平面平面,故(3)正确;∴ABN ⊥CDM (4)若有,根据(1)的结论,MN AC ⊥MN AB ⊥因为、相交于点,所以平面AB AC A MN ⊥ABC中,,MCD ∆ CM MD ==2CD a =2221cos 023CM MD CD CMD CM MD +-∴∠==> 可得是锐角,说明点在线段上从到运动过程中,CMD ∠N CD C D 的最大值是锐角,不可能是直角,CMN ∠因为平面,与不能垂直,CM ⊂ABC CM NM 以上结论与平面矛盾,MN ⊥ABC 故不论在线段上的何处,都不可能有.N CD MN AC ⊥因此不存在点,使得过的平面与垂直.N MN AC 综上所述,正确的命题为(1)(2)(3)故选:.C 10.棱长为的正四面体中,给出下列命题:a ①正四面体的体积为;324a V =②正四面体的表面积为;2S =③内切球与外接球的表面积的比为;1:9④正四面体内的任意一点到四个面的距离之和均为定值.上述命题中真命题的序号为 ②③④ .【考点】:棱柱、棱锥、棱台的侧面积和表面积;:棱柱、棱锥、棱台的体积LE LF 【专题】31:数形结合;35:转化思想;49:综合法;:空间位置关系与距离5F【分析】①正四面体的高,体积为,计算即h ==213V =可判断出正误;②正四面体的表面积为,即可判断出正误;24S a =③分别设内切球与外接球的半径为,,则,解得;r R 23143r ⨯=r,解得,即可判断出正误;R =R ④正四面体内的任意一点到四个面的距离之和为,则H,化简即可判断出正误.221133H ⨯=【解答】解:①正四面体的高,体积为h ==,因此不正确;3231324a V ==≠②正四面体的表面积为,正确;224S a ==③分别设内切球与外接球的半径为,,则,解得;r R 23143r ⨯=r =,解得.R =R =,因此表面积的比为,正确;:1:3r R ∴=1:9④正四面体内的任意一点到四个面的距离之和为,则H,化简可得:,即为正四面体的高,221133H ⨯=H =均为定值,正确.上述命题中真命题的序号为②③④.。
正四面体高内切球半径外接球半径结论

正四面体高内切球半径外接球半径结论好啦,今天咱们聊聊一个挺有意思的几何问题——正四面体、高、内切球半径、外接球半径。
这些词一听就感觉跟数学课本里出来的,高深莫测,能让人脑袋里冒烟的东西。
但其实呢,咱们可以把它们讲得简单点,大家一听就能懂。
你要问我,这些看起来像是数学家专用的术语有什么用?别急,咱一块儿来解开这个谜团。
我们从正四面体说起。
你知道什么是正四面体吗?它就像是一个四个面都是等边三角形的金字塔。
想象一下你面前有一个小小的三角形金字塔,底部是一个三角形,上面尖尖的,那就是正四面体啦。
对了,正四面体可不光是外形好看,它的几何性质也是一绝!它的每一个面都一样,每一条边也一样长。
简直就是几何界的“完美主义者”啊。
说到这里,你可能想问了,正四面体和内切球、外接球又有什么关系?这就有意思了。
你想象一下,把一个小球放进正四面体里面。
这个小球恰好能触到四个三角形的面,但又不顶到顶点,完美契合!这个球就叫做内切球,听起来是不是很高级?其实说白了,它就是“正四面体里的小球”,球的半径就是内切球的半径。
那再说外接球,外接球就有点意思了。
假如你把正四面体的四个顶点都接到一个大球的表面上,这个大球就叫外接球,外接球的半径就是从球心到正四面体任何一个顶点的距离。
大家应该能明白了吧,内切球是“藏”在正四面体里面的,而外接球则是包裹着正四面体的。
看,几何世界就是这么有意思,里面藏着的每一个小秘密,都是值得一探的宝藏。
好啦,接下来咱们来说说具体的结论。
大家肯定知道,正四面体的内切球和外接球是有一定的比例关系的。
就像是你吃巧克力饼干,饼干和巧克力的比例要合适,才能够好吃。
如果饼干太厚,巧克力太少,那肯定不好吃。
正四面体也是一样,内切球的半径和外接球的半径有着固定的比例关系,而且这个比例可是有数学依据的哦。
为了让你们更直观地理解,我来告诉你们一个具体的数字。
一个正四面体的外接球半径R和内切球半径r之间的关系是R=√2r。
什么意思呢?简单来说,外接球的半径是内切球半径的√2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正四面体外接球面上点的有趣性质
正四面体外接球面是一种把小球装在一个正四面体框中的拼装
形式,被称为大喇叭形或正四面体球。
正四面体外接球面上的点的有趣性质被找到已经有数千年的历史,它们是难以想象的极端和精妙结构,体现在正四面体外接球面上的点的有趣性质来自于有趣的历史和结构。
首先,正四面体外接球面上的点具有“定位术”的有趣性质。
当球面上的点被定位时,它们将有序的排列,就像在电脑游戏中的点一样。
这得益于正四面体外接球面的结构,即一个拼起来的小球,使每个小球拥有不同的位置和方向,以及“钥匙点”和“锁点”的特殊位置。
因此,当球面上的点被定位时,它们就可以使用“定位术”来保持有序排列,这就是正四面体外接球面上点的有趣性质。
此外,正四面体外接球面上的点还具有“回旋轨迹”的有趣性质。
在球面上,每个点都将有自己的回旋轨迹,即一个点可以在球面上沿着一条特定方向旋转,并且在一定的时间范围内在球面上走一定的距离。
由于正四面体外接球面的结构,每一个小球都有自己的回旋轨迹,就像一个小行星在太阳系中环绕太阳一样。
因此,在正四面体外接球面中,每一个点都有着自己的回旋轨迹,这就是正四面体外接球面上点的有趣性质。
最后,正四面体外接球面上的点还具有“紧密结构”的有趣性质。
正四面体外接球面是由一组小球拼起来而成,该组小球非常紧密地拼在一起,构成了一个超级原子(superatom)。
大喇叭形就如同一个超
级原子,它的小球是由紧密的原子连接在一起的。
所以,正四面体外接球面上的点具备了“紧密结构”的有趣性质,这也是它最有趣的一面。
综上所述,正四面体外接球面上的点具有许多有趣的性质,包括“定位术”、“回旋轨迹”和“紧密结构”。
这些性质使正四面体外接
球面变得极其有趣,并且也提供了有趣的定理和结构,正四面体外接球面上的点也就受到了关注。
从这些有趣的性质中,可以推断出令人着迷的未来,以及此类外接球面上的研究可能会取得的成就。
正四面体外接球面上的点的有趣性质表明,正四面体球的形状和结构的可能性是无限的,它们包括令人惊叹的有趣性质和深刻的理论,使其成为一种有趣的学科。
在未来,会有更多对正四面体外接球面上点有趣性质的研究,为人类带来更多有趣的发现,同时也开辟出更多视野,以期发现更多有趣的发现。