高中数学必修二 8 3 简单几何体的表面积与体积(精讲)(含答案)

合集下载

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册同步讲义

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册同步讲义
【详解】
如图所示:
设外接球和内切球的半径分别为R,r,由于正四面体是中心对称图形,
所以外心和内心重合,球心O在高线上,底面中心为 ,
因为正四面体棱长为2,
所以 ,
在 中, ,即 ,
解得 ,
因为正四面体的体积为 ,
所以 ,
解得
9、在直三棱柱 中, , , , .
(1)求三棱锥 的表面积;
(2)求 到面 的距离.
故选:
题型七表面积、体积与函数
例7 底面半径为2,高为 的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).
(1)设正四棱柱的底面边长为 ,试将棱柱的高 表示成 的函数.
(2)当 取何值时,此正四棱柱的表面积最大,并求出最大值.
【答案】(1) ;(2) , .
【分析】
(1)根据轴截面的三角形的比例关系,列式求函数;(2)根据 ,列出正四棱柱的表面积,并利用二次函数求最大值.
下底面面积:S下底=πr2
侧面积:S侧=πl(r+r′)
表面积:S=π(r′2+r2+r′l+rl)
2、体积公式
(1)柱体:柱体的底面面积为S,高为h,则V=Sh.
(2)锥体:锥体的底面面积为S,高为h,则V= Sh.
(3)台体:台体的上,下底面面积分别为S′,S,高为h,则V= (S′+ +S)h.
【详解】
(1)过圆锥及其内接圆柱的轴作截面,如图所示,
因为 ,所以 .从而 .
(2)由(1) ,因为 ,
所以当 时, 最大,
即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.
1、已知正方体外接球的体积是 ,那么该正方体的内切球的表面积为_____________.
【答案】

人教版高中数学必修第二册8.3.1 棱柱、棱锥、棱台的表面积和体积 同步精练(含解析)

人教版高中数学必修第二册8.3.1 棱柱、棱锥、棱台的表面积和体积 同步精练(含解析)

人教版高中数学必修第二册8.3.1棱柱、棱锥、棱台的表面积和体积同步精练【考点梳理】考点一棱柱、棱锥、棱台的表面积图形表面积多面体多面体的表面积就是围成多面体各个面的面积的和,也就是展开图的面积考点二棱柱、棱锥、棱台的体积几何体体积说明棱柱V 棱柱=Sh S 为棱柱的底面积,h 为棱柱的高棱锥V 棱锥=13ShS 为棱锥的底面积,h 为棱锥的高棱台V 棱台=13(S ′+S ′S +S )hS ′,S 分别为棱台的上、下底面面积,h 为棱台的高【题型归纳】题型一:棱柱侧面积和表面积1.若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于()A .12B .48C .64D .722.已知正四棱柱(即底面是正方形的直棱柱)的底面边长为3cm ,侧面的对角线长是35cm ,则这个正四棱柱的表面积为A .290cm B .2365cm C .272cm D .254cm 3.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是()A .3034B .6034C .3034135+D .135题型二:棱锥的侧面积和表面积4.已知四面体ABCD 的各面均为等边三角形,且棱长为2,则该四面体的表面积为()A .3B .23C .33D .435.已知正三棱锥P ABC -的底面边长为6,点P 到底面ABC 的距离为3,则三棱锥的表面积是()A .93B .183C .273D .3636.已知正四棱锥P ABCD -的底面正方形的中心为O ,若高2PO =,45PAO ∠=︒,则该四棱锥的表面积是()A .422+B .442+C .423+D .443+题型三:棱台的侧面积和表面积7.正四棱台上、下底面边长分别为2cm ,4cm ,侧棱长2cm ,则棱台的侧面积为()A .26cm B .224cm C .233cm D .2123cm 8.已知一个三棱台的上、下底面分别是边长为2和4的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.9.已知正四棱台1111ABCD A B C D -上、下底面的边长分别为4、10,侧棱长为6.求正四棱台的表面积.题型四:棱柱的体积10.已知圆柱1OO 及其展开图如图所示,则其体积为()A .πB .2πC .3πD .4π11.如图,棱锥D A CD ''-体积与长方体ABCD A B C D ''''-体积的比值为()A .13B .14C .16D .11212.如下图1,一个正三棱柱形容器中盛有水,底面三角形ABC 的边长为2cm ,侧棱14cm AA =,若侧面11AA B B 水平放置时(如下图2),水面恰好过AC ,BC ,11AC ,11B C 的中点.(1)求容器中水的体积;(2)当容器底面ABC 水平放置时(如图1),求容器内水面的高度.题型五:棱锥的体积13.三棱锥的侧棱两两垂直,三个侧面三角形的面积分别为1S ,2S ,3S ,则三棱锥的体积是()A .123S S S B .1233S S S C .12323S S S D .123223S S S14.设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为()A .12B .24C .4D .3015.攒尖是古代中国建筑中屋顶的一种结构形式,常见的有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑,某园林建筑为四角攒尖,它主要部分的轮廓可近似看作一个正四棱锥,若这个正四棱锥的棱长均为2,则该正四棱锥的体积为()A .233B .23C .423D .42题型六:棱台的体积16.若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为()A .8B .4C .2D .2217.棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于()A .62+B .322+C .622+D .618.已知正四棱台两底面边长分别为2和4,若侧棱与底面所成的角为45,(1)求棱台的高.(2)求棱台的表面积.【双基达标】一、单选题16.若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为19.若正三棱柱一个侧面的一条对角线长为2,且与该侧面内的底边所成角为45°,则此三棱柱的体积为()A .32B .3C .62D .620.若正四棱台的上,下底面边长分别为1,2,高为2,则该正四棱台的体积为()A .103B .73C .143D .1421.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,1AA ⊥底面,底面扇环所对的圆心角为2π,弧AD 长度为弧BC 长度的3倍,且2CD =,则该曲池的体积为()A .92πB .6πC .112πD .5π22.如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为()A .1:5B .1:4C .1:3D .1:223.正六棱柱的底面边长为2,最长的一条对角线长为25,则它的表面积为()A .4(334)+B .12(32)+C .12(231)+D .3(38)+24.如图,一个直三棱柱形状的容器中盛有水,侧棱14AA =,若侧面11AA B B 水平放置时,水面恰好过AC ,BC ,11AC ,11B C 的中点,当底面ABC 水平放置时,则水面的高为()A .2B .52C .3D .7225.河北定州中学数学建模社团开展劳动实习,学习加工制作糖果包装盒.现有一张边长为10cm 的正六边形硬纸片,如图所示,裁掉阴影部分,然后按虚线处折成底面边长为6cm 的正六棱柱无盖包装盒,则此包装盒的体积为()3cm A .648B .324C .162D .108【高分突破】一:单选题26.正四棱台的上、下底面边长分别为1cm ,3cm ,侧棱长为2cm ,则棱台的侧面积为()A .24cmB .28cmC .243cm D .283cm 27.已知正四棱锥S ABCD -的底面边长为2,侧棱长为3,则该正四棱锥的体积等于()A .43B .433C .43D .428.刘徽在他的《九章算术注》中提出一个独特的地方来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积,刘徽通过计算,“牟合方盖”的体积与立方体内切球的体积之比应为4π.后人导出了“牟合方盖”的18体积计算公式,即318V r V =-牟方盖差,r 为球的半径,也即正方体的棱长均为2r ,从而计算出343V r π=球,记所有棱长都为r 的正四棱锥的体积为V 正,棱长为2r 的正方形的方盖差为V 方盖差,则V V 方盖差正等于()A .2B .22C .12D .2429.已知一个正三棱锥的高为2,如下图是其底面用斜二测画法所画出的水平放置的直观图,其中O B O C ''''=,32O A ''=,则此正三棱锥的体积为()A .233B .23C .36D .3230.我国南北朝名著《张邱建算经》中记载:“今有方亭,下方三丈,上方一丈,高二丈五尺,预接筑为方锥,问:接筑高几何?”大致意思是:有一个正四棱台的上、下底面边长分别为一丈、三丈,高为二丈五尺,现从上面补上一段,使之成为正四棱锥,则所补的小四棱锥的高是多少?那么,此高和原四棱台的体积分别是(注:1丈等于10尺)()A .12.5尺、10833立方尺B .12.5尺、32500立方尺C .3.125尺、10833立方尺D .3.125尺、32500立方尺二、多选题31.正三棱锥底面边长为3,侧棱长为23,则下列叙述正确的是()A .正三棱锥高为3B .正三棱锥的斜高为392C .正三棱锥的体积为2734D .正三棱锥的侧面积为939432.如图,在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,120ABC ∠=︒,侧面11AAC C 的对角线交点O ,点E 是侧棱1BB 上的一个动点,下列结论正确的是()A .直三棱柱的侧面积是423+B .直三棱柱的外接球表面积是8πC .三棱锥1E AAO -的体积与点E 的位置有关D .1AE EC +的最小值为2233.已知正四棱台1111ABCD A B C D -,上底面1111D C B A 边长为2,下底面ABCD 边长为4,高为1,则()A .该四棱台的侧棱长为3B .二面角1A BC B --的大小为4πC .该四棱台的体积为1423D .1AA 与BC 所成角的余弦值为1334.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体,则()A .该截角四面体一共有12条棱B .该截角四面体一共有8个面C .该截角四面体的表面积为73D .该截角四面体的体积为23212三、填空题35.如图,一个正四棱锥(底面为正方形且侧棱均相等的四棱锥)的底面的边长为4,高与斜高的夹角为30°,则正四棱锥的侧面积为___________.36.如图,已知斜三棱柱111ABC A B C -的体积是12,点P 为棱1AA 上任意一点,则四棱锥11P BB C C -的体积为______.37.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为3cm ,高为2cm ,内孔直径为1cm ,则此六角螺帽毛坯的体积是__________3cm .38.如图,三棱台111ABC A B C -的上、下底边长之比为1:2,记三棱锥111C A B B -体积为1V ,三棱台111ABC A B C -的体积为2V ,则12V V =______.四、解答题39.如图,设计一个正四棱锥形冷水塔塔顶,高是0.85m ,底的边长是1.5m ,制造这种塔顶需要多少平方米铁板(保留两位有效数字)?40.如图,某展览馆外墙为正四棱锥的侧面,四个侧面均为底边长为35.4m ,高为27.9m的等腰三角形.试求:(1)展览馆的高度;(2)外墙的面积;(3)该四棱锥的体积.41.如图,正三棱锥(底面是正三角形,侧棱长都相等)P ABC -的底面边长为2,侧棱长为3.(1)求正三棱锥P ABC -的表面积;(2)求正三棱锥P ABC -的体积.42.如图,四棱台1111ABCD A B C D -,上、下底面均是正方形,且侧面是全等的等腰梯形,且AB =5,11A B =4,110AA =.(1)求四棱台1111ABCD A B C D -的侧面积;(2)求四棱台1111ABCD A B C D -的体积.(台体体积公式()13V S S S S h =++⋅⋅下下上上)43.正棱锥S ﹣ABCD 的底面边长为4,高为1.求:(1)棱锥的侧棱长和侧面的高;(2)棱锥的表面积与体积.44.某人买了一罐容积为V L ,高为a m 的直三棱柱形罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距下底面高度分别为b m ,c m 的地方(如图).为了减少罐内液体车油的损失,该人采用破口朝上,倾斜罐口的方式拿回家.试问罐内液体车油最多还能剩多少?45.一块边长为12cm的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V表示为关于x的函数,并标明其定义域;(2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S.【答案详解】1.D 【详解】解:六棱柱的底面是边长为3的正六边形,故底面周长6318C =⨯=,又侧面是矩形,侧棱长为4,故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D 2.A 【解析】求出侧棱长,再求出侧面积和两个底面积,即可得表面积.【详解】由题意侧棱长为22(35)36-=.所以表面积为:224362390()S cm =⨯⨯+⨯=.故选:A.【点睛】本题考查棱柱的表面积,解题关键是求出侧棱长.3.A由菱形的对角线长分别是9和15,得菱形的边长为22915334222骣骣鼢珑+=鼢珑鼢珑桫桫,则这个直棱柱的侧面积为3434530342创=.4.D 【详解】因为四面体ABCD 的各面均为等边三角形,且棱长为2,所以1322322BCDS=⨯⨯⨯=,所以该四面体的表面积443BCDS S ==.故选:D.5.C 【解析】【分析】利用已知条件求解斜高,然后求解正三棱锥的表面积.【详解】解:由题意可知底面三角形的中心到底面三角形的边的距离为:136332⨯⨯=,所以正三棱锥的斜高为:()223323+=,所以这个正三棱锥的侧面积为:136231832⨯⨯⨯=,正三棱锥的底面积为:216sin 60932⨯︒=.所以正三棱锥的表面积为18393273+=故选:C .6.D 【解析】【分析】先在正四棱锥中由高2PO =,45PAO ∠=︒,求出底面边长和侧棱的长,然后再求表面积.【详解】依题意,正四棱锥的高PO ⊥底面ABCD ,且45PAO ∠=︒,知PAO 为等腰直角三角形,则侧棱22sin sin 45PO PA PAO ===∠︒,且2AO PO ==,则底面正方形ABCD 的对角线2222AC AO AB ===,得正方形的边长2AB =,从而知正四棱锥的4个侧面均是边长为2的正三角形;所以底面积为:24AB =;侧面积为:14422sin 60432PABS =⨯⨯⨯⨯︒=故正四棱锥的表面积为:443+.故选:D7.D 【解析】【分析】由棱台的性质和勾股定理求得棱台的斜高,再由棱台的侧面积公式,计算可得所求值.【详解】解:设2a cm =,4b cm =,2=l cm ,可得正四棱台的斜高为22()413()2b a h l cm -'=-=-=,所以棱台的侧面积为21(44)2(24)3123()2S a b h cm '=+=⨯+⨯=.故选:D .8.棱台的高为439,体积为289.【解析】【分析】根据题意分析该三棱锥为正三棱锥,作出该棱锥的高和斜高,先利用侧面面积等于上、下底面面积之和求出斜高,再利用直角梯形11DOO D 求出高,进而利用体积公式求其体积.【详解】如图所示,在三棱锥111ABC A B C -中,1O 、O 分别是上、下底面的中心,1D 、D 分别是11B C 、BC 的中点,连接1OO 、11A D 、AD 、1DD ,则1O 、O 分别在11A D 、AD 上,则1OO 是三棱锥的高,记为h ,1DD 是等腰梯形11BCC B 的高,也是三棱锥的斜高,记为0h ,所以()001=32+492S h h ⨯⨯=侧;上、下底面面积之和为()221+=2+4sin 60532S S ⨯=下上,由+S S S =下侧上得:09=53h ,即0539h =,又111332323O D =⨯⨯=,13234323OD =⨯⨯=,在直角梯形11DOO D 中,2222111153343()()()939h OO D D OD O D ==--=-=,则三棱锥的体积14328(343343)399V =⨯++⨯⨯=.9.116843+【解析】【分析】首先在等腰梯形11ABB A 中,过A 作11AE B A ⊥于E ,从而得到33AE =,再计算表面积即可.【详解】如图所示:正四棱台1111ABCD A B C D -中,1114,10,6AB A B AA ===,在等腰梯形11ABB A 中,过A 作11AE B A ⊥于E ,则110432A E -==,所以2222116333=-=-=AE AA A E ,所以正四棱台的表面积为2214104(410)331168432++⨯⨯+⨯=+.【点睛】本题主要考查几何体的表面积,属于简单题.10.D 【解析】【分析】结合展开图求出圆柱的底面半径与高,进而结合体积公式即可求出结果.【详解】设底面半径为r ,高为h ,根据展开图得422h r ππ=⎧⎨=⎩,则41h r =⎧⎨=⎩,所以圆柱的体积为22144r h πππ=⨯⨯=,故选:D.11.C 【解析】【分析】设',,AB a AD b AA c ===,然后表示出棱锥D A CD ''-体积和长方体的体积,再进行相除可得答案【详解】解:设',,AB a AD b AA c ===,因为''A D ⊥平面'D DC ,所以''111326D A CD A D DC V V abc abc ''--==⨯=,因为ABCD A B C D V abc ''''-=,所以棱锥D A CD ''-体积与长方体ABCD A B C D ''''-体积的比值为16,故选:C12.(1)()333cm ;(2)3cm .【解析】【分析】(1)在图2中,根据四棱柱的体积公式计算可得;(2)设图1中水高度为cm h ,根据水的体积相等得到方程,解得即可;【详解】解:(1)在图2中,水所占部分为四棱柱.四棱柱底面积为()22211332sin 601sin 60224S cm =⨯⨯︒-⨯⨯︒=,又高为4cm 所以水的体积为()3334334V cm =⨯=,(2)设图1中水高度为cm h ,则212sin 60332V h =⨯⨯︒⨯=,解得3h =.所以当容器底面ABC 水平放置时,容器内水面的高度为3cm .13.C 【解析】【分析】根据三棱锥的侧棱两两垂直,推出三个侧面都是直角三角形,根据直角三角形的面积公式和三棱锥的体积公式可求出结果.【详解】因为三棱锥的侧棱两两垂直,所以三个侧面都是直角三角形,设三条侧棱长分别为,,a b c ,则123111222S S S ab bc ac =⋅⋅,所以1238abc S S S =,所以三棱锥的体积1231118326V a bc S S S =⋅=⨯12323S S S =.故选:C 14.C 【解析】【分析】求出菱形的面积后可求四棱锥的体积.【详解】所求的体积为11324432⨯⨯⨯⨯=,故选:C.15.C 【解析】【分析】根据题意,结合正四棱锥的性质,即可求得AO 、PO 的长,根据椎体体积公式,即可得答案.【详解】如图所示,正四棱锥P ABCD -棱长均为2,连接AC 、BD 交于点O ,连接PO 根据正四棱锥的性质,可得PO ⊥平面ABCD .所以22122AO AB BC =+=,222PO PA AO =-=,所以正四棱锥P ABCD -的体积14222233V =⨯⨯⨯=.故选:C 16.C 【解析】【分析】根据给定条件结合正四棱台的结构特征列出棱台的相关量的表达式,再借助棱台体积公式列式计算即得.【详解】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h =22(5)(3)x x -=4x ,由棱台的体积公式1()3V S SS S h ''=++得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2.故选:C 17.C 【解析】【分析】依题意直接利用台体体积的计算公式即得结果.【详解】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11284362233V S S S S h ''=++=⨯++⨯=+,故选:C.18.(1)2;(2)12320+.【解析】【分析】(1)设1O 、O 分别为上、下底面的中心,连接1OO ,过1C 作1C E AC ⊥于E ,过E 作EF BC ⊥于F ,可得145C CO ∠=,根据各线段的长利用勾股定理即可求高;(2)由棱台的高求出斜高,由梯形的面积公式求出侧面积,与上下底面积求和即可.【详解】(1)因为棱台是正四棱台,所以上下底面都是正方形,因为两底面边长分别为2和4,所以1122AC =,42AC =,如图,设1O 、O 分别为上、下底面的中心,连接1OO ,因为棱台是正四棱台,所以1OO ⊥面ABCD ,过1C 作1C E AC ⊥于E ,则11//C E O O ,过E 作EF BC ⊥于F ,连接1C F ,则1C F 为正四棱台的斜高,由题意知145C CO ∠=,因为正四棱台两底面边长分别为2和4,所以1112222C E CE CO EO CO C O ==-=-=-=,所以棱台的高为2,(2)因为正四棱台的高为2,又2sin 45212EF CE =⋅=⨯=,所以斜高222211(2)13C F C E EF =+=+=,所以侧面积为:()124341232⨯+⨯⨯=,底面积为224420⨯+⨯=,所以表面积为:12320+.19.C 【解析】【分析】根据题意得该三棱柱底面棱长为2,高为2,再结合体积公式计算即可.【详解】解:因为正三棱柱一个侧面的一条对角线长为2,且与该侧面内的底边所成角为45°,所以该三棱柱底面棱长为2,高为2,所以该正三棱柱的体积为:1622sin 60222V Sh ==⨯⨯⨯⨯=故选:C 20.C 【解析】【分析】根据棱台的体积公式即可直接求出答案.【详解】()()111414142333V S S SS h ''=++=++⨯⨯=台.故选:C.21.B 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,即1r =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:B 22.A 【解析】【分析】由长方体的性质,结合三棱锥的体积公式、长方体的体积公式求C A DD '''-及剩余部分的体积,进而求其比例即可.【详解】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S '''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A 23.B 【解析】【分析】根据正六棱柱的结构特征,求出棱柱的高,再计算它的表面积.【详解】正六棱柱的底面边长为2,最长的一条对角线长为25,则高为()()22125222BB -⨯==,它的表面积为()16=2622sin 62212324123223S S S π=+⨯⨯⨯⨯⨯+⨯⨯=+=+表面积底面积矩形.故选:B.24.C 【解析】【分析】根据题意,当侧面11AA B B 水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC 水平放置时,水的形状为三棱柱形,设水面高为h ,利用等体积法可得解.【详解】当侧面11AA B B 水平放置时,水的形状为四棱柱形,底面是梯形面积为S ,此时水的体积14V S AA S=⋅=当底面ABC 水平放置时,水的形状为三棱柱形,设水面高为h ,此时水的体积ABC V S h =⋅V 又34ABC S S =V ,43ABC S h S ∴==V 故选:C 【点睛】关键点点睛:本题考点是棱柱的体积计算,考查用体积公式来求高,等体积法时解题的关键,考查转化思想以及计算能力,属于基础题.25.B 【解析】【分析】利用正六边形的性质求出正六棱柱的高,再根据棱柱的体积:V S h =⋅底即可求解.【详解】如图:由正六边形的每个内角为23π,按虚线处折成底面边长为6cm 的正六棱柱,即6AB =,所以1062,tan 60232BE BF BE -====,即正六棱柱的高为23所以正六棱柱体积:136662332422V =⨯⨯⨯⨯⨯=.故选:B 26.D 【解析】【分析】利用已知条件求出斜高,然后求解棱台的侧面积即可.【详解】正四棱台的上、下底面边长分别为1cm ,3cm ,侧棱长为2cm ,所以棱台的斜高为:22312()32--=.所以棱台的侧面积是:1343832+⨯⨯=.故选:D.27.A 【解析】【分析】首先计算正四棱锥的高,再计算体积.【详解】如图,正四棱锥S ABCD -,3SB =,2OB =,则1SO =,则该正四棱锥的体积1422133V =⨯⨯⨯=.故选:A 28.A 【解析】【分析】根据已知条件计算出V 方盖差、V 正,即可得解.【详解】由题意可得3333114418833V r V r r r ππ=-=-⨯⨯=方盖差牟,所有棱长都为r 的正四棱锥的底面对角线长为2r ,高为222222h r r r ⎛⎫=-= ⎪ ⎪⎝⎭,所以,23122326V r r r =⨯=正,因此,16232V V =⨯=方盖差正.故选:A.29.A 【解析】【分析】根据32O A ''=的长,求得正三棱锥的底面边长,由此求得底面积,再结合题中给出三棱锥的高,进而求得正三棱锥的体积.【详解】因为直观图中O B O C ''''=,32O A ''=,所以在原图中OA 为底面正三角形的高,3OA =,则正三角形边长为2,面积为12332⨯⨯=,又因为正三棱锥高为2,所以其体积为1233233⨯⨯=.故选:A.30.A 【解析】【分析】根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【详解】解:如图所示,正四棱锥P ABCD -的下底边长为三丈,即30AB =尺,高二丈五,即25OO '=尺;截去一段后,得正四棱台ABCD A B C D -'''',且上底边长为10A B ''=尺,所以1102125302POPO⨯'=+'⨯,解得25'12.52PO==,所以该正四棱台的体积是22125(30301010)108333V=⨯⨯+⨯+=(立方尺).故选:A.31.ABD【解析】【分析】先求出正三棱锥的高和斜高,从而可判断AB的正误,再计算出体积和侧面积,从而可判断CD的正误.【详解】设E为等边三角形ADC的中心,F为CD的中点,连接,,PF EF PE,则PE为正三棱锥的高,PF为斜高,又9391242PF =-=,333232EF =⨯=,故393344PE =-=,故AB 正确.而正三棱锥的体积为139339344⨯⨯⨯=,侧面积为13993933224⨯⨯⨯=,故C 错误,D 正确.故选:ABD.32.ABD 【解析】【分析】由题意画出图形,计算直三棱柱的侧面积即可判断A ;讲直棱柱放在圆柱中,求出直棱柱底面外接圆半径,进而求出外接球半径,利用球的表面积公式即可判断B ;由棱锥底面积与高为定值判断C ;将侧面展开即可求出最小值判断D .【详解】在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,120ABC ︒∠=,则3AC =,底面ABC 和111A B C 是等腰三角形,侧面全是矩形,所以其侧面积为1×2×2+32423⨯=+,故A 正确;设底面外接圆半径为r ,即32sin120r =,即1r =,所以直棱柱的外接球半径22112R =+=,直三棱柱的外接球表面积为248S R ππ==,故B 正确;由BB 1∥平面AA 1C 1C ,且点E 是侧棱1BB 上的一个动点,∴三棱锥1E AAO -的高为定值12,114AA OS=×3×2=32,∴1E AA O V -=13×32×12=312,故C 错误;把侧面11AAC C 和侧面11CC B B 展开在一个平面上,当E 为1BB 的中点时,1AE EC +取最小值,()()22min121122AE EC =++=+,故D 正确.故选:ABD .33.AB 【解析】【分析】结合正四棱台中的直角梯形、直角三角形根据二面角的定义、体积公式、异面直线所成的角的定义计算.【详解】如图,1B F ⊥平面ABCD 于F ,1B E BC ⊥于E ,则1B F 是的高,1B E 是斜高,显然F 在对角线BD 中,11B F =,114,2AB A B ==,则1(4222)22BF =-=,所以22113BB BF B F =+=,A 正确,直角1B EF 中1B EF ∠是二面角1A BC B --的平面角,1(42)12EF =⨯-=1B F =,所以14B EF π∠=,B 正确;221281(2244)33V =⨯⨯+⨯+=,C 错;//BC AD ,所以BC 与1AA 所成的角为1A AD ∠或其补角.又12B E =,113cos 33B BC ∠==,正四棱台中11A AD B BC ∠=∠,D 错.故选:AB .34.BCD 【解析】【分析】确定截角四面体是由4个边长为1的正三角形,4个边长为1的正六边形构成,然后分别求解四面体的表面积,体积即可判断选项.【详解】对于AB ,可知截角四面体是由4个边长为1的正三角形,4个边长为1的正六边形构成,故该截角四面体一共有8个面,18条棱,故A 错误,B 正确;对于C ,边长为1的正三角形的面积13311224S =⨯⨯⨯=,边长为1的正六边形的面积1333611222S =⨯⨯⨯⨯=,故该截角四面体的表面积为33344=7342S =⨯+⨯,故C 正确;对于D ,棱长为1的正四面体的高22361323h ⎛⎫=-⨯= ⎪ ⎪⎝⎭,利用等体积法可得该截角四面体的体积为13613633311232=4331122322312V ⨯-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯,故D 正确.故选:BCD 【点睛】关键点点睛:本题考查多面体的表面积及体积求法,解题的关键是审清题意,清楚截角四面体的定义及构成,考查学生的空间想象能力与运算求解能力,属于较难题.35.32【解析】【分析】根据正棱锥中高与斜高的夹角求出斜高的长,即可求出侧面积.【详解】在正四面体中易知,PO 是正棱锥的高,PE 是正棱锥的斜高,2OE =,30OPE ∠=︒,4PE ∴=,1444322侧==S ∴⨯⨯⨯,故答案为:3236.8【解析】【分析】利用等体积法证明四棱锥11P BB C C -的体积与斜三棱柱111ABC A B C -的体积的关系,即可得解.【详解】11111111111111111111233ABC A B C A B C ABC A B C ABC A B C ABC A B C P BB C C A BB C C A V V V V V V V -------==-=-=21283=⨯=故答案为:837.932π-【解析】【分析】利用柱体体积公式分别计算六棱柱和中间空圆柱的体积,相减即得.【详解】六棱柱的体积为:()1633sin 602932⎧⎫⎡⎤⨯⨯⨯⨯⨯=⎨⎬⎢⎥⎣⎦⎩⎭,圆柱的体积为:2(0.5)22ππ⨯⨯=,所以此六角螺帽毛坯的体积是:393cm 2π⎛⎫- ⎪⎝⎭.故答案为:932π-.38.17【解析】【分析】利用相似关系确定上下底面面积的比值,将棱锥转换顶点,结合体积公式求得两个几何体的体积,即可求解.【详解】由三棱台111ABC A B C -的上、下底边长之比为1:2,可得上、下底面的面积比为1:4,设棱台的高为h ,则点B 到111A B C △的距离也为h ,上底面面积为S ,则下底面面积为4S ,则11111111111111317(44)3C A B B B A B C ABC A B C ABC A B C Sh V V V V S S S S ----===++⨯.故答案为:17.39.3.4【解析】【分析】先利用勾股定理求出正四棱锥的斜高,再利用正棱锥的侧面积公式即可求出结果.【详解】如图,连接SE:S 表示塔的顶点,O 表示底面的中心,则SO 是高,设SE 是斜高,在Rt SOE △中,根据勾股定理得22221.5()0.85=1.285(m)2SE SO OE =+=+,所以()()21 1.54 1.285 3.4m 2S =⨯⨯⨯≈正四棱锥侧,答:制造这种塔顶需要铁板约23.4m .40.(1)21.6m (2)21975.32m (3)39022.752m 【解析】【分析】(1)根据勾股定理计算棱锥的高;(2)每个侧面均为等腰三角形,从而可得出侧面积;(3)代入棱锥的体积公式计算体积.(1)解:(1)设正四棱锥为P ABCD -,连接,AC BD 交与点O ,连接OP ,则OP 即为正四棱锥为P ABCD -的高,设AB 的中点为M ,连接OM ,PM ,117.7m 2OM AB ∴==,27.9m PM =,2221.6m PO PM OM ∴=-≈,即展览馆的高度为21.6m ;(2)21135.427.9493.83m 22PAB S AB PM ==⨯⨯=,∴展览馆的外墙面积为24493.831975.32m ⨯=;(3)四棱锥的体积231135.421.69022.752m 33ABCD V S PO ==⨯⨯=.41.(1)623+;(2)233【解析】【分析】(1)取BC 的中点D ,连接PD ,利用勾股定理求得PD ,可得三角形PBC 的面积,进一步可得正三棱锥P ABC -的侧面积,再求出底面积,则正三棱锥P ABC -的表面积可求;(2)连接AD ,设O 为正三角形ABC 的中心,则PO ⊥底面ABC .求解PO ,再由棱锥体积公式求解.【详解】解:(1)取BC 的中点D ,连接PD ,在Rt PBD 中,可得22223122PD PB BD =-=-=.∴1222PBC S BC PD ==.正三棱锥的三个侧面是全等的等腰三角形,∴正三棱锥P ABC -的侧面积是233622PBC S =⨯=.正三棱锥的底面是边长为2的正三角形,∴122sin 6032ABC S =⨯⨯⨯︒=△.则正三棱锥P ABC -的表面积为623+;(2)连接AD ,设O 为正三角形ABC 的中心,则PO ⊥底面ABC .且1333OD AD ==.在Rt POD 中,()22223692233PO PD OD ⎛⎫=-=-= ⎪ ⎪⎝⎭.∴正三棱锥P ABC -的体积为11692333333ABC S PO ⋅=⨯⨯=.42.(1)9399;(2)613986.【解析】【分析】(1)求出梯形11A B BA 的面积后可得四棱台的侧面积.(2)求出四棱台的高后利用公式可求其体积.【详解】(1)在梯形11A B BA 中,过11,A B 作AB 的垂线,垂足分别为,E F ,则54122AE -==,故1139910042A E =-=,故梯形11AB BA 的面积为()1399939945224+⨯=,故四棱台的侧面积为9399493994⨯=.(2)如图,过1A 作1A O ⊥平面ABCD ,垂足为O ,连接EO .因为侧面是全等的等腰梯形,故11A AD A AB ∠=∠,所以O 在DAB ∠的平分线上,故45EAO ∠=︒,因为AB Ì平面ABCD ,故1A O AB ⊥,而1111,A E AB A EAO A ⊥=,故AB ⊥平面1A EO ,而EO ⊂平面1A EO ,故AB EO ⊥.由(1)可得12AE =,故12EO =,所以139913983984442AO =-==,故四棱台的体积为()139861398251645326++⨯⨯=.43.(1)侧棱长为3,侧面的高为5;(2)表面积1685+,体积为163.【解析】【分析】(1)设SO 为正四棱锥S ABCD -的高,则1SO =,作OM BC ⊥,连结,OM OB ,分别在Rt SOD 和Rt SOM ,即可求得棱锥的侧棱长和侧面的高;(2)由(1)利用棱锥的侧面积公式和体积公式,即可求解.【详解】(1)如图所示,设SO 为正四棱锥S ABCD -的高,则1SO =,作OM BC ⊥,则M 为BC 中点,连结,OM OB ,则,SO OB SO OM ⊥⊥,因为4,2BC BM ==,可得2,22OM OB ==,在Rt SOD 中,22183SB SO OB =+=+=,在Rt SOM 中,225SM SO OM =+=,所以棱锥的侧棱长为3,侧面的高为5.(2)棱锥的表面积为4SBC ABCD S S S =+正方形=1444(45)16852⨯+⨯⨯⨯=+,几何体的体积为1116441333ABCD V S SO =⨯=⨯⨯⨯=正方形.44.3a b c V a++L.【解析】【分析】由题可知当平面1A DE 与水平面平行时,容器内的油是最理想的剩余量,然后利用椎体体积公式及条件即求.【详解】如图所示,设直三棱柱的底面面积为S ,则V =aS ,当平面1A DE 与水平面平行时,容器内的油是最理想的剩余量,连接11,A B AC ,则。

数学人教A版(2019)必修第二册8.3简单几何体的表面积与体积(共37张ppt)

数学人教A版(2019)必修第二册8.3简单几何体的表面积与体积(共37张ppt)
内容索引
【解析】 由题意,知 V 长方体 ABCD-A′B′C′D′=1×1×0.5=12(m3), V 棱锥 P-ABCD=13×1×1×0.5=16(m3), 所以这个漏斗的容积 V=12+16=23≈0.67(m3).
内容索引
1. 常见的求几何体体积的方法: ①公式法:直接代入公式求解;②等积法:如四面体的任何一个面 都可以作为底面,只需选用底面积和高都易求的形式即可;③分割法: 将几何体分割成易求解的几部分,分别求体积. 2. 求几何体体积时需注意的问题: 柱、锥、台的体积的计算,一般要找出相应的底面和高,要充分利 用截面、轴截面,求出所需要的量,最后代入公式计算.
第八章 立体几何初步
8.3 简单几何体的表面积与体积
棱柱、棱锥、棱台的表面积的概念
1. 阅读课本,了解多面体的表面积的概念:
【解析】 多面体的表面积就是围成多面体各个面的面积的和. 思考1►►► 棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面 展开图是什么?如何计算它们的表面积? 【解析】 棱柱的侧面展开图是几个平行四边形,棱锥的侧面展开图 是几个三角形,棱台的侧面展开图是几个梯形.它们的表面积是上、下 底面面积与侧面展开图的面积的和.
内容索引
注意:棱柱的高是指两底面之间的距离,即从一底面上任意一点向 另一个底面作垂线,这点与垂足(垂线与底面的交点)之间的距离.
棱锥的高是指从顶点向底面作垂线,顶点与垂足之间的距离. 棱台的高是指两底面之间的距离,即从上底面上任意一点向下底面 作垂线,这点与垂足之间的距离.
内容索引
思考2►►► 观察棱柱、棱锥、棱台的体积公式 V 棱柱=Sh,V 棱锥=13Sh,V 棱台=13h(S′ + S′S+S),它们之间有什么关系?你能用棱柱、棱锥、棱台的结构特征 来解释这种关系吗?

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。

2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。

(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。

圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。

圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。

8 C。

8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。

∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。

3。

(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。

12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。

∴Rt△OMB中,有OM==2。

∴DM=OD+OM=4+2=6。

∴(V D—ABC)max=×9×6=18。

故选B。

4。

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。

人教A版高中数学(配套新教材)必修第二册-第八章 -8-3-1棱锥、棱柱、棱台的表面积与体积

人教A版高中数学(配套新教材)必修第二册-第八章 -8-3-1棱锥、棱柱、棱台的表面积与体积

高中数学 必修第二册 RJ·A
易错辨析
1.棱柱、棱锥、棱台的侧面展开图的面积就是它们的表面积.( × ) 2.棱锥的体积等于底面面积与高之积.( × ) 3.棱台的体积可转化为两个锥体的体积之差.( √ ) 4.几何体的平面展开方法可能不同,但其表面积唯一确定.( √ )
高中数学 必修第二册 RJ·A
高中数学 必修第二册 RJ·A
二 棱柱、棱锥、棱台的体积
例2 (1)已知高为3的三棱柱ABC-A1B1C1的底面是边长为1的正三角形,
如图所示,则三棱锥B1-ABC的体积为
1
1
3
3
A.4
B.2
C. 6
D. 4
D解析 设三棱锥B1-ABC的高为h,

V三棱锥B1-ABC =13S△ABCh=31×
43×3=
+3S△DBC+ S△A1BD = 23a2+3×12×a2+3a2= 32+9a2.
几何体 A1B1C1D1-DBC 的体积 V=V正方体ABCD-A1B1C1D1 -V三棱锥A1-ABD=a3-13×12×a×a×a=56a3.
高中数学 必修第二册 RJ·A
随堂小测
1.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为
解析 V 棱台=13×(2+4+ 2×4)×3 =13×3×(6+2 2) =6+2 2.
高中数学 必修第二册 RJ·A
5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E为线段B1C上的一点, 则三棱锥A-DED1的体积为__16___.
V V 解析 = 三棱锥A-DED1 三棱锥E-DD1A
高中数学 必修第二册 RJ·A
新知学习
知识点一 棱锥、棱柱、棱台的表面积

新必修二 8.3_空间几何体的表面积和体积(教案+习题)含答案

新必修二 8.3_空间几何体的表面积和体积(教案+习题)含答案

空间几何体的表面积和体积【要点梳理】:要点一:空间几何体的表面积和体积公式项目 名称 底面 侧面 棱柱 平面多边形 平行四边形面积=底·高 棱锥平面多边形三角形面积=12·底·高 棱台 平面多边形 梯形 面积=12·(上底+下底)·高项目 名称 表面积圆柱2222()S r rl r r l πππ=+=+圆柱表(底面半径为r ,母线长l )圆锥 S 圆锥表=πr 2+πr l =πr (r+l )圆台 22('')S r r r l rl π=+++圆台表项目 名称 体积柱体棱柱 V 棱柱=Sh 圆柱 V 圆柱=Sh=πr 2h 锥体棱锥13V Sh =棱锥 圆锥台体棱台1('')3V h S SS S =++棱台圆台2211('')('')33V h S SS S h r rr r π=++=++圆台项目 名称 表面积体积球平S 球=4πR 2343V R π=球2.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.3.柱体、锥体、台体的体积公式之间的关系如下图所示.要点二、侧面积与体积的计算1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用. (1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式. (2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键.【典型例题】类型一、简单几何体的表面积例1.已知正四棱锥底面正方形的边长为4 cm ,高与斜高的夹角为30°,如下图,求正四棱锥的侧面积和表面积.【思路点拨】利用正棱锥的高、斜高、底面边心距组成的直角三角形求解,然后代入公式。

高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD ­-A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1­AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册课件(机构适用)

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册课件(机构适用)

(2)圆锥体积:V圆锥
=
1 3
r
2h
(r是底面半径,h是高)
03
(3)圆台体积:V圆台
=
1 3
h
r
2
r
r
r
2

r
,
r分别是上、下底面半径,是高)
01
名师点拨
01
柱体、椎体的体积公式可以看做台体体积公式的“特殊
02
形式”
03
V柱体
=Sh
SS
V台体
=
1 3
S
SS S
h
S0V椎体
=
1 3
Sh
05 球的表面积和体积
A.1610 m3 B.1440 m3 C.1320 m3
D.1150 m3
经典例题
解析
【详解】
因为墙体厚度为1m,所以除去墙体厚度的外环直径变为(30-2)m,加上墙体
厚度的内环直径变为(16+2)m,墙体高10m,由题意得围屋所有房间的室内总
体积为
30 2
2
2
16 2
2
2
02
2.圆锥表面积:S圆锥 = r r l(r是底面半径,l是母线长)
3.圆台表面积:S圆台= r2 r2 rl rl ( r, r 分别是上、下底面半径, l 是母线长)
03
01
归纳小结
01
02 03
04 圆柱、圆锥、圆台体积
02
体积
02 (1)圆柱体积:V圆柱=r2h (r是底面半径,h是高)
第八章立体形初步
8.3简单几何体的表面积与体积
学习目标
01
了解棱柱、棱锥、 棱台的表面积与体

高中数学新教材必修第二册第八章 立体几何初步 8.3 简单几何体的表面积与体积(南开题库含详解)

高中数学新教材必修第二册第八章  立体几何初步 8.3  简单几何体的表面积与体积(南开题库含详解)

第八章 立体几何初步 8.3 简单几何体的表面积与体积一、选择题(共40小题;共200分)1. 一个四面体的所有棱长都为 √2 ,四个顶点在同一球面上,则此球的表面积为 ( ) A. 3πB. 4πC. 3√3πD. 6π2. 有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为 ( )A. 24π,12πB. 15π,12πC. 24π,36πD. 以上都不正确3. 已知下列三个命题:①若一个球的半径缩小到原来的 12,则其体积缩小到原来的 18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线 x +y +1=0 与圆 x 2+y 2=12 相切.其中真命题的序号是 ( ) A. ①②③B. ①②C. ①③D. ②③4. 如图,是一个几何体的三视图,其主视图、左视图是直角边长为 2 的等腰直角三角形,俯视图为边长为 2 的正方形,则此几何体的表面积为 ( )A. 8+4√2B. 8+4√3C. 6+6√2D. 8+2√2+2√35. 一个四棱锥的三视图如图所示,其侧视图是等边三角形.则该四棱锥的体积等于 ( )A. 8√3B. 16√3C. 24√3D. 48√36. 如图,在长方体ABCD−A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=V AEA1−DFD1,V2=V EBE1A1−FCF1D1,V3=V B1E1B−C1F1C.若V1:V2:V3=1:4:1,则截面A1EFD1的面积为( )A. 4√10B. 8√3C. 4√13D. 167. 一个几何体的三视图如图所示,则该几何体的体积(单位:cm3)为( )A. π+√33B. 2π+√33C. 2π+√3D. π+√38. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 64B. 72C. 80D. 1129. 在△ABC中,AB=2,BC=1.5,∠ABC=120∘,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是( )A. 32π B. 52π C. 72π D. 92π10. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A. 180B. 240C. 276D. 30011. 已知某四棱锥的三视图,如图所示.则此四棱锥的体积为( )A. 6B. 5C. 4D. 312. 正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是( )A. π3a B. π2a C. 2πa D. 3πa13. 一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A. √3+√6B. √3+√5C. √2+√6D. √2+√514. 某几何体的三视图如图所示,则该几何体的体积为( )A. 8−2πB. 8−πC. 8−π2D. 8−π415. 直三棱柱ABC−A1B1C1的直观图及三视图如下图所示,D为AC的中点,则下列命题是假命题的是( )A. AB1∥平面BDC1B. A1C⊥平面BDC1C. 直三棱柱的体积V=4D. 直三棱柱的外接球的表面积为4π16. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A. 9πB. 10πC. 11πD. 12π17. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. 1+2π2πB. 1+4π4πC. 1+2ππD. 1+4π2π18. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 23π+4 B. 2π+4 C. π+4 D. π+219. 在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2π3B. 4π3C. 5π3D. 2π20. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. √23B. √33C. 43D. 3221. 小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为1,则小明绘制的建筑物的体积为( )A. 16+8πB. 64+8πC. 64+8π3D. 16+8π322. 正三棱锥的底面边长为a,高为√66a,则此棱锥的侧面积为( )A. 34a2 B. 32a2 C. 3√34a2 D. 3√32a223. 已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足∣MA∣+∣MB∣=10,则三棱锥A−BCM的体积的最大值是( )A. 48B. 36C. 30D. 2424. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 1525. 棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A. a33B. a34C. a36D. a31226. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2√23π B. 4√2π3C. 2√2πD. 4√2π27. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为( )A. 36πB. 64πC. 144πD. 256π28. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A. 2B. 92C. 32D. 329. 如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A. 500π3cm3 B. 866π3cm3 C. 1372π3cm3 D. 2048π3cm330. 一个棱锥三个侧面两两互相垂直,它们的面积分别为12cm2,8cm2,6cm2,那么这个三棱锥的体积为( )A. 8√2πB. 8√23C. 24√2D. 8√231. E,F分别是边长为1的正方形ABCD边BC,CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为( )A. 13B. 16C. 112D. 12432. 如图,三棱柱ABC−A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为( )A. 2:3B. 1:1C. 3:2D. 3:433. 正方体的全面积为a2,它的顶点都在同一个球面上,这个球的半径是( )A. √36a B. √24a C. √22a D. √32a34. 如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC−A1B1C1在平面A1ABB1上的投影的面积为( )A. 274B. 92C. 9D. 27235. 如图,已知直三棱柱ABC−A1B1C1,点P,Q分别在侧棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为( )A. 2:1B. 3:1C. 3:2D. 4:336. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A. 1B. 2C. 4D. 837. 如图所示,正方体ABCD−AʹBʹCʹDʹ的棱长为1,E,F分别是棱AAʹ,CCʹ的中点,过直线E F的平面分别与棱BBʹ,DDʹ交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDDʹBʹ;②当且仅当x=12时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥Cʹ−MENF的体积V=ℎ(x)为常函数.以上命题中假命题的序号为( )A. ①④B. ②C. ③D. ③④38. 如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33.给出下列四个结论:①CE⊥BD;②三棱锥E−BCF的体积为定值;③△BEF在底面ABCD内的正投影是面积为定值的三角形;④在平面ABCD内存在无数条与平面DEA1平行的直线.其中,正确结论的个数是( )A. 1B. 2C. 3D. 439. 已知正方体ABCD−A1B1C1D1棱长为1,点P在线段BD1上,当∠APC最大时,三棱锥P−ABC的体积为( )A. 124B. 118C. 19D. 11240. 一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的表面积为( )A. √5+3√3π2+3π2+1 B. 2√5+3√3π+3π2+1C. √5+3√3π2+3π2D. √5+3√3π2+π2+1二、填空题(共40小题;共200分)41. 已知某球体的体积与其表面积的数值相等,则此球体的半径为.42. 若一个球的体积为4√3π,则它的表面积为.43. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.44. 一个正方体的各顶点均在同一球的球面上,若该球的体积为4√3π,则该正方体的表面积为.45. 某几何体的三视图如图所示,则该几何体的体积是.46. 已知某几何体的三视图如图所示,则该几何体的体积为.47. 一个几何体的三视图如图所示,则该几何体的体积为.48. 已知一个正方体的所有顶点在一个球面上,若球的体积为9π,则正方体的棱长为.249. 如图是一个几何体的三视图.若它的体积是3√3,则a=.50. 某空间几何体的三视图如图所示,则该几何体的体积为.51. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积是.52. 用一张长为12米,宽为8米的矩形铁皮围成圆柱的侧面,则这个圆柱的体积为.53. 有一个几何体的三视图及其尺寸(单位cm)如下图所示,则该几何体的表面积为:.54. 一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.55. 底面是正方形,容积为256的无盖水箱,它的高为时最省材料.56. 某几何体的三视图如图所示,则该几何体的体积为.57. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3.58. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为.59. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.60. 某几何体的三视图如图所示,则该几何体的体积为.61. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.62. 几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是.63. 一空间几何体的三视图如图所示,则该几何体的体积为.64. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积为.65. 已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.66. 如图是一个几何体的三视图,则这个几何体的体积为.,则正视图与侧视图中x的值67. 一空间几何体的三视图如右图所示,该几何体的体积为12π+8√53为.68. 如图是—个几何体的三视图,则该几何体的表面积为.69. 一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积为.70. 如图所示,一款冰淇淋甜筒的三视图中俯视图是以3为半径的圆,则该甜筒的表面积为.71. ―个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.72. 正方体ABCD−A1B1C1D1的棱长为2√3,则四面体A−B1CD1的外接球的体积为.73. 已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.74. 如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.75. 已知某三棱锥的三视图如图所示,则它的外接球体积为.76. 如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm)可知该几何体的表面积为.77. 图中的三个直角三角形是一个体积为20cm3的几何体的三视图,该几何体的外接球表面积为cm278. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.79. 一个圆锥体被过其顶点的平面截去一部分,余下的几何体的三视图如图所示(单位:cm),则余下的几何体的体积为cm3.80. 棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为.三、解答题(共20小题;共260分)81. 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.82. 三棱锥S−ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S−BCED的体积.83. 在单位正方体AC1中,点E,F分别是棱BC,CD的中点.(1)求证:D1E⊥平面AB1F;(2)求三棱锥E−AB1F的体积;(3)设直线B1E,B1D1与平面AB1F所成的角分别为α,β,求cos(α+β)的值.84. 如图,三棱锥S−ABC内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知AB=5cm,BC=3cm,AC=4cm,SA=SB=SC=10cm,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求A经过圆锥的侧面到B点的最短距离.85. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分别在线段AD,CP上,且AMMD =PNNC=4.(1)求证:MN∥平面PAB;(2)求三棱锥P−AMN的体积.86. 如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45∘,AB=2AD=2,∠BAD=60∘.(1)求证:BD⊥平面ADG;(2)求此多面体的全面积.87. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12(m),高4(m),养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4(m)(高不变);二是高度增加4(m)(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?88. 如图,ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC,Eʹ和Fʹ是平面ABCD内的两点,EʹE和FʹF都与平面ABCD垂直.(1)证明:直线EʹFʹ垂直且平分线段AD.(2)若∠EAD=∠EAB=60∘,EF=2,求多面体ABCDEF的体积.89. 如图,三棱锥A−BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A−MBC的体积.90. 如图,四棱锥 P −ABCD 中,底面是以 O 为中心的菱形,PO ⊥ 底面 ABCD ,AB =2,∠BAD =π3,M 为 BC 上一点,且 BM =12.(1)证明:BC ⊥ 平面 POM ; (2)若 MP ⊥AP ,求四棱锥 P −ABMO 的体积.91. 如图,平行四边形 ABCD 中,∠DAB =60∘,AB =2,AD =4,将 △CBD 沿 BD 折起到 △EBD的位置,使平面 EBD ⊥ 平面 ABD .(1)求证:AB ⊥DE ; (2)求三棱锥 E −ABD 的侧面积.92. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为 12 m ,高 4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大 4 m (高不变);二是高度增加 4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的侧面积; (3)哪个方案更经济些?93. 如图所示,三棱柱 ABC −A 1B 1C 1 中,AA 1⊥平面ABC ,D ,E 分别为 A 1B 1,AA 1 的中点,点 F在棱 AB 上,且 AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱 AC 上是否存在一个点 G ,使得平面 EFG 将三棱柱分割成的两部分体积之比为 1:15,若存在,指出点 G 的位置;若不存在,请说明理由.94. 如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体N−BCM的体积.95. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;,求该三棱锥的侧面积.(2)若∠ABC=120∘,AE⊥EC,三棱锥E−ACD的体积为√6396. 如图,在斜三棱柱ABC−A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120∘,E、F分别是棱B1C1、A1A的中点.(1)求A1A与底面ABC所成的角;(2)证明A1E∥平面B1FC;(3)求经过A1、A、B、C四点的球的体积.97. 如图1,∠ACB=45∘,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90∘(如图2所示).(1)当BD的长为多少时,三棱锥A−BCD的体积最大;(2)当三棱锥A−BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.98. 如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.99. 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30∘,求四棱锥P−ABCD的体积.100. 如图,已知正方体ABCD−A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM= AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.答案第一部分1. A2. A3. C4. A 【解析】由三视图知,该几何体是底面为正方形的四棱锥,其直观图如下图.所以其表面积为2×2+2×(12×2×2)+2×(12×2×2√2)=8+4√2.5. A【解析】由三视图可以看出,该几何体为四棱锥,所以V=13×12(2+4)×4×2√3=8√3.6. C7. A8. C 【解析】该几何体是由一个正方体和一个四棱锥组合而成,V=4×4×4+13×4×4×3=80.9. A 【解析】如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.因为AB=2,BC=1.5,∠ABC=120∘,所以AE=ABsin60∘=√3,BE=ABcos60∘=1,设V1是以ACD为轴截面的圆锥的体积,V2是以ABD为轴截面的圆锥的体积.V1=13π⋅AE2⋅CE=52π,V2=13π⋅AE2⋅BE=π,所以V=V1−V2=32π.10. B【解析】由三视图可知,该几何体是由一个四棱锥和一个正方体组成,所以表面积=4×12×6×5+ 5×62=240.11. C 【解析】V=13×12×(2+4)×2×2=412. B 【解析】设球的半径为R,则正方体的对角线长为2R,依题意知43R2=16a,即R2=18a,所以S球=4πR2=4π⋅18a=π2a.13. C 【解析】由三视图可得:该几何体是四棱锥(如图所示),所以BA=BC=√2,BP=1,PA=PC=√3,PD=√5,可得PA⊥AD;S△PBC=S△PBA=1 2×√2×1=√22,S△PDC=S△PDA=12×√2×√3=√62,所以该几何体的侧面积S=2S△PBC+2S△PDC=√2+√6.14. B 【解析】该几何体为一个棱长为2的正方体在两端各削去一个14圆柱,V=2×2×2−2×14×(π×12×2)=8−π.15. D16. D17. A18. C19. C 【解析】提示:分析知,围成的几何体为如图所示一个圆柱挖去一个圆锥.20. A【解析】提示:如图,作AM⊥EF于点M,BN⊥EF于点N,则可将原多面体分成一个直三棱柱和两个三棱锥,然后去求其体积.21. C 【解析】由三视图可知,该建筑物由一个圆锥、一个圆柱以及一个正方体拼接而成,故所求几何体的体积V=13×π×12×2+π×12×2+4×4×4=64+8π3.22. A 【解析】利用高、底面正三角形的边心距和斜高组成的直角三角形可得斜高为√(√66a)2+(13×√32a)2=12a,于是侧面积S=3×12×a×12a=34a2.23. D24. D25. C【解析】提示:算出一个正四棱锥的体积再乘2即可.26. B27. C 【解析】在三棱锥O−ABC中,底面OAB的面积确定,所以要使O−ABC的体积最大,则C到平面OAB的距离最大,即为球的半径.设球半径为R,则三棱锥O−ABC的体积V max=13×12×R2×R=36,解得R=6,此时球的表面积S=4πR2=144π.28. D29. A30. D31. D 【解析】设AF,AE,EF折起交于点P,因为AP⊥PF,AP⊥PE,所以AP⊥面PEF,所以V P−AEF=V A−PEF=13×1×12×12×12=124.32. B【解析】不妨设此三棱柱为正三棱柱,AB=1,AA1=2,则正三棱柱的体积V=√34×2=√32,V下面部分=13×√32×32=√34,所以V上面部分=√34,所以上下两部分的体积的比为1:133. B 【解析】由正方体外接球的直径2R等于正方体的体对角线的长,得2R=√3⋅√a26,所以R=√24a.34. A35. A【解析】设B到AC的距离为m,AC=x,棱柱的高为ℎ,可得V四棱锥B−ACQP =16xℎm,V三棱柱ABC−A1B1C1=12xℎm,V四棱锥B−ACQPV三棱柱ABC−A1B1C1=13,所以平面BPQ把三棱柱分成两部分的体积比为1:2.36. B 【解析】提示:此组合体是过圆柱对称轴的平面截圆柱所得的半个圆柱和一个半球组成的组合体.37. C 【解析】因为EF⊥BD,EF⊥面BDDʹBʹ,EF⊂面EMFN,所以平面MENF⊥平面BDDʹBʹ成立;又因为四边形EMFN为菱形,∣MN∣2=(1−2x)2+2,所以S MENF=12∣EF∣×∣MN∣=1 2×√2×√4x2−4x+3,当x=12时,面积最小,所以②成立;四边形MENF的周长L=f(x)=4√4x 2−4x +3,在 (0,12) 上是单调递减函数,在 (12,1) 上是单调递增函数,所以命题③不正确;V Cʹ−MENF =2V Cʹ−MNF =2V M−CʹNF =16,所以 V =ℎ(x ) 为常函数.38. D 【解析】因为在正方体 ABCD −A 1B 1C 1D 1 中,BD ⊥平面AA 1CC 1,CE ⊂平面AA 1CC 1,所以 BD ⊥CE ,①正确;EF =√33,而 C 到 EF 的距离即为 C 到 AC 1 的距离,所以 △EFC 面积为定值,又 B点到 平面EFC 的距离为定值,所以三棱锥 E −BCF 的体积为定值,②正确;因为 EF 为定值,且在体对角线 AC 1 上,所以 EF 在底面上的投影为定值,而点 B 到 AC 的距离为定值,所以 △BEF 在底面 ABCD 内的正投影是面积为定值的三角形,③正确;因为平面 ABCD 与平面 DEA 1 不重合,显然在平面 ABCD 内存在无数条与平面 DEA 1 平行的直线,④正确.39. B 【解析】设 AP =CP =a ,在 △PAC 中,利用余弦定理有 cos∠APC =a 2+a 2−22a 2=1−1a 2,又因为当 AP ⊥BD 1 时,AP 最小,当 P 与点 D 1 重合时最大,所以 a ∈[√63,√2],所以当 AP ⊥BD 1 时,∠APC 最大,在 △BDD 1 中,BP =√33,则 P 到面 ABC 的距离为 √33√3=13.所以 V P−ABC =12×1×1×13×13=118.40. A【解析】圆锥母线为 l =√(√5)2+1=√6,高为 ℎ=√(√5)2−1=2,圆锥底面半径为 r =√l 2−ℎ2=√2,截去的底面弧的圆心角为直角,截去的弧长是底面圆周的 14,圆锥侧面剩余 34,即为 S 1=34⋅π⋅rl =34π⋅√2×√6=3√32π,截面三角形的面积为 S 2=12×2×√5=√5,底面剩余部分为S 3=34πr 2+12×√2×√2=1+3π2,所以被截后该几何体的表面积为 S =3π2+3√3π2+√5+1.第二部分 41. 3 42. 12π【解析】提示:球的半径为 √3. 43. 14π 44. 24【解析】球的半径为 √3 ,则正方体的体对角线长为 2√3 ,从而正方体的棱长为 2 ,表面积为 6×22=24 . 45. 16π−16 46. 12π【解析】提示:由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成.47. 12+π【解析】该几何体是一个长方体和一个圆柱的组合体.由三视图可知长方体的长、宽、高分别为4、3、1,圆柱的底面半径为1,高为1,故该组合体的体积为V=4×3×1+π×1×1=12+π.48. √349. √3【解析】三视图对应的空间几何体是以2为底、高为a的三角形作为底面,以3为高的卧放的一个三棱柱.50. 2π+2√3351. 9√3π52. 288πcm3或192πcm3.53. 24πcm2【解析】由三视图可知:该几何体是一个圆锥,其母线长是5cm,底面直径是6cm.所以该三棱锥的表面积S=π×32+12×6π×5=24πcm2.54. 6+π【解析】如图:该几何体为一个棱柱与一个圆锥的组合体.所以V=3×2×1+13π×12×3=6+π.55. 456. 108+3π【解析】由三视图可知,该几何体由两个长方体和一个圆柱组成.所以V=2×6×6×32+π×12×3=108+3π.57. 48【解析】由三视图可知,该几何体为四棱锥,所以V=13×62×4=48.58. 5359. 9π260. 13【解析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A−BCDE的高为1,四边形BCDE是边长为1的正方形,则V=13×1×1×1=13.61. 20π3【解析】三视图可得该几何体是组合体,上面是底面圆的半径为2m、高为2m的圆锥,下面是底面圆的半径为1m、高为4m的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m3).62. 8√3+4√3π3【解析】由三视图可知,该几何体是由半个圆锥和一个四棱锥组成,所以体积为12×13×π×22×2√3+13×3×4×2√3=8√3+4√33π.63. 16+8π【解析】由三视图可知,该几何体是由一个长方体和半个圆柱形成,所以体积为V=2×2×4+ 12π×22×4=16+8π.64. 9√3π【解析】如下图所示:PO=√62−32=3√3,所以体积为13⋅3√3⋅π⋅32=9√3π.65. 20π3【解析】该几何体的体积为π⋅4+13π⋅22⋅2=20π3m3.66. 3【解析】由三视图可知,该几何体为上面一个三棱柱,下方一个四棱柱.故V上=12×1×1×2=1,V下=2×1×1=2,所以V=1+2=3.67. 3【解析】由三视图可以看出,该几何体是由一个四棱锥和一个圆柱组成.体积为13×(2√2)2×√5+π×22x=12π+8√53,所以x=3.68. 9π【解析】由三视图可知,该几何体的侧面积为2π×1×3=6π,下底面面积为π×12=π,顶部为半个球的表面积12×4π×12=2π,所以该几何体的表面积为9π.69. 7π【解析】由三视图可知该几何体是由一个圆柱和半个球组成,所以表面积为π×12+2π×1×2+12×4π×12=7π.70. 33π【解析】上半部分为半个球,表面积为12×4πr2=18π.下半部分为圆锥,侧面积为12×2πr×母线=15π.所以表面积为33π.71. 18+9π【解析】由三视图可知,该几何体为两个相切的球上方加了一个长方体组成的组合体,所以其体积为V=3×6×1+2×43π×(32)3=18+9π(m3).72. 36π.73. 11274. 1375. 43π【解析】由俯视图可知,直角三角形的斜边中线等于斜边的一半,根据射影定理,球心为斜边中点,半径为1,所以球的体积为43πr3=43π.76. (18+2√3)cm2.77. 77π【解析】提示:依题意得20=13×12×5×6×ℎ,解出ℎ=4.可算出外接球半径为√772,所以外接球表面积为77π.78. 83π【解析】由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1m,圆锥的高均为1m,圆柱的高为2m.因此该几何体的体积为V=2×13π×12×1+π×12×2=83πm3.79. 16π9+2√33【解析】由三视图可知,该几何体由23个圆锥和一个三棱锥组成,所以体积为23×13π×22×2+13×12×2√3×1×2=16π9+2√33.80. √63【解析】提示:设这个棱长为1的正四面体的四个顶点分别为A、B、C、D,可求得其高为ℎ=√63,设每个面面积为S,则V A−BCD =V P−ABC +V P−ACD +V P−ABD +V P−BCD ,所以13ℎS =13d 1S +13d 2S +13d 3S +13d 4S, 得 d 1+d 2+d 3+d 4=ℎ=√63. 第三部分81. (1) 交线围成的正方形 EHGF 如图.(2) 作 EM ⊥AB ,垂足为 M ,则 AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形 EHGF 为正方形,所以 EH =EF =BC =10. 于是 MH =√EH 2−EM 2=6,AH =10,HB =6.故 S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72. 因为长方体被平面 α 分为两个高为 10 的直棱柱,所以其体积的比值为 97(79 也正确). 82. ∵ D ,E 分别是 AB ,AC 中点, ∴ S △ADE =14S △ABC ,∴ V 三棱锥S−ADE =14V 三棱锥S−ABC ,∴ V 四棱锥S−BCED =V 三棱锥S−ABC −V 三棱锥S−ADE =34V 三棱锥S−ABC .∵ 三棱锥 S −ABC 的三条侧棱两两垂直,∴ V 三棱锥S−ABC =16⋅SA ⋅SB ⋅SC =16×5×4×3=10,∴ V 四棱锥S−BCED =34V 三棱锥S−ABC =34×10=152.83. (1) 因为点 E ,F 分别是棱 BC ,CD 的中点,所以AF ⊥DE又AF ⊥DD 1DE ∩DD 1=D}⇒AF ⊥面EDD 1⇒AF ⊥D 1E 又C 1D ∥B 1A C 1D ⊥面BCD 1}⇒D 1E ⊥B 1AB 1A ∩AF =A }}⇒D 1E ⊥面AB 1F.(2) V E−AB 1F =V B 1−AEF =13⋅1⋅38=18.(3) 由⑴可知:D 1E ⊥ 平面 AB 1F ,直线 B 1E ,B 1D 1 与平面 AB 1F 所成的角分别为 α,β,即 α+β=∠EB 1D 1,所以cos(α+β)=cos∠EB1D1=54+2−(14+1+1)2×√52×√2=√1010.84. (1)因为AB=5cm,BC=3cm,AC=4cm,所以∠ACB=90∘⇒AB为底面圆的直径⇒S侧=12⋅10⋅π⋅5=25π.圆锥的侧面展开图是一个扇形,设此扇形的中心角为θ,弧长为l,则l=10θ,所以2π×52=10θ,所以θ=π2.(2)沿着圆锥的侧棱SA展开,在展开图△ABS中,∠ASB=45∘,SA=SB=10,⇒AB2= SA2+SB2−2SA⋅SB⋅cos∠ASB⇒AB=10√2−√2.85. (1)在AC上取一点Q,使得AQQC=4,连接MQ,QN,则AMMD =AQQC=PNNC,所以QN∥AP,MQ∥CD,又CD∥AB,所以MQ∥AB.又因为AB⊂平面PAB,PA⊂平面PAB,MQ⊂平面MNQ,NQ⊂平面MNQ,所以平面PAB∥平面MNQ,又因为MN⊂平面MNQ,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AB=3,BC=5,AC=4,所以AB⊥AC.过C作CH⊥AD,垂足为H,则CH=3×45=125,因为PA⊥平面ABCD,CH⊂平面ABCD,所以PA⊥CH,又CH⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CH⊥平面PAD,因为PC=√PA2+AC2=√41,PNNC=4,所以N到平面PAD的距离ℎ=45CH=4825,所以V P−AMN=V N−PAM=13S△PAM⋅ℎ=13×12×5×4×4825=325.86. (1)在△BAD中,因为AB=2AD=2,∠BAD=60∘,所以由余弦定理可得BD=√3.AB2=AD2+BD2,所以AD⊥BD.又在直平行六面体中,GD⊥平面ABCD,BD⊂平面ABCD,所以GD⊥BD.又AD∩GD=D,所以BD⊥平面ADG.(2)由已知可得AG∥EF,AE∥GF,四边形AEFG是平行四边形.GD=AD=1,所以EF=AG=√2.EB=AB=2,所以GF=AE=2√2.过G作GM∥DC交CF于H,得FH=2,所以FC=3.过G作GM∥DB交BE于M,得GM=DB=√3,ME=1,所以GE=2.cos∠GAE=2×2√2×√2=34,所以sin∠GAE=√74.S AEFG=2×12×√2×2√2×√74=√7.该几何体的全面积S=√7+2×12×1×√3+12×1×1+12×2×2+12×(1+3)×2+12×(2+3)×1=√7+√3+9.87. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13Sℎ=13×π×(162)2×4=2563π(m3),如果按方案二,仓库的高变成8m,则仓库的体积V2=13Sℎ=13×π×(122)2×8=2883π(m3).(2)如果按方案一,仓库的底面直径变成16m,半径为8m.棱锥的母线长为l=√82+42=4√5,则仓库的表面积S1=π×8×4√5=32√5π(m2),如果按方案二,仓库的高变成8m.棱锥的母线长为l=√82+62=10,则仓库的表面积S2=π×6×10=60π(m2).(3)∵V2>V1,S2<S1,∴方案二比方案一更加经济.88. (1)因为EA=ED且EEʹ⊥平面ABCD,所以EʹD=EʹA,所以点Eʹ在线段AD的垂直平分线上,同理点Fʹ在线段BC的垂直平分线上.又ABCD是正方形,所以线段BC的垂直平分线也就是线段AD的垂直平分线即点EʹFʹ都居线段AD的垂直平分线上,所以直线E′F′垂直平分线段AD.(2)连接EB,EC,设AD中点为M,由题意知,AB=2,∠EAD=∠EAB=60∘,EF=2,所以ME=√3,BE=FC=2,则多面体ABCDEF可分割成正四棱锥E−ABCD和正四面体E−BCF两部分,在Rt△MEEʹ中,由于MEʹ=1,ME=√3,所以EEʹ=√2,所以V E−ABCD=13S正方形ABCD⋅EEʹ=13×4×√2=4√23.V E−BCF=V C−BEF=V C−BEA=V E−ABC=13S△ABC⋅EEʹ=13×12×4×√2=23√2,所以多面体ABCDEF的体积为V E−BCF+V E−ABCD=2√2.89. (1)在三棱锥A−BCD中,∵AB⊥平面BCD,又∵CD⊂平面BCD,∴AB⊥CD.又∵BD⊥CD,且BD∩AB=B,∴CD⊥平面ABD.(2)法一:由AB⊥平面BCD,得AB⊥BD,∵AB=BD=1,∴S△ABD=12.∵M是AD中点,∴S△ABM=12S△ABD=14.由(1)知,CD⊥平面ABD,∴三棱锥C−ABM的高ℎ=CD=1,因此三棱锥A−MBC的体积为V A−MBC=V C−ABM=13S△ABM⋅ℎ=112.法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如图,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=12AB=12,又CD⊥BD,BD=CD=1,所以S△BCD=1 2 ,∴三棱锥A−MBC的体积V A−MBC=V A−BCD −V M−BCD =13AB ⋅S △BCD −13MN ⋅S △BCD=112.90. (1) 如图,因 ABCD 为菱形,O 为菱形中心,连接 OB ,则 AO ⊥OB ,因为 ∠BAD =π3,故OB =AB ⋅sin∠OAB =2sinπ6=1. 又因为 BM =12,且 ∠OBM =π3,在 △OBM 中OM 2=OB 2+BM 2−2OB ⋅BM ⋅cos∠OBM=12+(12)2−2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故 OM ⊥BM .又 PO ⊥ 底面 ABCD ,所以 PO ⊥BC ,从而 BC 与平面 POM 内两条相交直线 OM ,PO 都垂直, 所以 BC ⊥ 平面 POM .(2)由(1)可知,OA =AB ⋅cos∠OAB =2⋅cosπ6=√3, 设 PO =a ,由 PO ⊥ 底面 ABCD 知,△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2+3,由 △POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34,连接 AM ,在 △ABM 中,AM 2=AB 2+BM 2−2AB ⋅BM ⋅cos∠ABM=22+(12)2−2⋅2⋅12⋅cos 2π3=214,由已知MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=−√32(舍去),即PO=√32,此时S ABMO=S△AOB+S△OMB=12⋅AO⋅OB+12⋅BM⋅OM=12⋅√3⋅1+12⋅12⋅√32=5√3 8,所以四棱锥P−ABMO的体积V P−ABMO=13⋅S ABMO⋅PO=13⋅5√38⋅√32=5 16.91. (1)在△ABD中,因为AB=2,AD=4,∠DAB=60∘,所以BD=√AB2+AD2−2AB⋅ADcos∠DAB=2√3.所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD.平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.结合DE⊂平面EBD,可得AB⊥DE.(2)由(1)知AB⊥BD,因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=2√3,DE=DC=AB=2,所以S△DBE=12DB⋅DE=2√3.又AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△ABE=12AB⋅BE=4.又DE⊥BD,平面EBD⊥平面ABD,故得到ED⊥平面ABD.而AD⊂平面ABD,所以ED⊥AD,因此S△ADE=12AD⋅DE=4.综上,三棱锥E−ABD的侧面积S=8+2√3.92. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13S⋅ℎ=13×π×(162)2×4=2563π(m3)如果按方案二,仓库的高变成8m,则仓库的体积V2=13S⋅ℎ=13×π×(122)2×8=2883π(m3)(2)如果按方案一,仓库的底面直径变成16m,半径为8m.圆锥的母线长为l1=√82+42=4√5(m),则仓库的侧面积S1=π×8×4√5=32√5π(m2);如果按方案二,仓库的高变成8m,圆锥的母线长为l2=√82+62=10(m),则仓库的侧面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1.所以方案二比方案一更加经济.93. (1)取AB的中点M,连接A1M.因为AF=14AB,所以F为AM的中点.。

新人教版高中数学必修第二册 第8章 8.3 简单几何体的表面积和体积 第1课时 柱、锥、台的表面积和体积

新人教版高中数学必修第二册  第8章  8.3 简单几何体的表面积和体积  第1课时 柱、锥、台的表面积和体积

8.3简单几何体的表面积与体积第1课时柱、锥、台的表面积和体积考点学习目标核心素养柱、锥、台的表面积了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积直观想象、数学运算锥体、台体的表面积的求法能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系直观想象、数学运算问题导学预习教材P114-P117的内容,思考以下问题:1.棱柱、棱锥、棱台的表面积如何计算?2.圆柱、圆锥、圆台的侧面展开图分别是什么?3.圆柱、圆锥、圆台的侧面积公式是什么?4.柱体、锥体、台体的体积公式分别是什么?5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台=13h(S′+SS′+S),其中S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积名称图形公式圆柱底面积:S底=πr2侧面积:S侧=2πrl表面积:S=2πrl+2πr2体积:V=πr2l圆锥底面积:S 底=πr 2 侧面积:S 侧=πrl表面积:S =πrl +πr 2 体积:V =13πr 2h圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2 侧面积:S 侧=πl (r +r ′)表面积:S =π(r ′2+r 2+r ′l +rl ) 体积:V =13πh (r ′2+r ′r +r 2)1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系 V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh .判断(正确的打“√”,错误的打“×”)(1)几何体的表面积就是其侧面面积与底面面积的和.( ) (2)几何体的侧面积是指各个侧面的面积之和.( ) (3)等底面面积且等高的两个同类几何体的体积相同.( ) (4)在三棱锥P -ABC 中,V P ­ABC =V A ­PBC =V B ­P AC =V C ­P AB .( ) 答案:(1)√ (2)√ (3)√ (4)√ 棱长都是 1 的三棱锥的表面积为( )A.3 B .23 C .33 D .43解析:选A.S表=4S正△=4×34= 3.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为() A.27 cm3B.60 cm3C.64 cm3D.125 cm3解析:选B.长方体即为四棱柱,其体积为底面积×高,即为3×4×5=60(cm3).圆台的上、下底面半径分别为3 和4,母线长为6,则其表面积等于() A.72 B.42πC.67πD.72π解析:选C.S表=π(32+42+3×6+4×6)=67π.柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的()A.2倍B.3 倍C.2 倍D.5 倍(2)已知正方体的8 个顶点中,有4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6(3)已知某圆台的一个底面周长是另一个底面周长的3 倍,母线长为3 ,圆台的侧面积为84π,则该圆台较小底面的半径为()A.7B.6C.5 D.3【解析】(1)设圆锥的底面半径为r,母线长为l,则由题意可知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2,可知选C.(2)棱锥B′­ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为1,则B′C=2,S△B′AC=32.三棱锥的表面积S锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为 r ,则另一底面的半径为 3r .由 S 侧=3π(r +3r )=84π,解得 r =7.【答案】 (1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.已知正四棱台(正四棱锥被平行于底面的平面所截,截面与底面间的部分)上底面边长为4,侧棱和下底面边长都是8,求它的侧面面积.解:法一:设正四棱台为ABCDA 1B 1C 1D 1,如图①.设B 1F 为斜高.在Rt △B 1FB 中,BF =12×(8-4)=2,B 1B =8,所以B 1F =82-22=215,所以S 正棱台侧=4×12×(4+8)×215=4815.①法二:设正四棱台为ABCDA 1B 1C 1D 1,延长正四棱台的侧棱交于点P ,作面PBC 上的斜高PE ,交B 1C 1于E 1,如图②.设PB 1=x ,则x x +8=48,解得x =8.所以PB 1=B 1B =8, 所以E 1为PE 的中点,又PE 1=PB 21-B 1E 21=82-22=215, ②所以PE =2PE 1=415.所以S 正棱台侧=S 大正棱锥侧-S 小正棱锥侧 =4×12×8×PE -4×12×4×PE 1=4×12×8×415-4×12×4×215=4815.柱、锥、台的体积如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,过顶点B ,D ,A 1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A -A 1BD 的体积及高. 【解】 (1)V 三棱锥A 1­ABD =13S △ABD ·A 1A=13×12·AB ·AD ·A 1A =16a 3. 故剩余部分的体积V =V 正方体-V 三棱锥A 1­ABD =a 3-16a 3=56a 3.(2)V 三棱锥A -A 1BD =V 三棱锥A 1­ABD =16a 3.设三棱锥A -A 1BD 的高为h , 则V 三棱锥A -A 1BD =13·S △A 1BD ·h=13×12×32(2a )2h =36a 2h , 故36a 2h =16a 3,解得h =33a .求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒] 求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.1.圆锥的轴截面是等腰直角三角形,侧面积是 162π,则圆锥的体积是( ) A.64π3B.128π3C .64πD .1282π解析:选 A .作圆锥的轴截面,如图所示.由题设,在 △P AB 中,∠APB =90°,P A =PB .设圆锥的高为 h ,底面半径为 r , 则 h =r ,PB =2r . 由 S 侧=π·r ·PB =162π,得2πr 2=162π.所以 r =4.则 h =4. 故圆锥的体积 V 圆锥=13πr 2h =643π.2.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A.288πcm 3 B.192π cm 3 C.288π cm 3或192πcm 3 D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝ ⎛⎭⎪⎫122π2×8=288π(cm 3),当圆柱的高为 12cm 时,V =π×⎝ ⎛⎭⎪⎫82π2×12=192π(cm 3).3.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD -A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V 四棱锥O -EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8组合体的表面积和体积如图在底面半径为 2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】 设圆锥的底面半径为 R ,圆柱的底面半径为 r ,表面积为 S . 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以 r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比.解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π.所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值. 解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EBOC ,即23-h 23=r 2, 所以 h =23-3r ,S圆柱侧=2πrh=2πr(23-3r)=-23πr2+43πr,所以当r=1,h=3时,圆柱的侧面积最大,其最大值为23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.1.如图,在多面体ABCDEF中,已知面ABCD是边长为4 的正方形,EF∥AB,EF =2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.解:如图,连接EB,EC.四棱锥E-ABCD的体积V四棱锥E-ABCD=13×42×3=16.因为AB=2EF,EF∥AB,所以S△EAB=2S△BEF.所以V三棱锥F-EBC=V三棱锥C-EFB=12V三棱锥C-ABE=12V三棱锥E-ABC =12×12V四棱锥E-ABCD=4.所以多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.2.如图,一个底面半径为2 的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2 和3,求该几何体的体积.解:用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( ) A .22 B .20 C .10D .11解析:选A.所求长方体的表面积S =2×(1×2)+2×(1×3)+2×(2×3)=22. 2.正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( ) A.274 B.94 C.2734D.934解析:选D.由题意可得底面正三角形的边长为3,所以V =13×34×32×3=934.故选D.3.已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是________.解析:圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x ,5x ,则中截面半径为4x ,设上台体的母线长为l ,则下台体的母线长也为l ,上台体侧面积S 1=π(3x +4x )l =7πxl ,下台体侧面积S 2=π(4x +5x )l =9πxl ,所以S 1∶S 2=7∶9.答案:7∶9 4.如图,三棱台ABC A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1ABC ,三棱锥BA 1B 1C ,三棱锥CA 1B 1C 1的体积之比.解:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . 所以VA 1ABC =13S △ABC ·h =13Sh ,VCA 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh ,所以VBA 1B 1C =V 台-VA 1ABC -VCA 1B 1C 1=73Sh -Sh 3-4Sh 3=23Sh , 所以体积比为1∶2∶4.[A 基础达标]1.若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C.设圆锥底面半径为r ,则高h =2r ,所以其母线长l =5r .所以S 侧=πrl =5πr 2,S 底=πr 2,S 底∶S 侧=1∶ 5.2.如图,ABC ­A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12 C.23D.34解析:选C.因为V C ­A ′B ′C ′ =13V ABC ­A ′B ′C ′=13, 所以V C ­AA ′B ′B =1-13=23.3.(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 解析:选B.设所截正方形的边长为 a ,则 a 2=8,即 a =2 2.所以圆柱的母线长为 22,底面圆半径 r =2,所以圆柱的表面积为 22π×22+π(2)2×2=8π+4π=12π.4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,则四棱锥P -ABCD 的体积为( )A.16 B.13 C.12D.23解析:选B.因为正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,所以点P 到平面ABCD 的距离d =AA 1=1, S 正方形ABCD =1×1=1, 所以四棱锥P -ABCD 的体积为:V P ­ABCD =13×AA 1×S 正方形ABCD =13×1×1=13.故选B.5.(2019·临川检测)一个封闭的正三棱柱容器,高为 3,内装水若干(如图甲,底面处于水平状态),将容器放倒(如图乙,一个侧面处于水平状态),这时水面与各棱交点 E ,F ,F 1,E 1 分别为所在棱的中点,则图甲中水面的高度为( )A.32B.74 C .2D.94解析:选 D .因为 E ,F ,F 1,E 1 分别为所在棱的中点,所以棱柱 EFCB -E 1F 1C 1B 1 的体积 V =S梯形EFCB ×3=34S △ABC ×3=94S △ABC .设甲中水面的高度为 h ,则 S △ABC ×h =94S △ABC ,解得h =94,故选 D.6.已知圆柱 OO ′的母线 l =4 cm ,表面积为 42π cm 2,则圆柱 OO ′的底面半径 r =______cm.解析:圆柱 OO ′的侧面积为 2πrl =8πr (cm 2),两底面面积为 2×πr 2=2πr 2(cm 2), 所以 2πr 2+8πr =42π, 解得 r =3 或 r =-7(舍去), 所以圆柱的底面半径为 3 cm. 答案:37.表面积为 3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,由题意可知,πrl +πr 2=3π,且 πl =2πr .解得 r =1,即直径为 2.答案:28.圆柱内有一个内接长方体 ABCD -A 1B 1C 1D 1,长方体的体对角线长是 10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是 100π cm 2,则圆柱的底面半径为______cm ,高为______cm.解析:设圆柱底面半径为 r cm ,高为 h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎪⎨⎪⎧(2r )2+h 2= (102)2,2πrh =100π,所以⎩⎪⎨⎪⎧r =5,h =10.即圆柱的底面半径为 5 cm ,高为 10 cm. 答案:5 109.如图,已知正三棱锥 S -ABC 的侧面积是底面积的 2 倍,正三棱锥的高 SO =3,求此正三棱锥的表面积.解:如图,设正三棱锥的底面边长为 a ,斜高为 h ′,过点 O 作 OE ⊥AB ,与 AB 交于点 E ,连接 SE ,则 SE ⊥AB ,SE =h ′.因为 S 侧=2S 底, 所以 3×12·a ·h ′=34a 2×2.所以 a =3h ′. 因为 SO ⊥OE , 所以 SO 2+OE 2=SE 2. 所以32+⎝⎛⎭⎫36×3h ′2=h ′2. 所以 h ′=23,所以 a =3h ′=6. 所以 S 底=34a 2=34×62=93, S 侧=2S 底=18 3.所以 S 表=S 侧+S 底=183+93=27 3.10.若 E ,F 是三棱柱 ABC -A 1B 1C 1 侧棱 BB 1和 CC 1 上的点,且 B 1E =CF ,三棱柱的体积为 m ,求四棱锥 A -BEFC 的体积.解:如图所示, 连接 AB 1,AC 1. 因为 B 1E =CF ,所以 梯形 BEFC 的面积等于梯形 B 1EFC 1 的面积. 又四棱锥 A -BEFC 的高与四棱锥 A -B 1EFC 1 的高相等, 所以 V A ­BEFC =VA ­B 1EFC 1 =12VA ­BB 1C 1C . 又 VA ­A 1B 1C 1=13S △A 1B 1C 1·h ,VABC ­A 1B 1C 1=S △A 1B 1C 1·h =m ,所以 VA ­A 1B 1C 1=m3,所以 VA ­BB 1C 1C =VABC ­A 1B 1C 1-VA ­A 1B 1C 1=23m .所以 V A ­BEFC =12×23m =m3,即四棱锥A-BEFC的体积是m3.[B能力提升]11.(2018·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4C.6 D.8解析:选C.由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V=12×(1+2)×2×2=6.故选C.12.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-113.用一张正方形的纸把一个棱长为 1 的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.解析:如图①为棱长为 1 的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为 22,其面积为 8.答案:814.如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求证:三棱柱ABC -A ′B ′C ′的体积V =12Sa .证明:法一:如图所示,连接A ′B ,A ′C ,这样就把三棱柱分割成了两个棱锥.显然三棱锥A ′­ABC 的体积是13V ,而四棱锥A ′­BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,所以三棱柱ABC -A ′B ′C ′的体积V =12Sa .法二:如图所示,将三棱柱ABC -A ′B ′C ′补成一个四棱柱ACBD -A ′C ′B ′D ′,其中AC ∥BD ,AD ∥BC ,即ACBD 为一个平行四边形,显然三棱柱ABD ­A ′B ′D ′的体积与原三棱柱ABC -A ′B ′C ′的体积相等.因为四棱柱ACBD -A ′C ′B ′D ′以BCC ′B ′为底面,高为点A ′到面BCC ′B ′的距离,所以补形后的四棱柱的体积为Sa ,于是三棱柱ABC -A ′B ′C ′的体积V =12Sa .[C 拓展探究]15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?解:(1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝⎛⎭⎫1622×4=2563π(m 3);方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝⎛⎭⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45) =(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m),则仓库的表面积S 2=π×6×(6+10) =96π(m 2).(3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。

高中数学必修二 8 简单几何体的表面积与体积(精练)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 旋转体的体积】1.(2021·吉林·延边二中高一期中)阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径.若该球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π【答案】C 【解析】因为该球的体积为36π,设球的半径为R ,则34363R ππ=,解得3R =。

所以圆柱的体积为:23654V ππ=⨯⨯=,故选:C.2.(2021·河北·保定市第二十八中学高一月考)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度)如图2所示,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,若122V V =,则半球的半径与圆柱的高之比为( )A .4:3B .3:4C .1:2D .5:3【答案】B 【解析】设圆柱的高为h ,半径为r ,则圆柱的体积为21=V r h π.而半球的体积为332412==323V r r ππ⨯. 因为122V V =,所以324=3r r h ππ,所以3=4r h . 故选:B3(2021·全国·高一课时练习)如图所示,半径为R 的半圆内(其中∠BAC =30°)的阴影部分以直径AB 所在直线为轴,旋转一周得到一个几何体,则该几何体的表面积为_____,体积为_____.2R 356R π 【解析】如图所示,过C 作CO 1⊥AB 于O 1,在半圆中可得∠BCA =90°,又∠BAC =30°,AB =2R ,∴AC ,BC =R ,CO 1,∴1AO S 圆锥侧=π=32πR 2,1BO S 圆锥侧=π×R R 2,∴S 几何体表=S 球+11AO BO S S +=圆锥侧圆锥侧R 2,πR 2. 又V 球=43πR 3,∴V 几何体=V 球-(11AO BO V V +圆锥圆锥)=43πR 3-13×AB ×π×C 2143O =πR 3-22536R π⎫⨯=⎪⎪⎝⎭πR 3.2R ;356R π4.(2021·全国·高一课时练习)若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是__________.【解析】设圆锥的底面半径为r ,则22ππ=r ,所以1r =,圆锥的高h = 所以圆锥的体积213V r h π=5.(2021·全国·高一课时练习)若一个圆锥的底面直径和高都与一个球的直径相等,那么这个圆锥的体积与球的体积之比为________. 【答案】12【解析】解析:设球体的半径为R 2312=2=33R V R R ππ⋅圆锥,343V R π球=,33213==423R V R V ππ圆锥球. 故答案为:12【题组二 旋转体的表面积】 1.(2021·全国·高一课时练习)如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=AD=2,则四边形ABCD 绕AD 所在直线旋转一周所成几何体的表面积为( )A .(60+πB .(60+)π C .(56+πD .(56+)π【答案】A 【解析】四边形ABCD 绕AD 所在直线旋转一周所成的几何体为一个圆台挖去一个圆锥,如图所示:因为25r AB ==,所以圆台下底面面积125S π=,又因为CD =,135ACD ∠=,所以12ED r ==,25l ==,所以圆台的侧面积()()212225535S r r l πππ=+=+⨯=.圆锥的侧面积3111122222S r l ππ=⨯⨯=⨯⨯⨯.所以几何体的表面积为(123253560S S S S πππ=++=++=+.故选:A2.(2021·山东邹城·高一期中)如图是底面半径为3的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S 滚动,当这个圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则( )A .圆锥的母线长为18B .圆锥的表面积为27πC .圆锥的侧面展开图扇形圆心角为60°D .圆锥的体积为【答案】D【解析】设圆锥的母线长为l ,以S 为圆心,SA 为半径的圆的面积为2S l π=,又圆锥的侧面积3S rl l ππ==圆锥侧,因为圆锥在平面内转到原位置时,圆锥本身滚动了3周,所以233l l ππ=⨯,解得9l =,所以圆锥的母线长为9,故选项A 错误;圆锥的表面积239336S S S πππ=+=⨯⨯+⨯=圆锥侧底,故选项B 错误;因为圆锥的底面周长为236ππ⨯=,设圆锥的侧面展开图扇形圆心角为α,则69πα=⋅,解得23πα=, 所以圆锥的侧面展开图扇形圆心角为120°,故选项C 错误;圆锥的高h =所以圆锥的体积为2133V π=⨯⨯⨯=,故选项D 正确. 故选:D .3.(2021·重庆·垫江第五中学校高一月考)如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为则此圆锥的表面积为__________【答案】5π【解析】将圆锥侧面沿母线AB 剪开,其侧面展开图为扇形,如图,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,最短距离即为线段BM 长,则有BM = 而M 是线段AB '中点,又母线长为4,于是得22220AM AB BM +==,即2BAB π'∠=,设圆锥底面圆半径为r ,从而有:242r ππ=⋅,解得1r =,所以圆锥的表面积为25S r r AB πππ=+⋅=.故答案为:5π4(2021·全国·高一课时练习)已知一块正方形薄铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),若用这块扇形铁片围成一个无底的圆锥,则这个无底的圆锥的表面积为多少平方厘米?【答案】()216cm π 【解析】由已知,可得这个无底的圆锥的母线长为8cm ,设圆锥的底面半径为cm r ,则282r ππ=⨯,所以2cm r =,所以圆锥的表面积即侧面积()22816cm S rl πππ==⨯=侧. 【题组三 多面体的体积】1.(2021·上海外国语大学闵行外国语中学高二期中)在三棱锥P ABC -中,已知5PA BC PB AC PC AB ======,则该三棱锥的体积为___________.【答案】8【解析】如图,设长方体的三条棱长为,,a b c ,由题得22220a b +==;2213a c +=;222525b c +==, 解之得2224,16,9a b c ===.所以2,4,3a b c ===. 所以该三棱锥的体积为112344243=832⨯⨯-⨯⨯⨯⨯⨯.故答案为:82(2021·全国·高一课时练习)已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V =________cm 3.【答案】【解析】依题意,原几何体是由一个正方体上面接一个正四棱锥组成,其中正方体的棱长为1cm ,正方体的体积为1cm 3,正四棱锥的底面边长和侧棱长均为1cm ,体积为2113⨯=3),所以该空间几何体的体积为(1V =cm 3.故答案为:3.(2021·全国·高一课时练习)球O 的球心为点O ,球O 3的圆锥,三棱锥V ABC -内接于球O ,已知,OA OB AC BC ⊥⊥,则三棱锥V ABC -的体积的最大值为_______.【解析】=O 的半径为r=,解得1r =, ,1OA OB OA OB ⊥==,AB ∴=AC BC ⊥,∴C 在以AB 为直径的圆上,∴平面OAB ⊥平面ABC ,∴O 到平面ABC 2,故V 到平面ABC 1+,又C 到AB∴三棱锥V ABC -的体积的最大值为,111)32⨯4.(2021·全国·高一课时练习)如图所示,△ABC 和△A ′B ′C ′的对应顶点的连线AA ′,BB ′,CC ′交于同一点O ,且12AO BO CO A O B O C O =''==',则O ABC O A B C V V --'''=___________. 【答案】18【解析】如题干图,12AO BO CO A O B O C O =''==', 可证AB //A ′B ′,AC //A ′C ′,BC //B ′C ′.所以平面//ABC 平面A B C '''三棱锥O ABC -和三棱锥O A B C '''-高之比也为12,由等角定理得∠CAB =∠C ′A ′B ′,∠ACB =∠A ′C ′B ′,所以△ABC ∽△A ′B ′C ′, 由12AO BO CO A O B O C O =''==', 可得211()24ABC A B C S S '''==, 所以O ABC O A B C V V --'''==111428⨯=. 故答案为:185.(2021·山东·日照神州天立高级中学有限责任公司高一月考)如图是边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点,现在沿三角形GFH 所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体的______.【答案】148【解析】1111113222248A FGH V -=⨯⨯⨯⨯=,所以148A FGH V V -=正方体, 故答案为:148. 6.(2021·黑龙江·哈师大附中高一期中)如图,在四面体ABCD 中作截面PQR ,其中14AR AD =,13AP AC =,12AQ AB =,则:A PQR D BCPQ V V --=______.【答案】1:20【解析】作RG ⊥平面ABC ,作DH ⊥平面ABC ,则GH 共线,由14AR AD =,则14RG DH =, 由12AQ AB =,13AP AC =,则16APQ ABC S S =, 所以15APQBCPQ S S =, 所以11113:154203APQ R APQA PQR D BCPQ D BCPQ BCPQ S RG V V V V S DH ----⋅===⨯=⋅,故答案为:1:20【题组四 多面体的表面积】1.(2021·上海市控江中学高二期中)若正四棱台的上底边长为2,下底边长为8,高为4,则它的侧面积为___________.【答案】100【解析】因正四棱台的上底边长为2,下底边长为8,高为4,则该正四棱台上底、下底面边心距分别为1,4,而正四棱台的高、斜高、两底面对应边心距构成直角梯形,于是得斜高5h '=, 因此,侧面积28451002S +=⨯⨯=, 所以所求的侧面积为100.故答案为:1002(2021·上海外国语大学闵行外国语中学高二期中)已知正三棱锥O ABC -的底面边长为4,高为2,则此三棱锥的侧面积为___________.【答案】【解析】由题意作出图形如图:因为三棱锥P ABC -是正三棱锥,顶点在底面上的射影D 是底面的中心,在三角PDF 中, 2PD =,DF =,PF ∴==则这个棱锥的侧面积为1342⨯⨯=故答案为:3.(2021·全国·高一课时练习)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为________.【答案】80+【解析】如图,在四棱台1111ABCD A B C D -中,过点1B 作1B F BC ⊥,垂足为点F ,在1Rt B FB 中1(84)22BF =⨯-=,18B B =,故1B F =所以111(84)2BB C C S =⨯+⨯=梯形故四棱台的侧面积4S =⨯=侧,所以448880S =⨯+⨯=+表故答案为:80+4.(2021·全国·高一课时练习)已知正四棱台两底面边长分别为4cm,8cm ,侧棱长为8cm ,则它的侧面积为_______2cm .【答案】【解析】作出正四棱台的一个侧面如图,设,E F 分别为,AD BC 的中点,过D 作DG BC ⊥于点G .由题知4cm,8cm,8cm AD BC CD ===,得2cm,4cm DE FC ==,解得2cm GC =,在Rt DGC △中,DG =,即斜高为,所以所求侧面积为)21(1632)cm 2⨯+⨯=.答案:5.(2021·全国·高一课时练习)若五棱台11111ABCDE A B C D E -的表面积是30,侧面积是25,则两底面面积的和为______.【答案】5【解析】S S S =+表侧两底,则30255S S S =-=-=两底表侧.故答案为:5.6(2021·全国·高一课时练习)如图,已知正三棱锥S ABC -的侧面积是底面积的2倍,正三棱锥的高3SO =,则此正三棱锥的表面积为___________.【答案】【解析】如图,设正三棱锥的底面边长为a ,斜高为h ',侧面积、底面积分别为12,S S ,过点O 作OE AB ⊥,与AB 交于点E ,连接SE ,则,SE AB SE h '⊥=.由21 2S S =,即21322a h '⋅⋅=⨯,可得a '.由SO OE ⊥,则222SO OE SE +=,即2223h ⎫''+=⎪⎪⎝⎭.h '∴=6a =.222 6S ∴=== 1 S =∴表面积 1 2 S S S =+==故答案为:【题组五 有关球的计算】1.(2021·新疆·新和县实验中学高一期末)若三个球的表面积之比是1:2:3,则它们的体积之比是( )A .1:B .1:C .2:4:9D .【答案】A【解析】设三个球的半径分别为1R ,2R ,3R ,因为三个球的表面积之比为1:2:3,所以2221234π:4π:4π1:2:3R R R =,所以123::R R R =所以它们的体积之比为3333331231234π4π4π::::1:333R R R R R R == 故选:A.2.(2021·山东邹城·高一期中)已知长方体1111ABCD A B C D -的长、宽、高分别为2、1、1,且其顶点都在球面上,则该球的体积是( )AB .6πC .36πD .【答案】A【解析】长方体1111ABCD A B C D -=长方体1111ABCD A B C D -343π⨯=⎝⎭. 故选:A .3.(2021·全国·高一课时练习)两个半径为1的实心铁球,熔化成一个大球,这个大球的半径是________.【解析】设大球的半径为R ,则有3334421,233R R ππ=⨯⨯=,所以R =4.(2021·全国·高一课时练习)一个底面直径是32cm 的圆柱形水桶装入一些水,将一个球放入桶内完全淹没,水面上升了9cm 且无溢出,则这个球的表面积是________.【答案】2576cm π【解析】由题意,上升的水的体积即为球的体积,若球的半径为R ,即23324923R ππ⎛⎫⨯= ⎪⎝⎭,解得12R =, 故这个球的表面积224412576S R πππ=⨯=⨯=.故答案为:2576cm π5.(2021·全国·高一课时练习)如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为3,则该半球的表面积为________.【答案】6π【解析】如图,连接AC ,BD 交点为O ,设球的半径为r ,由题意知:SO AO OC OD OB r =====.则AB =,四棱锥的体积为21)3V r =⨯⨯=r = ∴该半球的表面积为22214362S r r r ππππ=⨯+==.故答案为:6π6.(2021·全国·高一课时练习)在四棱锥S ABCD -中,底面ABCD 是边长为为【答案】48π【解析】因为四棱锥S ABCD -中,底面ABCD 是边长为 所以该四棱锥是正四棱锥,取正方形ABCD 的中心1O ,连接1SO ,AC ,则点1O 为AC 的中点,如图,则球心O 在1SO 上,因为正方形ABCD 边长为6AC ==,所以13AO =,因为SA =,所以1SO ==设四棱锥S ABCD -外接球的半径为r ,则11OO SO SO r =-,在1Rt AOO 中,22211AO AO OO =+,即)2223r r =+,解得:r =所以该四棱锥外接球的表面积为(224π4π48πr =⨯=.【题组六 综合运用】1(2021·全国·高一课时练习)如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个高为x 的圆柱.(1)求出此圆锥的侧面积;(2)用x 表示此圆柱的侧面积表达式;(3)当此圆柱的侧面积最大时,求此圆柱的体积.【答案】(1);(2)224(02)S x x x ππ=-+<<圆柱侧;(3)π.【解析】(1)圆锥的底面半径R 与高H 均为2,则圆锥的母线长为L =2S RL ππ==⨯⨯=圆锥侧.(2)设圆柱的半径为r , 则222r x -=,解得2r x =-,且02x <<; 所以圆柱的侧面积为222(2)24(02)S rx x x x x x ππππ==-=-+<<圆柱侧.(3)22242(1)1S x x x πππ⎡⎤=-+=--+⎣⎦圆柱侧,02x <<;当1x =时,S 圆柱侧取得最大值为2π,此时1r =,圆柱的体积为2211V r x πππ==⋅⋅=圆柱.2.(2021·贵州·高一月考)在长方体1111ABCD A B C D -中,AB =6,BC =8,16AA =.(1)求三棱锥1D ABC -的体积;(2)在三棱柱111ABC A B C -内放一个体积为V 的球,求V 的最大值.【答案】(1)48;(2)323π. 【解析】(1)由长方体的几何特征知,1D 到平面ABC 的距离为116DD AA ==, 又1242ABC S AB BC =⋅=,所以11112464833D ABC ABC V S DD -=⋅=⨯⨯=; (2)设球的半径为R ,若该球与三棱柱111ABC A B C -的三个侧面均相切,则R 为ABC 的内切圆的半径,则()1242R AB AC BC ++=, 又=6+10+8=24AB AC BC ++,此时2R =;若该球与三棱柱111ABC A B C -的上下底面均相切,此时126R AA ==,3R =;所以在三棱柱111ABC A B C -内放一个体积为V 的球,该球半径最大为2,3max 4=2=3323V ππ⨯.3.(2021·浙江路桥·高一月考)如图所示,在平面五边形ABCDE 中,2AB AE CD ===,1BC =,DE =90ABC ∠=︒,90AED ∠=︒,分别沿AC ,AD 将ABC 与ADE 折起使得B ,E 重合于点P .试求:(1)三棱锥A PCD -的体积;(2)三棱锥A PCD -的外接球的表面积.【答案】(2)8π.【解析】(1)PD =1PC =,2CD =,则222 PC PD CD PC PD +=⇒⊥,又AP PD ⊥,AP PC ⊥,PC PD D ⋂=,AP ⊥平面PCD .所以111111233232A PCD PCD V S AP PC PD PA -=⋅=⨯⋅⋅⋅=⨯⨯=△ (2)将三棱锥补成长方体知三棱锥A PCD -的外接球的直径即为长方体的体对角线长,即2R R ==,所以球的表面积为24π8πR =. 4.(2021·河北定州·高一期中)定州市某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160000cm 3(1)求正方体石块的棱长;(2)为争创全国文明城市,现将表面脏污,棱角轻微磨损的多面形石凳(图(1))打磨成一个球形的石凳,并用一种环保底漆全面粉刷.已知这种底漆一瓶的净含量为235克,可粉刷21.5m 左右,求此球形石凳最大时,一瓶环保底漆大约可以粉刷几个球形石凳?(精确到1)(π按3.14算)【答案】(1)40cm ;(2)3个.【解析】(1)设正方体石块的棱长为a , 则每个截去的四面体的体积为3113222248a a a a ⨯⨯⨯⨯=. 由题意可得331600008483a a ⨯+=, 解得40a =.故正方体石块的棱长为40cm ;(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大.此时正方体的棱长正好是球的直径,∴球形石凳的表面积224041600cm 2S ππ⎛⎫=⨯= ⎪⎝⎭. 41.51031600π⨯≈, 所以一瓶环保底漆大约可以粉刷3个球形石凳.5.(2021·湖北孝感·高一期中)如下图1,一个正三棱柱形容器中盛有水,底面三角形ABC 的边长为2cm ,侧棱14cm AA =,若侧面11AA B B 水平放置时(如下图2),水面恰好过AC ,BC ,11A C ,11B C 的中点.(1)求容器中水的体积;(2)当容器底面ABC 水平放置时(如图1),求容器内水面的高度.【答案】(1))3cm ;(2)3cm .【解析】(1)在图2中,水所占部分为四棱柱.四棱柱底面积为)222112sin 601sin 6022S cm =⨯⨯︒-⨯⨯︒=,又高为4cm所以水的体积为)34V cm ==,(2)设图1中水高度为cm h ,则212sin 602V h =⨯⨯︒⨯=3h =. 所以当容器底面ABC 水平放置时,容器内水面的高度为3cm .6.(2021·福建宁德·高一期中)如图所示是在圆锥内部挖去一正四棱柱所形成的几何体,该正四棱柱上底面的四顶点在圆锥侧面上,下底面落在圆锥底面内,已知圆锥侧面积为15π,底面半径为3r =.(Ⅰ)若正四棱柱的底面边长为a =(Ⅱ)求该几何体内正四棱柱侧面积的最大值.【答案】(Ⅰ)16123π-;(Ⅱ)【解析】设圆锥母线长为l ,高为h ,正四棱柱的高为1h(Ⅰ)由S rl π=圆锥侧,有315l ππ=,故5l =,由222h r l +=,故4h =,所以圆锥体积为2211341233V r h πππ==⨯⨯=圆锥由a =2, 由图可得11h r h r -=,所以11318433r h h r --==⨯=, 故正四棱柱的体积为21816233V a h ==⨯=正四棱柱 所以该几何体的体积为16123V V π-=-圆锥正四棱柱 (Ⅱ)由图可得12r h h r =,即13243h =,即1312h +=由13h +≥,当且仅当136h ==时左式等号成立,有112h a ⇒≤12h =,a =故正四棱柱侧面积14S h a =≤侧12h =,a =所以该几何体内正四棱柱侧面积的最大值为7.(2021·福建福州·高一期中)如图所示的圆锥,顶点为O ,底面半径是5cm ,用一与底面平行的平面截得一圆台,圆台的上底半径为2.5cm ,这个平面与母线OA 交于点B ,线段AB 的长为10cm .(提示:本题的数据有长度单位)(1)求圆台的体积和圆台的侧面积;(2)把一根绳从线段AB 的中点M 开始到点A ,沿着侧面卷绕.使它成为最短时候,求这根绳的长度;【答案】cm 3,75πcm 2;(2)25cm. 【解析】(1)作出圆锥的轴截面和沿OA 剪开的侧面展开图,如下图由下底面半径是5cm ,上底半径为2.5cm ,AB 的长为10 cm ,可得:10OB =cm ,因此圆台的体积为:223115 2.5(33cm )V ππ=⨯⨯⨯=, 侧面积为:2520 2.510)75cm (S πππ=⨯⨯-⨯⨯=.(2)由圆锥的底面周长可得侧面展开图的弧长为10π, 所以,侧面展开图的圆心角为2π,在直角三角形MOA '中15OM =,可得25(cm)MA '=,所以最短时候,绳长为25cm。

高中数学必修二 8 3 简单几何体的表面积与体积(精练)(含答案)

高中数学必修二  8 3 简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 多面体表面积】1.(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.210=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.(2021·江苏南通市)一个正四棱锥的底面边长为2A .8B .12C .16D .20 【答案】B, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B3.(2020·全国高一课时练习)若正三棱台上、下底面边长分别是a 和2a ,棱台的高为6a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,12323OD a a =⨯⨯=,111326O D a a =⨯⨯=,116DE OD O D a ∴=-=.在1Rt DED 中,16D E a =,则1D D =a ==. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.(2020·河北沧州市一中高一月考)正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30o OE =,∴S 正棱锥侧=114443222ch =⨯⨯⨯=' 故选:A5.(2020·全国高一课时练习)已知正四棱锥的底面边长是2,则该正四棱锥的表面积为( )A B .12 C .8 D .【答案】B【解析】如图所示,在正四棱锥S ABCD -中,取BC 中点E ,连接SE ,则SBE △为直角三角形,所以2SE ==, 所以表面积1422422122SBC ABCD S S S =+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.(2021·内蒙古包头市·高三期末(文))已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)81 【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高EF故2142h =⨯2=2h +故侧面积为(214448812h ⨯⨯==+=+, 故选:D. 7.(2020·山西吕梁市)已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .2+B .2+C .2+D .2+【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S1111222222222⨯⨯+⨯⨯⨯⨯⨯=+故选:A8.(2020·黑龙江哈师大青冈实验中学)长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6 【答案】D【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.(2020·湖北省汉川市第一高级中学高一期末)一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(2+B .2(4+C .2(8+D .2(16+ 【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为= ∴该棱柱的表面积为2×22+4×2×+(2cm ),故选:C【题组二 多面体台体积】1.(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm【答案】【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得a =所以该正方体的体积为3V a ==3cm .故答案为:2.(2021·湖南长沙市)如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A .2∶3B .1∶3C .1∶4D .3∶4【答案】B 【解析】设长方体过同一顶点的棱长分别为,,a b c则长方体的体积为1V abc =,四棱锥1A ABCD -的体轵为213V abc =, 所以棱锥1A ABCD -的体积与长方体1AC 的体积的比值为13. 故选:B.3.(2020·浙江高一期末)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .324276mD .312138m【答案】A 【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =,所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.(2020·辽宁沈阳市·沈阳二中高一期末)《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h =丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003 【答案】B【解析】(()2211+=33V S S h a b h '=+⋅ ()2211305545615333=⨯=⨯⨯=. 故选:B 5.(2021·浙江高一期末)出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD -中,PO ⊥底面ABCD ,21PO =,34AB =,底面正方形的面积为234341156S m =⨯=,则正四棱锥P ABCD -的体积为311115621809233S PO m ⨯⨯=⨯⨯=, 故选:A6.(2020·济南市·山东师范大学附中高一月考)如图,在棱长为2的正方体1111ABCD A B C D -中,截去三棱锥1A ABD -,求(1)截去的三棱锥1A ABD -的表面积;(2)剩余的几何体1111A B C D DBC -的体积.【答案】(1)6+;(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD -中,1A BD 是边长为1A AD 、1A AB 、ABD △都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD -的表面积(111231322642A BD A AD A AB ABD S S S S S =+++=⨯+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD SAA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=. 【题组三 旋转体的表面积】1.(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .B .4πC .D .2π 【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则l =,由题可知)2122⨯=,∴2r l ==,侧面积为rl π=,故选:C.2.(2020·全国高一课时练习)某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π 【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r =则它的母线长510l r ====∴2r,8r '=. ∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.(2020·全国高一课时练习)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R ,设圆锥的母线长为L ,截得小圆锥的母线长为l ,∵圆台的上、下底面互相平行 ∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3故选B4.(2020·全国高一课时练习)圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7 【答案】D【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.(2020·江苏淮安市·淮阴中学高一期末)圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π 【答案】A【解析】圆柱底面半径为1,母线长为2,圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.(2021·广西河池市·高一期末)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.(2021·河南焦作市·高一期末)已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a ,圆柱的底面半径为r ()02r <<,则由224r a-=,可得42a r =-,所以圆柱的侧面积()22242484(1)4S r r r r r πππππ=⋅-=-+=--+,所以1r =时,该圆柱的侧面职取最大值4π. 故答案为:4π.8.(2020·北京高一期末)将底面直径为8,高为最大值为______.【答案】【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r ,4r =,解得2h r =;所以()2224S rh r r r ππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧;当2r时,S 圆柱侧取得最大值为故答案为:. 【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.(2021·陕西西安市·西安中学高一期末)若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________. 【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l , 由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1 故答案为:4:1【题组四 旋转体的体积】1.(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( ) A .4π3cm B .9π3cmC .12π3cmD .36π3cm【答案】C【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =.故圆锥的高4h =,圆锥体积为21123V r h ππ==3cm .故选:C.2.(2021·黑龙江双鸭山市·双鸭山一中)现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r , 则由题意得R=10,由1802Rl π=,得16l π=, 由2lr π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=∴该容器的容积为3128cm π.故答案为128π.3.(2020·湖南长沙市·高一期末)圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________.【答案】3【解析】如图所示,圆锥的母线与其底面所成角的大小为60︒,60SAO ∴∠=︒,由题意设圆锥的底面半径为r ,则母线长为2l r =,高为h =圆锥的侧面积为8π,2228S rl r r r ππππ∴==⋅⋅==侧面积,解得2r ,h =∴圆锥的体积为2211233V r h ππ=⋅⋅=⨯⨯=圆锥.故答案为:3.4.(2020·江苏南京市·高一期末)把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( ) A .23πB .πC .2πD .4π【答案】C【解析】正方体棱长为2,所以正方体底面正方形的内切圆半径为1,面积为21ππ⨯=,以此内切圆为底、高为2的圆柱是可切出的最大圆柱.且该圆柱的体积为22ππ⨯=. 故选:C5.(2020·山东日照市·高一期末)《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( ) A .61.73 B .61.71C .61.70D .61.69【答案】A【解析】设圆锥的底面半径为r ,高为h ,体积为V , 则230r π=,所以=5r , 故221135410033V r h π==⨯⨯⨯=(立方尺), 因此10061.731.62V =≈(斛). 故选:A.6.(2020·江苏无锡市·高一期末)某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( ) A .24π米3 B .48π米3C .96π米3D .192π米3【答案】B【解析】原仓库圆锥的底面半径为6米,高为4米,则容积为21614483V ππ=⨯⨯⨯=立方米; 仓库的高增加4米,底面直径不变,则仓库的容积为22618963V ππ=⨯⨯⨯=立方米. 所以新建仓库比原仓库能多储藏食盐的体积为2148V V π-=立方米. 故选:B. 【题组五 球】1.(2021·天津滨海新区)在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为外接球的体积为( )A . BC .D .【答案】B【解析】设正方体的棱长为a ,则111111B D AC AB AD B C D C ======,由于三棱锥11A B CD -的表面积为所以)121442AB CS S==⨯=a ==,所以正方体的外接球的体积为34632π⎛⎫= ⎪ ⎪⎝⎭故选:B .2.(2020·广东高二期末)在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16 B .18C .20D .22【答案】A【解析】根据长方体的结构特征可得,长方体外接球直径等于长方体体对角线的长, 因为长方体外接球的体积为92π,设外接球半径为R , 则33924R ππ=,解得32R =,因此2R =22AB BC ==,所以3=12BB =,因此长方体的表面积为:1122248416S AB BC AB BB BC BB =⨯⨯+⨯⨯+⨯⨯=++=. 故选:A.3.(2020的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3【答案】B的内切球,则正三棱柱的高为,,设底面正三角形的边长为a cm,13⨯=6a =cm ,∴正三棱柱的底面面积为16622⨯⨯⨯=2,故此正三棱柱的体积V =54=cm 3. 故选:B .4.(2021·全国高一)如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a π B .3aC 3aD .316a π【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12, 所以球的半径为2a ,所以球的体积为334326a a ππ⎛⎫= ⎪⎝⎭,故选:D.5.(2021·湖南邵阳市·高一期末)一个球的体积为36π,则这个球的表面积为( ) A .12π B .36πC .108πD .4π【答案】B【解析】设球的半径为R ,球的体积为3436=3R ππ,解得3R =,则球的表面积244936R πππ=⨯=, 故选:B6.(2020·浙江高一期末)已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为_____________. 【答案】163π【解析】设正方体棱长为a ,则3432323ππ⎛⎫⨯= ⎪ ⎪⎝⎭,解得a =∴内切球半径为23a r ==,表面积为21643S ππ=⨯=⎝⎭. 故答案为:163π.【题组六 组合体的体积表面积】1.(2020·全国高一课时练习)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】20 323-【解析】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个, 该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积. 两个四棱柱的体积和为222432V =⨯⨯⨯=. 交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,SB SB =边上的高为2,则SA =由该几何体前后,左右上下均对称,知四边形ABCD 的菱形. 设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中, 2.BH ==又AC SB ==所以 1222ABCDS=⨯⨯=因为BH SH =,所以112233ABCDS ABCD V S -=⨯=⨯=四棱柱所以求体积为3223233-⨯=-故答案为:20;323-2.(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.【答案】366π-【解析】因为222345+=,所以底面是直角三角形, 所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.3.(2021·江西九江市)在底面半径为2,高为面积之比为1:4,求圆柱的表面积.【答案】1)π【解析】由圆柱的底面积与圆锥的底面积之比为1:4,知:底面半径比为1:2,即圆柱底面半径1r =,若设圆柱的高为h 12=,即h = ∴由圆柱的表面积等于侧面积加上两底面的面积,即:2221)S rh r πππ=+=.。

高中数学必修二 19-20 第8章 8 3 1棱柱、棱锥、棱台的表面积和体积

高中数学必修二  19-20 第8章 8 3 1棱柱、棱锥、棱台的表面积和体积

8.3简单几何体的表面积与体积8.3.1棱柱、棱锥、棱台的表面积和体积学习目标核心素养1.通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法.(重点)2.会求棱柱、棱锥、棱台有关的组合体的表面积与体积.(难点、易错点)1.借助棱柱、棱锥、棱台的表面积、体积的计算,培养数学运算素养.2.通过对棱柱、棱锥、棱台的体积的探究,提升逻辑推理的素养.1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.2.棱柱、棱锥、棱台的体积棱柱的体积公式V=Sh(S为底面面积,h为高);棱锥的体积公式V=13Sh(S为底面面积,h为高);棱台的体积公式V=13h(S′+S′S+S).其中,台体的上、下底面面积分别为S′、S,高为h.思考:简单组合体分割成几个几何体,其表面积不变吗?其体积呢?[提示]表面积变大了,而体积不变.1.棱长为3的正方体的表面积为()A.27B.64C.54D.36C[根据表面积的定义,组成正方体的面共6个,且每个都是边长为3的正方形.从而,其表面积为6×32=54.]2.长方体同一顶点上的三条棱长分别为1,2,3,则长方体的体积与表面积分别为( )A .6,22B .3,22C .6,11D .3,11A [V =1×2×3=6,S =2(1×2)+2(1×3)+2(2×3)=22.] 3.棱长都是3的三棱锥的表面积S 为 .93 [因为三棱锥的四个面是全等的正三角形,所以S =4×34×32=9 3.]简单几何体的表面积【例1】 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.[解] 如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9,∴a 2+52=152,b 2+52=92, ∴a 2=200,b 2=56.∵该直四棱柱的底面是菱形, ∴AB 2=⎝ ⎛⎭⎪⎫AC 22+⎝ ⎛⎭⎪⎫BD 22=a 2+b 24=200+564=64,∴AB =8.∴直四棱柱的侧面积S =4×8×5=160.求几何体的表面积问题,通常将所给几何体分成基本几何体,再通过这些基本几何体的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.1.侧面都是等腰直角三角形的正三棱锥,底面边长为a 时,该三棱锥的表面积是( )A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2A [∵侧面都是等腰直角三角形,故侧棱长等于22a , ∴S 表=34a 2+3×12×⎝ ⎛⎭⎪⎫22a 2=3+34a 2.]简单几何体的体积【例2】 三棱台ABC -A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1-ABC ,三棱锥B -A 1B 1C ,三棱锥C -A 1B 1C 1的体积之比.[解] 设三棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . ∴VA 1-ABC =13S △ABC ·h =13Sh , VC -A 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V台=13h(S+4S+2S)=73Sh,∴VB-A1B1C=V台-VA1-ABC-VC-A1B1C1=73Sh-Sh3-4Sh3=23Sh,∴体积比为1∶2∶4.求几何体体积的常用方法2.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C 上的点,则三棱锥D1-EDF的体积为.16[利用三棱锥的体积公式直接求解.VD1-EDF=VF-DD1E=13S△D1DE·AB=13×12×1×1×1=16.]棱台与棱锥之间关系的综合问题是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.[解] 如图,E ,E 1分别是BC ,B 1C 1的中点,O ,O 1分别是下、上底面正方形的中心,则O 1O 为正四棱台的高,则O 1O =12.连接OE ,O 1E 1, 则OE =12AB =12×12=6, O 1E 1=12A 1B 1=3.过E 1作E 1H ⊥OE ,垂足为H , 则E 1H =O 1O =12,OH =O 1E 1=3, HE =OE -O 1E 1=6-3=3. 在Rt △E 1HE 中,E 1E 2=E 1H 2+HE 2=122+32=32×17, 所以E 1E =317.所以S 侧=4×12×(B 1C 1+BC )×E 1E =2×(6+12)×317=10817.在本例中,把棱台还原成棱锥,你能利用棱锥的有关知识求解吗?[解] 如图,正四棱台的侧棱延长交于一点P .取B 1C 1,BC 的中点E 1,E ,则EE 1的延长线必过P 点(以后可以证明).O 1,O 分别是正方形A 1B 1C 1D 1与正方形ABCD 的中心.由正棱锥的定义,CC 1的延长线过P 点,且有O 1E 1=12A 1B 1=3,OE =12AB =6, 则有PO 1PO =O 1E 1OE =36, 即PO 1PO 1+O 1O=12.所以PO 1=O 1O =12.在Rt △PO 1E 1中,PE 21=PO 21+O 1E 21=122+32=32×17,在Rt △POE 中,PE 2=PO 2+OE 2=242+62=62×17, 所以E 1E =PE -PE 1=617-317=317. 所以S 侧=4×12×(BC +B 1C 1)×E 1E =2×(12+6)×317=10817.解决有关正棱台的问题时,常用两种解题思路:一是把基本量转化到直角梯形中去解决;二是把正棱台还原成正棱锥,利用正棱锥的有关知识来解决.1.棱柱、棱锥、棱台的表面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段的长,是掌握它们的表面积有关问题的关键.2.计算棱柱、棱锥、棱台的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关截面,将空间问题转化为平面问题.3.在几何体的体积计算中,注意体会“分割思想”、“补体思想”及“等价转化思想”.1.判断正误(1)锥体的体积等于底面积与高之积.()(2)台体的体积,可转化为两个锥体体积之差.()(3)正方体的表面积为96,则正方体的体积为64.()[答案](1)×(2)√(3)√2.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D1-ACD的体积是()A.16 B.13C.12D.1A[三棱锥D1-ADC的体积V=13S△ADC×D1D=13×12×AD×DC×D1D=13×12=16.]3.已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形(如图),则三棱锥B1-ABC的体积为()A.14 B.12C.36 D.34[答案]D4.把一个棱长为a的正方体,切成27个全等的小正方体,则所有小正方体的表面积为.18a2[原正方体的棱长为a,切成的27个小正方体的棱长为13a,每个小正方体的表面积S1=19a 2×6=23a2,所以27个小正方体的表面积是23a2×27=18a2.]5.如图所示,三棱锥的顶点为P,P A,PB,PC为三条侧棱,且P A,PB,PC两两互相垂直,又P A=2,PB=3,PC=4,求三棱锥P-ABC的体积V.[解]三棱锥的体积V=13Sh,其中S为底面积,h为高,而三棱锥的任意一个面都可以作为底面,所以此题可把B看作顶点,△P AC作为底面求解.故V=13S△P AC·PB=13×12×2×4×3=4.。

人教版高中数学必修二第八章第3节《简单几何体的表面积与体积》解答题训练 (9)(有解析)

人教版高中数学必修二第八章第3节《简单几何体的表面积与体积》解答题训练 (9)(有解析)

第八章第3节《简单几何体的表面积与体积》解答题训练 (9)一、解答题(本大题共20小题,共240.0分)1.如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,D为BC边上一点,∠BAD=60∘,AA1=AB=2AD=2.(1)证明:平面ADB1⊥平面BB1C1C.(2)若BD=CD,试问:A1C是否与平面ADB1平行?若平行,求三棱锥A−A1B1D的体积;若不平行,请说明理由.2. 如图,在四棱锥P−ABCD中,PD⊥平面ABCD,四边形ABCD是平行四边形,▵PBC是边长为2的等边三角形,BD=PD.(Ⅰ)证明:AB⊥平面PBD;(Ⅱ)设E是BP的中点,求点B到平面DAE的距离.3. 如图,在三棱锥P−ABC中,PA⊥AB,PA⊥BC,,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:;(2)求证:平面BDE⊥平面PAC;(3)当PA//平面BDE时,求三棱锥E−BCD的体积.4. 一个圆锥底面半径为2cm,高为6cm,在其内部有一个内接圆柱.(1)求圆锥的侧面积;(2)当圆柱的高为何值时,圆柱的表面积最大?并求出表面积的最大值.5. 在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与均是等边三角形,AC=BE=4,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.(1)求证:DE⊥平面ADC;(2)求多面体DE−ABC的体积.6. 如图,点C是以AB为直径的圆O上异于A、B的一点,直角梯形BCDE所在平面与圆O所在BC=2,AC=CD=3.平面垂直,且DE//BC,DC⊥BC,DE=12(1)证明:EO//平面ACD;(2)求点E到平面ABD的距离.7. 如图1中,多边形ABCDE为平面图形,其中AB=AE=√3,BE=BC=2,CD=4,BE//CD,BC⊥CD,将△ABE沿BE边折起,得到如图2所示四棱锥P−BCDE,其中点P与点A重合.(1)当PD=√11时,求证:DE⊥平面PCE;(2)当平面PBE⊥平面BCDE时,求三棱锥P−CDE的体积.CD=1,且PB=√2.8. 如图,在四棱锥P—ABCD中,∠ADC=∠DAB=∠ADP=90°,AB=AD=12(1)证明:PC⊥平面PAD;(2)若PC=PD,求点A到平面PBC的距离.9. 如图,在直角梯形ABCD中,AB//DC,∠BAD=90∘,AB=4,AD=2,DC=3,点E在CD上,且DE=2,将▵ADE沿AE折起,使得平面ADE⊥平面ABCE(如图),G为AE中点.(Ⅰ)求证:DG⊥平面ABCE;(Ⅱ)求四棱锥D−ABCE的体积;(Ⅲ)在线段BD上是否存在点P,使得CP//平面ADE?若存在,求BP的值;若不存在,请说明BD理由.10. 如图,在直三棱柱ABC −A 1B 1C 1中,已知AA 1=BC =AB =2,AB ⊥BC .(1)求四棱锥A 1−BCC 1B 1的体积;(2)求二面角B 1−A 1C −C 1的大小.11. 如图,四棱锥P −ABCD 中,PD ⊥平面ABCD ,梯形ABCD 满足AB // CD ,∠BCD =90°,且PD =AD =DC =2,AB =3,E 为PC 中点,PF ⃗⃗⃗⃗⃗ =13PB ⃗⃗⃗⃗⃗ ,PG ⃗⃗⃗⃗⃗ =2GA ⃗⃗⃗⃗⃗ .(1)求证:D ,E ,F ,G 四点共面;(2)求四面体D −EFC 的体积.12. 如图,AB 为圆柱的底面直径,AA 1,BB 1为圆柱的两条母线,点C ,C 1,D 分别为AB ⌢ ,A 1B 1⌢,AA 1的中点,AA 1=2AC =2,CM ⊥BD ,垂足为M .(1)证明:CM ⊥平面BDC 1;(2)求三棱锥M−B1CD的体积.13. 如图,在多面体PQABCD中,四边形ABCD是边长为a的菱形,∠ABC=120°,PD⊥平面ABCD,QB⊥平面ABCD,PD=2QB=√2a.(1)证明:PA⊥QC.(2)若三棱锥Q−PAC的体积为√6,求实数a的值.14. 如图1,四边形ABCD为直角梯形,AD//BC,AD⊥AB,AB=2√3,∠BCD=60∘.E为线段CD上的点,且CE=CB=3.将▵BCE沿BE折起,得到四棱锥C1−ABED(如图2),使得C1A= C1B.(1)求证:AD⊥平面ABC1;(2)求三棱锥C1ABE的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.3 简单几何体的表面积与体积(精讲)考法一 多面体表面积【例1】(1)(2020·全国高一课时练习)已知正六棱柱的高为6,底面边长为4,则它的表面积为( )A .(483+B .(483+C .24D .144(2)(2021·江苏南京市)已知一个正三棱台的两个底面的边长分别为4和16,侧棱长为10,则该棱台的侧面积为( ).A .80B .240C .320D .640【答案】(1)A (2)B【解析】(1)由题知侧面积为664144⨯⨯=,两底面积之和为22464⨯⨯=(483S =.故选:A.(2)由题意可知,该棱台的侧面为上下底边长为4和16,腰长为10的等腰梯形∴8= 等腰梯形的面积为:()14168802S '=⨯+⨯=∴棱台的侧面积为:3380240S S '==⨯= 本题正确选项:B 【一隅三反】1.(2020·湖南怀化市)已知正四棱柱(即底面是正方形的直棱柱)的底面边长为3cm ,侧面的对角线长是,则这个正四棱柱的表面积为( )A .290cmB .2C .272cmD .254cm【答案】A6=.所以表面积为:224362390()S cm =⨯⨯+⨯=.故选:A. 2.(2020·张家界市民族中学高一月考)棱长为1的正四面体的表面积为( )A B .C .D .【答案】A 【解析】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以13sin 6024ABCSAB AC =⋅⋅=,所以可知:正四面体的表面积为4ABCS =故选:A3.(2020·长春市第二实验中学高一期末)正三棱锥底面边长为a ,高为6a ,则此正三棱锥的侧面积为( )A .234a B .232a C 2D 2【答案】A【解析】因为底面正三角形中高为2a ,其重心到顶点距离为2233a ⨯=,且棱锥高6a ,所以22632632a a a 2221222a a a ,所以侧面积为21133224S a a a .选A. 考法二 多面体台体积【例2】(2020·江苏南京市)底面边长为2,高为1的正三棱柱的体积是( )A B .1C D .13【答案】A【解析】底面边长为2,高为1的正三棱柱的体积是22)1⨯= A 【一隅三反】1.(2020·河北秦皇岛市)如图,已知高为3的棱柱111ABC A B C -的底面是边长为1的正三角形,则三棱锥1B ABC -的体积为( )A .14 B .12 C .34 D .36【答案】C【解析】三棱锥1B ABC -的体积为:11111333224ABCSh ⋅⋅=⨯⨯⨯⨯=故选:C 2.(2020·广东惠州市·高一期末)正四棱锥的底面边长和高都等于2,则该四棱锥的体积为( )A B .3C .83D .8【答案】C【解析】∵正四棱锥的底面边长和高都等于2, ∴该四棱锥的体积211822333V Sh ==⨯⨯=.故选:C . 3.(2020·六盘山高级中学高一月考)已知棱长均为4,底面为正方形的四棱锥S ABCD -如图所示,求它的体积.【解析】如图所示:连接AC ,BD 交于点O ,连接SO , 因为四棱锥的棱长均为4,所以SO ⊥平面ABCD ,即SO 为四棱锥的高,所以4,SA OA ==,所以SO ==所以1144333V AB AD SO =⨯⨯⨯=⨯⨯⨯=.4.(2020·北京高一期末)如图,正三棱锥P ABC -的底面边长为2,侧棱长为3.(1)求正三棱锥P ABC -的表面积; (2)求正三棱锥P ABC -的体积.【答案】(1);(2. 【解析】(1)取BC 的中点D ,连接PD ,在Rt PBD △中,可得PD ==∴12PBC S BC PD =⋅=△. ∵正三棱锥的三个侧面是全等的等腰三角形,∴正三棱锥P ABC -的侧面积是3PBC S =△.∵正三棱锥的底面是边长为2的正三角形,∴122sin 602ABC S =⨯⨯⨯︒=△.则正三棱锥P ABC -的表面积为;(2)连接AD ,设O 为正三角形ABC 的中心,则PO ⊥底面ABC .且13OD AD ==.在Rt POD 中,PO ==.∴正三棱锥P ABC -的体积为133ABC S PO ⋅=△.考法三 旋转体的表面积【例3】(2020·山东德州市·高一期末)若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为( )A B .2πC .D .【答案】C【解析】如图圆锥的轴截面是顶角为120,即60APO ∠=,2AP =,90POA ∠=,所以AO =AO PA π⨯⨯=.故选:C.【一隅三反】1.(2021·浙江高一期末)一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( ) A .142ππ+ B .122ππ+ C .12ππ+ D .142ππ+ 【答案】B【解析】设圆柱的底面半径为r ,圆柱的高为h , 圆柱的侧面展开图是一个正方形, 2r h π∴=,∴圆柱的侧面积为2224rh r ππ=,圆柱的两个底面积为22r π,∴圆柱的表面积为22222224r rh r r ππππ+=+,∴圆柱的表面积与侧面积的比为:22222241242r r r πππππ++=,故选:B .2.(2020·全国高一)把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( )A .10B .C .D .【答案】B【解析】半径为20的半圆卷成圆锥的侧面,则圆锥的底面圆周长为220r ππ=⨯, 所以底面圆的半径为r =10,所以圆锥的高为h ==. 故选:B3.(2020·全国高一课时练习)一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是( ) A .32π B .3π C .5π D .4π【答案】D【解析】圆锥的底面半径为2,高为4, 设内接圆柱的底面半径为x , 则它的上底面截圆锥得小圆锥的高为422xx ⨯=, 因此,内接圆柱的高42h x =-;∴圆柱的侧面积为()()224242S x x x x ππ=-=-(02)x <<,令()22121==-+--t x x x ,当1x =时,1max t =; 所以当1x =时,4max S π=,即圆柱的底面半径为1时,圆柱的侧面积最大,最大值为4π. 故选:D.考法四 旋转体的体积【例4】(2021·宁夏银川市·贺兰县景博中学)已知圆锥的母线长为5,底面周长为6π,则它的体积为( ) A .10π B .12πC .15πD .36π【答案】B【解析】设圆锥的底面半径为r ,高为h ,因为底面周长为6π,所以26r ππ=,解得3r =,又因为母线长为5,所以h =4,所以圆锥的体积是21123V r h ππ==故选:B 【一隅三反】1.(2020·浙江杭州市·高一期末)将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为( )A .πB .C .3πD .3【答案】D【解析】由扇形弧长公式可求得弧长2323L ππ=⨯=,∴圆锥底面周长为2π, ∴圆锥底面半径1r =,∴圆锥的高h =,∴圆锥的体积2133V r h π=⋅=.故选:D .2.(2020·威海市教育教学研究中心高一期末)古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为( ) A .198π立方丈 B .1912π立方丈 C .198π立方丈 D .19π12立方丈 【答案】B【解析】由题意得,下底半径32R π=(丈),上底半径212r ππ==(丈),高1h =(丈),所以它的体积为()222211313113322V h R r Rr ππππππ⎡⎤⎛⎫⎛⎫=++=⨯⨯++⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦所以19V =12π(立方丈).故选:B. 3.(2020·贵州毕节市·高一期末)已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为( ) A .3 B .3πC .9D .9π【答案】B【解析】设圆锥的底面半径为r ,高为h ,则母线长为l =则圆柱的侧面积为()2221122r r h ππ=+, 故表面积为()222192r h r πππ++=,得2231922r h +=①,又底面圆周长等于侧面展开半圆的弧长,故2r π=2r =得223h r =②,联立①②得:r =3h =.故该圆锥的体积为2113333V Sh ππ==⨯⨯⨯=.故选:B.考法五 球【例5】(1)(2020·长春市第二实验中学高一期末)已知一个正方体的8个顶点都在同一个球面上,则球的表面积与这个正方体的表面积之比为( ) A .3πB .2π C.2D.12(2).(2021·江西景德镇市·景德镇一中高一期末(理))已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为 ) A .4πB .8πC .12πD .24π【答案】(1)B (2)C【解析】(1)设正方体的棱长为a ,球的半径为R,则2R R =⇒=,球的表面积为22214432S R a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭,正方体的表面积为226S a =, ∴2122362S a S a ππ==.故选:B (2)设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22⨯=,该正方体的体对角线长为所以,正三棱锥A BCD -的外接球直径为2R =R =该球的表面积为2412S R ππ==.故选:C.【一隅三反】1.(2020·浙江高一期末)若一个球的直径为2,则此球的表面积为( )A .2πB .16πC .8πD .4π 【答案】D【解析】因为球的直径为2,即球的半径为1,所以球的表面积为2414ππ⨯=,故选:D.2.(2020·天津和平区·耀华中学高一期末)棱长为2的正方体的外接球的表面积为( )A .4πB .43πC .12πD . 【答案】C【解析】因为正方体的外接球的直径为正方体的体对角线的长,所以2R =R =, 所以球的表面积为:2412S R ππ==.故选:C3.(2021·宁夏长庆高级中学高一期末)已知一个正方体的体积为8,求此正方体内切球的表面积为( )A .43πB .8πC .4πD .16π【答案】C【解析】正方体的体积为8,故边长为2,内切球的半径为1,则表面积244S R ππ==,故选:C.4.(2020·山东济宁市·高一期末)将一个棱长为3cm 的正方体铁块磨成一个球体零件,则可能制作的最大零件的体积为( )A .39cm πB .39m 2c πC .3cmD .3cm 2 【答案】B【解析】正方体的棱长为3cm ,所以球体最大体积的半径32r cm =, 所以球的体积:334932V r cm ππ==.故选:B 考法六 组合体的体积表面积【例6】(2020·全国高一课时练习)如图,一个无盖的器皿是由棱长为3的正方体木料从顶部挖掉一个直径为2的半球而成(半球的底面圆在正方体的上底面,球心为上底面的中心),则该器皿的表面积S 为( )A .54B .542π+C .54π+D .543π+【答案】C 【解析】器皿的表面积是棱长为3的正方体的表面积减去半径为1的圆的面积,再加上半径为1的半球的表面积,即器皿的表面积()()221633141542542S πππππ=⨯⨯-⨯+⨯⨯=-+=+. 故选:C .【一隅三反】1.(2020·山东菏泽市·菏泽一中高一月考)某组合体如图所示,上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.正四棱锥P EFGH -2EF =,1AE =,则该组合体的表面积为( )A .20B .12C .16D .8【答案】A【解析】由题意,正四棱锥P EFGH -2=,该组合体的表面积为122421422202⨯+⨯⨯+⨯⨯⨯=. 故选:A2.(2020·河北沧州市一中高一期末)鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6+B .6(8+C .8(6++D .6(8+【答案】A【解析】由题图可知,该鲁班锁玩具可以看成是一个棱长为2+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,则该几何体的表面积为2116(248222S ⎡=⨯+-⨯+⨯⨯⎢⎣8(6=+. 故选:A.3.(2021·周至县第二中学高一期末)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高h =_______cm .【答案】8【解析】由题意得半球的半径和圆锥底面圆的半径4r =,如果冰淇淋融化后正好盛满杯子,则半球的体积等于圆锥的体积 所以()32141448233h h ππ⨯⨯=⨯⨯⇒= 故答案为:8。

相关文档
最新文档