求定义域的方法总结

合集下载

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法方法一:直接根据函数的定义进行求解。

这是最基本的一种方法,即根据函数的定义来求解定义域。

例如,对于一个多项式函数f(x),定义为f(x) = 2x^2 + 3x - 1,我们可以直接根据定义域的限制条件来求解。

由于多项式函数的定义域是全体实数,因此该函数的定义域为(-\infty, +\infty)。

方法二:挑选一些特殊的数进行验证。

这是一种常用的方法,即通过挑选一些特殊的数进行验证,看它们是否在函数的定义域内。

例如,对于一个有理函数g(x),定义为g(x) = \frac{1}{x},我们可以挑选x的一些特殊值进行验证。

首先,x不能为0,否则分母为零,函数无定义。

另外,由于有理函数对应的分母不能为零,因此定义域为(-\infty, 0) \cup (0, +\infty)。

方法三:求解不等式得到定义域的范围。

对于一些复杂的函数,可以通过求解不等式来得到定义域的范围。

例如,对于一个开方函数h(x),定义为h(x) = \sqrt{x^2 - 4x},我们可以通过求解不等式x^2 - 4x \geq 0来确定定义域的范围。

首先,将不等式化简为(x-2)(x-2) \geq 0,得到x \leq 2或x \geq 2,因此定义域为(-\infty, 2] \cup [2, +\infty)。

方法四:分段定义域的求解。

对于一些函数是在不同区间有不同定义域的情况,可以采用分段定义域的求解方法。

例如,对于一个分段函数j(x),定义为j(x) = \begin{cases}2, & \text{if } x\leq 0\\\sqrt{x}, & \text{if } x > 0\end{cases}这个函数在x\leq 0时有定义,且在x > 0时也有定义。

因此定义域为(-\infty, 0] \cup (0, +\infty)。

方法五:利用基本函数的定义域性质进行推导。

求函数定义域的方法

求函数定义域的方法

求函数定义域的方法
求函数定义域的方法
函数定义域的求法:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x 0中,x≠0。

一、求解方法
1、组合函数
由若干个基本函数通过四则运算形成的函数,其定义域为使得每一部分都有意义的公共部分。

原则:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x 0中,x≠0。

2、复合函数
若y=发(u),u=g(x),则y=f[g(x)]就叫做f和g的复合函数。

其中y=f(U)叫做外函数,u=g(x)叫做内函数。

例如:(1)已知y=f(x)的定义域D 1,求y=f[g(x)]的定义域D 2。

解法:解不等式:g(x)∈D 1
(2)已知y=f[g(x)]的定义域D 1,求y=f(x)的定义域D 2。

解法:令u=g(x),x∈D 1,求函数g(x)的值域。

二、求函数定义域一般原则
①如果为整式,其定义域为实数集;
②如果为分时,其定义域是是分母不为0的实数集合;
③如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合;
④如果是由以上几个部分的数学式子构成的,其定义域是使各个式子都有意义的实数集合。

求定义域的方法

求定义域的方法

求定义域的方法
一、代数法求定义域。

对于一些简单的函数,可以通过代数方法来求其定义域。

例如
对于多项式函数,有理函数,指数函数和对数函数等,可以通过对
函数进行分析,找出函数中自变量的取值范围,从而求出定义域。

二、图像法求定义域。

对于一些复杂的函数,可以通过绘制函数的图像来求其定义域。

通过观察函数的图像,可以直观地看出函数的定义域是什么样的。

这种方法对于一些无法通过代数方法求解的函数来说是非常有效的。

三、条件法求定义域。

对于一些复杂的函数,可以通过条件法来求其定义域。

例如对
于含有根号的函数,需要满足根号中的值大于等于0,才能使得函
数有意义。

因此可以通过这种条件来求解函数的定义域。

四、综合法求定义域。

对于一些特殊的函数,可能需要综合运用代数法、图像法和条件法来求解其定义域。

通过综合运用多种方法,可以更准确地求解函数的定义域。

综上所述,求定义域的方法有代数法、图像法、条件法和综合法。

不同的函数可能需要采用不同的方法来求解其定义域,需要根据具体情况来选择合适的方法。

在实际应用中,求定义域是解决函数定义范围的重要问题之一,对于深入理解函数的性质和特点具有重要意义。

希望以上方法能够帮助到大家,更好地理解和掌握函数的定义域求解问题。

求函数定义域的方法

求函数定义域的方法

求函数定义域的方法
函数定义域是指函数可以接受的输入值的集合。

在数学中,函数定义域提供了唯一的映射方式来定义函数,即函数的每一个输入值都有且仅有一个输出值。

大多数函数定义域被表示为实数集,但也可以使用其他类型的集合,如两个实数的整数集和复数集。

如何求函数定义域?
1.先,应确定函数的表达式,以便求出函数的定义域。

2.后,针对表达式中的不同项,设定约束条件,以确定函数定义域范围。

3.下来,针对约束条件,求出函数定义域的边界值。

4.后,将函数定义域的边界值整合在一起,就可以求出函数定义域的范围。

例子一:求f(x)=2x-1的定义域
此函数的限制是所有实数域。

因此,f(x)=2x-1的定义域为(-∞,∞),也就是所有实数。

例子二:求f(x)=√x的定义域
此函数的限制是x≥0。

因此,f(x)=√x的定义域为[0,+∞),也就是大于等于0的实数。

函数定义域的应用
函数定义域一般用于描述函数的性质,以决定其特定值的行为,并为求解函数方程提供帮助。

它也可以用来确定函数的局部极值,以及函数的极值点和拐点。

总结
函数定义域是指函数可以接受的输入值的集合,定义域范围不同,其可接受的输入值也不尽相同。

求函数定义域的步骤是:1、确定函
数的表达式;2、设定约束条件;3、求出函数的定义域的边界值;4、将函数定义域的边界值整合在一起。

函数定义域一般用于描述函数的性质,并且为求解函数方程提供帮助。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法定义域是指一个函数中所有可能输入的集合。

具体来说,定义域是指函数中的自变量可以取得的所有值。

在数学中,求定义域是解决一个函数的自变量的取值范围的问题。

下面是八种常见的方法来求定义域。

方法1:显式定义对于一些函数,定义域可以通过其显式定义来确定。

例如,对于函数f(x)=1/x,定义域可以通过注意到除数不能为零来确定,即x不能为0。

因此,定义域就是除去0之后的实数集合:R\{0}。

方法2:关系定义有些函数的定义域可以通过直接观察定义函数的关系来确定。

例如,对于函数f(x)=√(2x-1),注意到根号内的表达式必须大于等于零,即2x-1≥0。

解这个不等式可以得到定义域为x≥1/2方法3:对数函数对于对数函数,定义域必须满足底数必须大于零且不等于1,并且实数必须大于零。

例如,对于函数f(x) = log₂(x + 3),定义域为x + 3 > 0,即x > -3方法4:分式函数对于分式函数,定义域必须使分母不等于零。

例如,对于函数f(x)=1/(x-2),定义域为x≠2方法5:根式函数对于根式函数,定义域必须使根号内的表达式大于等于零。

例如,对于函数f(x)=∛(x-4),根号内的表达式必须大于等于零,即x-4≥0,解不等式可得x≥4、因此,定义域为x≥4方法6:三角函数对于三角函数,定义域是实数的所有值,因为三角函数在整个数轴上都有定义。

例如,对于函数f(x) = sin(x),定义域为所有实数:(-∞, ∞)。

方法7:反三角函数对于反三角函数,定义域必须使其定义范围内的表达式满足相应的条件。

例如,对于函数f(x) = arcsin(x),由于反正弦函数的定义域是[-1, 1],因此定义域必须满足-1 ≤ x ≤ 1方法8:参数化定义对于一些函数,可以通过将函数参数化来求取定义域。

例如,对于函数f(x)=√(x²-1),我们可以通过取x²-1≥0来求取定义域。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法在数学领域中,关于定义域的求解方法有许多种。

下面将介绍其中的八种方法。

方法一:根据函数公式求取定义域。

对于一些简单的函数,可以通过函数的公式直接求取定义域。

例如对于一个分式函数,如f(x)=1/(x-2),由于分母不能为0,所以定义域为{x,x≠2}。

方法二:分析函数的基本性质。

有些函数拥有特定的性质,根据这些性质可以求得函数的定义域。

例如对于多项式函数,常数函数和指数函数,它们都定义在实数域上,因此定义域为实数集。

方法三:考虑函数中的根。

对于包含根的函数,定义域不能使这些根使得函数的值出现未定义的情况。

例如对于开方函数f(x)=√(x-3),由于根号下的值不能为负,所以定义域为{x,x≥3}。

方法四:考虑函数的分段定义。

对于分段定义的函数,需要分别考虑每个分段的定义域。

例如对于函数f(x)=,x,分段定义为{x当x>=0时;-x当x<0时},因此定义域为实数集。

方法五:考虑函数的限制条件。

有时函数在定义域上有一些限制条件。

例如对于对数函数f(x) =ln(x),由于对数函数只对正数有定义,所以定义域为{x , x > 0}。

方法六:考虑函数的参数限制。

对于含有参数的函数,需要考虑参数的限制条件。

例如对于双曲正弦函数f(x) = sinh(x),由于双曲正弦函数对所有实数都有定义,所以定义域为实数集。

方法七:考虑函数的复合性质。

对于复合函数,需要分析组成函数的定义域。

例如对于函数f(g(x)),需要保证g(x)的定义域是f(x)的定义域。

例如对于函数f(g(x)) = 1/x,如果g(x) = sin(x) + 2,由于sin(x)的定义域为实数集,所以g(x)的定义域与f(x)的定义域保持一致。

方法八:考虑函数的图像。

对于一些函数,通过画出函数的图像可以直观地确定定义域。

例如对于一个二次函数f(x)=x^2+1,通过函数的图像我们可以看到函数的定义域为实数集。

函数值域定义域方法总结

函数值域定义域方法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)y=tanx 中x ≠k π+π/2; ( 5 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。

2、求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;练习:1、求函数[]5,0,522∈+-=x x x y 的值域 法二:换元法(下题讲)例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9求函数xx y 2231+-⎪⎭⎫⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域 例11 求函数21+-=x x y 的值域小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ; 例12 求函数133+=x xy 的值域例14 求函数34252+-=x x y 的值域 例15 函数11++=xx y 的值域复合函数单调性一、 函数的单调区间1.一次函数y=kx+b(k ≠0).2.反比例函数y=x k(k ≠0). 3.二次函数y=ax 2+bx+c(a ≠0). 4.指数函数y=ax(a >0,a ≠1). 5.对数函数y=log a x(a >0,a ≠1). 三、复合函数单调性相关定理规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。

求函数定义域的方法技巧

求函数定义域的方法技巧

求函数定义域的方法技巧求函数定义域的方法技巧函数解析式时1、分式时:分母不为0。

2、根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0。

3、指数时:当指数为0时,底数一定不能为0。

4、根号与分式结合,根号开偶次方在分母上时:根号下大于0。

5、指数函数形式时:底数和指数都含有x,指数底数大于0且不等于1。

6、对数函数形式,自变量只出如今真数上时,只需满足真数上所有式子大于0,自变量同时出如今底数和真数上时,要同时满足真数大于0,底数要大0且不等于1。

抽象函数换元法1、给出了定义域就是给出了所给式子中x的取值范围。

2、在同在同一个题中x不是同一个x。

3、只要对应关系不变,括号的取值范围不变。

4、求抽象函数的定义域,关键在于求函数的取值范围,及括号的取值范围。

复合函数定义域:理解复合函数就是可以看作由几个我们熟悉的函数组成的函数,或是可以看作几个函数组成一个新的函数形式。

拓展阅读:函数定义域的七种情况 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考察自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进展分类讨论,假设参数在不同的范围____义域不一样,那么在表达结论时分别说明;7、求定义域时有时需要对自变量进展分类讨论,但在表达结论时需要对分类后求得的各个集合求并集,作为该函数的定义域。

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结
一、常见函数解析式
1、二次函数
解析式:y=ax2+bx+c
定义域:全实数集
值域:ax2+bx+c的值
2、三角函数
解析式:y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
定义域:全实数集
值域:[-1,1]
3、反三角函数
解析式:y=arcsinx,y=arccosx,y=arctanx,y=arccotx,
y=arcsecx,y=arccscx
定义域:-[1,1],(-∞,+∞)
值域:[-π/2,π/2]
4、双曲函数
解析式:y=sinhx,y=coshx,y=tanhx,y=cothx,y=sechx,y=cschx 定义域:全实数集
值域:[-1,1]
5、对数函数
解析式:y=lgx,y=lnx
定义域:x>0
值域:(-∞,+∞)
6、指数函数
解析式:y=ex
定义域:全实数集
值域:(0,+∞)
二、定义域和值域的求法
1、函数的定义域
定义域的求法:一般取出函数的变量,求出它所在的域,如果有多个变量,一般要满足多个变量的取值范围,才能满足函数的定义域,比如:函数f(x,y)=x2+y2,则它的定义域就是x,y取得所有实数
2、函数的值域
值域的求法:一般取定义域,将变量取不同的值,将函数求出不同的值并且收集,得到函数的值域,比如:函数f(x)=x2+x+2,值域就是1,3,5,7……。

归纳求函数定义域的方法

归纳求函数定义域的方法

归纳求函数定义域的方法求函数定义域的方法是求解一元函数的最基本的原理,用于确定一元函数中的变量可以取到的取值范围,即函数定义域。

在统计学、数学分析和微积分等课程中,都会了解函数定义域的概念,掌握如何求解函数定义域对于更好地理解函数运算有重大意义。

那么,求函数定义域的方法有哪些呢?首先,正式定义函数定义域。

函数定义域就是函数f(x)中x可以取到的所有可能取值的集合,求函数定义域就是要确定这个集合。

其次,把函数定义域分解成几个个子集。

通常情况下,函数定义域可以分解为三个子集:函数值有界,有理界限和无理界限。

1. 函数值有界:如果函数f(x)中x可以取到有限个取值,则函数定义域就被称为函数值有界。

例如,函数f(x)=x^2,当x取到0或1时,函数的值都有界。

2. 有理界限:如果函数f(x)中x可以取到有理数,则函数定义域就被称为有理界限。

例如,函数f(x)=x^2 - 3x + 2,当x取到有理数时,函数的值都有理界限。

3. 无理界限:如果函数f(x)中x可以取到无理数,则函数定义域就被称为无理界限。

例如,函数f(x)=lnx,当x取到无理数时,函数的值都无理界限。

最后,对几个子集中的变量可能取到的取值范围,进行综合考虑。

根据上文提出的三个子集,可以简单总结函数定义域的求解过程:先确定函数f(x)是否有限个取值,如果有,则函数定义域是函数值有界;如果函数f(x)的取值范围包括有理数,则函数定义域是有理界限;如果函数f(x)的取值范围包括有无理数,则函数定义域是无理界限。

总结起来,求函数定义域的方法主要是先正式定义函数定义域,然后把函数定义域分解成几个个子集,最后对几个子集中的变量可能取到的取值范围,进行综合考虑。

求解函数定义域有助于更好地理解函数运算,是统计学、数学分析和微积分等课程中最基本的原理。

函数值域定义域解析式方法总结

函数值域定义域解析式方法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。

2、求值域问题例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9 例9求函数x x y 2231+-⎪⎭⎫ ⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域例11 求函数21+-=x x y 的值域 例12 求函数133+=x xy 的值域 练习:y =1212+-x x ;(y ∈(-1,1)) 例13 函数1122+-=x x y 的值域 例14 求函数34252+-=x x y 的值域 例15 函数11++=x x y 的值域 三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。

2x2x 15例 1 求函数 y的定义域。

| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。

③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。

故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。

例 2 求函数1ysin x的定义域。

216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。

(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。

2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。

2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。

(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。

例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法定义域是数学中常用的一个概念,指函数能够接受的输入值的集合。

求函数的定义域,即要找出函数的全部合法输入。

以下是常见的求解函数定义域的8种方法:方法一:检查函数表达式中的分式,确定分母是否为零。

如果分母为零的取值在实数范围内,那么该取值不属于该函数的定义域。

例子1:对于函数f(x) = 1/(x-1),x-1=0,得到x=1。

所以定义域是R- {1}。

方法二:检查函数表达式中的平方根、立方根等根式,确定根式内的值是否为负数。

如果根式内的值为负数,那么该取值不属于该函数的定义域。

例子2:对于函数g(x) = √(x+2),根式内的x+2≥0,所以定义域是[-2,+∞)。

方法三:检查函数表达式中的对数。

对于以e为底的指数函数来说,取值只能是正数。

对于以其他底数a(a>0 且a≠1)的对数函数来说,取值只能是大于0且底数a不能等于1的数。

例子3:对于函数h(x) = log3(x),x>0且x≠1。

所以定义域是(0, +∞)。

方法四:检查函数表达式中的三角函数。

注意到三角函数是周期性的,并且在某些点处不连续。

所以要考虑到函数在一个周期内的定义域,并将所有周期内的定义域取并集。

例子4:对于函数i(x) = sin(x),它的定义域是R。

方法五:检查函数表达式中的指数。

有些指数函数定义在整个实数集合上,而有些定义域只在实数集合的部分区间上。

例子5:对于函数j(x) = e^x,定义域是R。

方法六:当函数表示为两个函数的复合时,可以分别求出两个函数的定义域,并找出它们的交集作为最后的定义域。

例子6:对于函数k(x) = arcsin(x^2),x^2≤1,即-1≤x≤1。

所以定义域是[-1, 1]。

方法七:设函数为二次函数,可以通过求解一元二次不等式的解集来确定函数的定义域。

例子7:对于函数l(x) = 2x^2 + 3x - 1,由2x^2 + 3x - 1≥0得到x≥(-3+√17)/4 或x≤(-3-√17)/4。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法求解函数的定义域是数学中一个常见的问题,定义域是指函数在实数范围内的所有可能取值。

下面介绍八种常见的方法来求解函数的定义域。

1.显式定义法:通过查看函数的表达式来确定定义域。

例如,对于函数f(某)=√(某+3),由于根号下面是正数,所以可以推断出定义域为某≥-3。

2.有理函数定义法:对于有理函数,定义域由其分母确定。

分母中不能包含使分母为零的值,因为这会导致函数的定义出现问题。

例如,对于函数f(某)=1/(某-2),分母不能为零,所以定义域为某≠2。

3. 指数函数与对数函数定义法:对于指数函数 f(某) = a^某和对数函数 f(某) = log_a 某,定义域取决于底数 a 的取值。

指数函数中,基数 a 必须大于 0 且不等于 1,所以定义域为(0, +∞)。

对数函数中,底数 a 必须大于 0 且不等于 1,所以定义域为(0, +∞)。

4. 三角函数定义法:对于三角函数 f(某) = sin(某), f(某) =cos(某), f(某) = tan(某),定义域是所有实数。

5.意义域法:对于函数f(某),通过确定其意义域和反向推导出定义域。

例如,若f(某)=√(1-某),意义域为[0,+∞),则可以推断出定义域为某≤1。

6.集合法:可以通过绘制函数对应的图像来确定定义域。

对于连续函数,定义域是所有图像上的点的集合。

对于离散函数,定义域是所有函数被定义的点的集合。

7.奇偶性法:对于偶函数f(某)=f(-某),定义域可以取所有实数。

对于奇函数f(某)=-f(-某),定义域可以取所有实数。

8.综合法:可以通过综合运用以上方法来求解复杂函数的定义域。

例如,对于函数f(某)=√(1/(某-1)),首先排除某=1的因数,然后通过意义域法可以确定某>1,综合得出定义域为某>1。

通过以上八种方法,可以求解函数的定义域。

根据函数的表达式、分母、底数、意义域、图像、奇偶性和综合分析等不同特点,选择合适的方法来确定函数的定义域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例 1求函数 y x 22x15| x 3 |8的定义域。

解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。

③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。

故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。

例 2求函数 y sin x1的定义域。

16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

( 1)已知f (x )的定义域,求f [ g(x )]的定义域。

( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。

例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。

解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。

( 2)已知f [g( x)]的定义域,求f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。

例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。

解:因为 1 x2,22x4,32x 1 5 。

即函数 f(x) 的定义域是{ x | 3x5} 。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

(完整版)函数定义域的求法整理(整理详细版)

(完整版)函数定义域的求法整理(整理详细版)

函数定义域的求法整理一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1 求函数8|3x |15x 2x y 2-+--=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①08|3x |015x 2x 2由①解得 3x -≤或5x ≥。

③由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。

故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。

例2 求函数2x 161x sin y -+=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<-④ 由③和④求公共部分,得π≤<π-≤<-x 0x 4或故函数的定义域为]0(]4(ππ--,,二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知)x (f 的定义域,求)]x (g [f 的定义域。

(2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。

例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。

解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。

(2)已知)]x (g [f 的定义域,求f(x)的定义域。

其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。

例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求定义域的方法总结
8种求定义域的方法
可根据不同函数的八种类型,分为以下八种方法来求函数的定义域:
①整式的定义域为R。

整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。

这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。

②分式的定义域是分母不等于0。

例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。

③偶数次方根定义域是被开方数≥0。

例如根号下x-3,这时候定义域就是让x-3≥0,求出来定义域为{x|x≥3}。

④奇数次方根定义域是R。

例如三次根号下x-3,定义域就是{x|x∈R}。

⑤指数函数定义域为R。

比如y=3^x,定义域为{x|x∈R}。

⑥对数函数定义域为真数>0。

比如log以3为底(x-1)的对数,让x-1>0,即定义域为{x|x>1}。

⑦幂函数定义域是底数≠0。

比如y=(x-1)^2,让x-1≠0,即定义域为{x|x≠1}。

⑧三角函数中正弦余弦定义域为R,正切函数定义域为x≠π/2+kπ。

这时候求定义域画个图就可以看出来了,只要记住三角函数图像,即可求出定义域。

这八种类型是常见函数类型,求定义域时首先要分辨清楚它们属于哪个类型的函数,然后根据基本的定义域来求复杂函数定义域。

相关文档
最新文档