复杂性科学的方法论研究
复杂性科学方法
本方案严格保密,只对代用名开放。
2011-9-21
2
复杂性科学与模型方法
在科学研究活动中,给对象实体以必要的简化,用适当的表现形式或规则把 它的主要特征描绘出来,这样得到的模仿品称为模型,对象实体称为原型。
模型的重要价值,就在于我们可以不必进行费时费力,而且可能有危险的 公开实践,就可以预测到结果。 通过选择积木块和重组这些积木块的不同方法,我们建立起一些规则,用 来创建易于理解的受某些规则支配的系统模型。构思很好的模型,将会展 现出被模仿系统中的复杂性及涌现现象,但是删减了大量的细节部分。
3复杂Biblioteka 科学中的几个重要模型复杂适应系统的回声模型
复杂适应系统(CAS)是美国圣菲研究所霍兰提出的一种复杂性理论,复杂性 科学的一个重要方面,是对于复杂性的产生机制的研究,CAS理论就是对这 个问题的一种回答。简单地说,其基本思想可以用一句话概括:“适应性造就 复杂性”。我们把系统中的成员称为具有适应性的主体,简称为主体。所谓 适应性就是指它能够与环境以及其他主体进行交互作用。主体在这种持续不 断的交互作用的过程中,不断地“学习”或“积累经验”,并且根据学到的 经验改变自身的结构和行为方式。整个宏观系统的演变或进化,包括新层次 的产生,分化和多样性的出现,新的、聚合而成的、更大的主体的出现等等, 都是在这个基础上逐步派生出来的。
7
复杂性科学与数值方法
所谓数值方法就是对系统模型进行计算求解,从而把握系统的组成和运行规 律。 也只有使用计算机,才能对非线性方程进行真正当作非线性来处理,而不是 把它们当作线性来处理因而丧失混沌等复杂性的机遇,因为“这门新学科正 在建立自己把计算机作为实验工具的传统”。
数值方法与分形理论
分形理论是美国数学家曼德布罗特(Mnadelbrot)创立的一门新几何学,它可 以描述、计算和思考那些不规则、破碎、参差不齐和断裂的几何形状,包括 从雪花的结晶曲线到星系中不联系的尘埃。分形曲线意味着深藏在这些惊人 复杂的形状中的有组织的结构。如今,分形已经成为理解非线性动力学的关 键结构,分形理论也已经成为自组织和复杂性理论的重要理论构成。
复杂性科学
4.1 基于复杂性科学思想的团队建模
建模 运作 涌现 影响因素
第一种模型
第二种模型
Salas等人“团队高效模型(TEM)” 输入 个体:知识、技能、能力、内在动 机和态度、 团队:成员同质性、团结程度、权 力分布 目标任务:复杂性、类型 工作:工作结构、沟通、团队规范 转化 团队的培训、沟通和协调过程 输出 团队环节绩效
4.2 团队运作结构的变化方面
建模 运作 涌现 影响因素
复杂性科学认为,团队的运作结构就是团队个体成员为了完成团队目标 任务而相互依赖的行为机制,它决定了团队整体的行为特性和功能表现。
传统观点
复杂性科学观点
人为控制与设计的结果
团队系统(或其局部)与不确定性环境之间互动适应、 不断自发调整的过程,是一种自组织行为。
03
复杂适应系统理论:霍兰提出来的一个 复杂性理论分支。所谓具有适应性,就 是指它能够与环境以及其他主体进行交 互作用。
05
进化计算:一系列搜索技术,它以进化 原理为仿真依据,侧重于算法的研究, 主要有四大流派:遗传算法、进化规划、 进化策略和遗传编程。
02
自组织临界性理论:多种要素相互作用的 大系统能够自发地朝临界状态演化,这种 自组织临界状态,小事件会导致大事件乃 至突变。
1 团队绩效
2 团队文化
3 团队领导
4.4 影响涌现现象产生的因素
建模 运作 涌现 影响因素
有意义的差异性:成员主体间的差异,表现在个人知识、 技能、经验等方面存在多样性,可以形成有价值的非线 性作用关系。
内部沟通学习:理解团队的共同目标,促进团队学习和 合作,增强团队凝聚力和信任。
共同目标:团队存在的理由,为团队运行过程中的决策 提供参照物,判断团队进步的可行标准,为团队成员提供 一个合作和共担责任的焦点。
6个世界观方法论
6个世界观方法论世界观与方法论是哲学领域中的两个重要概念。
世界观是人们对世界的根本看法和认识,而方法论则是基于这种世界观所采取的行动方法和原则。
以下是六个具有代表性的世界观与方法论简述。
1.宇宙观与人本主义方法论宇宙观认为宇宙是一个有序、和谐的整体,人类是宇宙中的一部分。
人本主义方法论强调以人为中心,关注人的价值和尊严,提倡个性解放和自我实现。
在这种世界观下,教育、伦理和审美等方面都应关注人的全面发展。
2.唯物主义与实证主义方法论唯物主义认为物质是世界的本原,意识是物质的产物。
实证主义方法论强调以观察、实验和经验为依据,追求客观、可证实的知识。
在这种世界观下,科学和技术发展受到高度重视,推动了人类社会的进步。
3.精神分析与心理动力学方法论精神分析学派认为,人的行为和情感受到潜意识驱动力的影响。
心理动力学方法论主张通过探究潜意识来揭示人的心理和行为动机。
这种世界观对心理学、文学和艺术等领域产生了深远影响。
4.结构主义与解构主义方法论结构主义强调事物之间的内在联系和整体性,认为世界是一个由各种结构组成的复杂系统。
解构主义方法论则试图打破这些结构,揭示事物的多元性和不确定性。
这两种方法论在哲学、文学和批评理论等领域产生了广泛影响。
5.生态世界观与可持续发展方法论生态世界观认为地球是一个生命共同体,人类与其他生物和环境相互依存。
可持续发展方法论强调在满足人类需求的同时,保护生态环境,实现经济、社会和环境的协调发展。
这种世界观对环保、政策和企业社会责任等方面具有重要意义。
6.系统论与复杂性科学方法论系统论关注事物的整体性、层次性和动态性,认为世界是一个复杂、多层次的系统。
复杂性科学方法论则在此基础上,研究复杂系统的演化、适应和涌现现象。
这种世界观对自然科学、社会科学和管理科学等领域产生了深刻影响。
总结:以上六个世界观与方法论各具特色,分别从不同角度解读了世界和人类行为。
复杂科学对教育研究的方法论意义
复杂科学对教育研究的方法论意义复杂科学是一种客观观察现象并使用统计学和数学方法模拟,来描述和预测复杂性系统的多重可能性和不确定性。
它为社会科学研究带来了新的可能性,特别是在教育学研究中。
它提供了一种合理的方法来探究学校现象的复杂性,它的方法论意义在于,可以更好地理解复杂的系统,更好地提高教学、组织和成就的有效性。
首先,复杂科学可以帮助研究者更好地了解社会现象的复杂性。
传统的教育现象研究趋向于将学校中的现象简化为单个行为,从而忽略了复杂性和多样性。
而复杂科学家们利用现代计算机和大量数据,从复杂性的角度来探究学校中的社会现象,以模拟这些社会现象的变化和发展过程,发现这些社会现象之间的复杂关系,帮助研究者更好地理解它们。
其次,复杂科学可以提高教学有效性。
复杂研究结果可以为学校和教育决策者提供有价值的信息。
通过定义不同的系统变量并分析它们的交互作用,可以深入挖掘教学现象,准确地估计各变量在教学有效性中的作用,并预测不确定的结果。
复杂科学可以为教学决策提供实用的方法和过程,使学校的行为更具预测性和可解释性,从而提高教学有效性。
此外,复杂科学还可以提高组织效率。
许多学校组织系统包含许多不同的元素,这些元素之间有许多复杂的关系。
复杂科学方法可以帮助研究者了解这些元素之间的复杂关系,分析组织的行为,从而找出最大化组织效率的解决方案。
复杂科学在教育研究中起着越来越重要的作用,它的方法论意义在于,可以更好地理解复杂的系统,更好地提高教学、组织和成就的有效性。
它可以为学校和教育决策者提供有价值的信息,从而帮助他们更有效地实现自己的目标。
★复杂性科学及方法论研究与应用★
自然辩证法论文论文题目:复杂性科学及方法论研究与应用学院:研究生学院班级:硕研2012-10班姓名:赵明磊学号: 2012021042 专业:软件工程摘要复杂性科学是研究复杂系统行为与性质的科学,它的研究重点是探索宏观领域的复杂性及其演化问题。
它涉及数学、物理学、化学、生物学、计算机科学、经济学、社会学、历史学、政治学、文化学、人类学和管理科学等众多学科。
之所以被称为复杂性科学,有很多种理由,其中之一是由于它具有统一的方法论——整体论或非还原论。
因此复杂性科学被称为整体论科学或非还原论科学,也有人把它看作是与简单性科学相对立的科学。
复杂性科学诞生的标志是一般系统论的创立。
复杂性科学是指以复杂性系统为研究对象,以超越还原论为方法论特征,以揭示和解释复杂系统运行规律为主要任务,以提高人们认识世界、探究世界和改造世界的能力为主要目的的一种“学科互涉”的新兴科学研究形态。
关键字:复杂性科学、复杂性、复杂系统、方法论、复杂性系统、科学、简单性科学、整体论、非还原论AbstractComplexity science is the study of complex system behavior and the nature of science, it emphases of the research is to explore the complexity of macroscopic field and its evolution problem. It involves mathematics, physics, chemistry, biology, computer science, economics, sociology, history, politics, culture, anthropology and management science, and many other subjects. It is called a complexity science, there are many reasons, one of which is because it has a unified methodology -- the theory of the whole or the reductionism. So the complexity science is called the theory of the whole science or non reductionism science, also some people see it as and simplicity science relative made scientific. The birth of complexity science sign is the establishment of the general system theory. Complexity science refers to complexity system as the research object, to transcend the reductionism for methodology characteristics, in order to reveal and explain complex system operation rule as the main task, in order to improve people know the world, explore the world and change the world for the main purpose of the ability of a kind of "subject mutual reference" emerging scientific research form.Key word: complexity science, complexity, complex system, methodology, complexity system, science , Simplicity science, holism, Non reductionism前言兴起于20世纪80年代的复杂性科学(complexity sciences),是系统科学发展的新阶段,也是当代科学发展的前沿领域之一。
基于复杂性科学的课程研究方法论初探
方法论初探2023-11-03•引言•复杂性科学概述•基于复杂性科学的课程研究方法目录•复杂性科学在课程研究中的应用•基于复杂性科学的课程研究方法论的挑战与展望•结论与参考文献目录01引言当前教育背景随着教育领域的发展,课程研究方法论已经成为了教育改革的重要方向。
研究意义基于复杂性科学的课程研究方法论能够为课程设计、实施和评价提供新的视角和指导,有助于提高教育质量和效果。
研究背景与意义研究目的与内容研究目的本研究旨在探讨基于复杂性科学的课程研究方法论,分析其基本原理、应用领域和实践策略。
研究内容研究内容包括复杂性科学的基本概念、课程研究方法论的演进与变革、基于复杂性科学的课程研究方法论的构建与应用等。
本研究采用文献综述、案例分析和实践探索等多种方法,对基于复杂性科学的课程研究方法论进行深入探讨。
研究方法研究结构包括引言、文献综述、方法论构建、实证分析、结论与展望等部分。
研究结构研究方法与结构02复杂性科学概述复杂性科学的定义与特点复杂性科学的定义复杂性科学是一种研究复杂系统内在运作机制和规律的科学,通过数学、计算机科学、物理学、生物学等多个学科的交叉研究,实现对复杂系统的定量描述和模拟。
复杂性科学的特点复杂性科学强调对系统的整体性、非线性、自组织性等特征的研究,注重从多因素、多层次、多变量角度分析系统的动态行为和演化规律。
复杂性科学的研究范畴研究复杂系统的组成要素、拓扑结构、功能机制等,揭示系统内在的相互作用和动态演化。
复杂系统的结构与功能研究复杂网络的结构特征、演化规律和动力学行为,探讨网络拓扑结构对系统功能和行为的影响。
复杂网络的构建与分析研究复杂系统的稳定性、可控性和优化问题,探索通过反馈机制和智能算法实现对复杂系统的有效控制和优化。
复杂系统的控制与优化复杂性科学广泛应用于生态学、社会学、生物学、经济学等多个领域,为解决实际问题提供了新的视角和方法。
复杂系统的应用领域复杂性科学的思想可以追溯到早期的哲学和自然科学研究,如莱布尼茨的微积分学、康德的哲学思想等。
复杂性科学及其方法论意义(文科博士生学位课讲座)课件.
12
探索复杂性运动
【耗散结构论】 Dissipative
• structure theory 创始人:[比利时]物理化学家,普利 高津(获得1977年化学诺贝尔奖金)。 中心思想:也称为非平衡系统自组 织理论。一个开放系统在达到远离 平衡态的非线性区时,一旦系统的 某个参量的变化达到一定的阈值, 通过涨落,系统可能发生突变,即 非平衡相变。 由原来无序的混乱状态转变到一种 时间、空间或功能有序的新状态。 从化学研究中发现了“非平衡是有 序之源”、“通过涨落而有序”的 重要原理。
• • • • • • 创始人:苏波格丹诺夫。奥地利理论生物学 家贝塔朗菲(相片) 中心思想:任何事物都可以视为系统,从整体 的角度看待和处理世界上的一切事物。 所谓系统,是由相互联系相互制约的若干部 分,按一定规则组成,具有一定功能的整体。 系统可概括为:组织起来的整体; 输入;输出; 为了一个目的。 突出事物的: 整体性、有机性、动态性、有 序性。 系统论后来发展成为一大类横断性综合性 的学科,硬的成为系统科学:有系统工程等。 软的称为系统哲学:有软系统方法等。 系统论为复杂性探索奠定了一个基本的思 想框架。颠覆了自伽利略到牛顿创立的经 典科学的轨道。
5
引子/问题
【复杂性问题】 • 天气预报、地震预报 • 三体问题 • 股市、金融危机 • 社会文明方式的兴衰(苏东解体;世界大战突然爆发) • 宇宙起源、万物创生 • 生命起源、物种多样性的产生、灭绝和进化 • 细胞繁殖 • 大脑神经运动的机制和意识的产生 • 医学上不明原因的病变(心律;失调性疾病;癌细胞 增长;组织的死亡和再生)
8
•
探索复杂性运动
【控制论】 Cybernetics • 创始人:[罗马尼亚]奥多布来扎 (1938《协调心理学》)和 [美] 数学家维纳(《控制论―动物和 机器的控制和通讯》)(照片) • 中心思想:一切都是控制,一切事 物及过程都可以从控制的角度 来认识。认为,控制就是信息变 换和能动的过程。 • 提供了一套新概念和方法:调节 回路、 因果性、 目的性;方框 图、黑箱、传递函数等。
复杂系统及其方法论
综合集成思想与综合集成方法
从近代科学到现代科学的发展过程中, 自然科学采用了从定性到定量的研究方法 ,所以自然科学被称为“精密科学”。而 社会科学、人文科学由于研究对象的复杂 性,通常采用的是从定性到定性的思辨、 描述方法,所以这些学问被称为“描述科 学”。当然,这种趋势随着科学技术的发 展也在变化,有些学科逐渐向精密化方向 发展,如经济学、社会学等。
综合集成思想与综合集成方法
20世纪80年代中期,国外出现了复杂性 研究。所谓复杂性其实都是系统复杂性, 从这个角度来看,系统整体性,特别是复 杂系统和复杂巨系统(包括社会系统)的 整体性问题就是复杂性问题。所以对复杂 性研究,他们后来也“采用了一个‘复杂 系统’的词,代表那些对组成部分的理解 不能解释其全部性质的系统。”
复杂性研究和复杂科学的积极倡导者gellmann在他所著的夸克与美洲豹一书中曾写道?研究已表明物理学生物学行为科学甚至艺术与人类学都可以用一种新的途径把它们联系到一起有些事实和想法初看起来彼此风牛马不相及但新的方法却很容易使它们发生关联?gellmann虽然没有说明这里所说的新途径新方法是什么但从他们后来关于复杂系统复杂适应系统的研究来看这个新途径和新方法就是系统途径和系统方法
系统与系统科学
对于系统科学来说,一个是要认识 系统,另一个是在认识系统基础上, 去改造、设计和运用系统,这就要有 科学方法论的指导和科学方法的运用 。
主要内容
现代科学技术的发展 系统与系统科学 综合集成思想与综合集成方法 综合集成理论与综合集成技术 综合集成工程
综合集成思想与综合集成方法
对于简单系统和简单巨系统都已有了相 应的方法,也有了相应的理论与技术并在 继续发展之中。但对复杂系统和复杂巨系 统(包括社会系统)却不是已有科学方法 所能处理的,需要有新的方法论和方法, 这是一个科学新领域。
复杂性科学方法
在微观的主体模型的基础上,霍兰开始建立整个系统的宏观模型,他称之为回声 模型(Ehco model)。他在“主体”这个概念之外,又定义了两个新概念:资源 (resource)和位置(Stie)。主体具有最简单的功能:寻找交换资源的其他主体,与 其他主体进行资源交流,保存及加工资源。 为此,主体要有三个基本部分: (1)进攻标识一一用于主动与其他主体联系和接触; (2)防御标识一一用于其他主体与自己联系时决定应答与否; (3)资源库一一用于储存的加工资源。 它的功能包括:主动与其他主体接触,同时也对其他主体的接触进行对答,如果匹 配成功则进行资源交流,在自己内部储存与加工资源,如果资源足够,则繁殖新 的主体。在此基础上,整个回声模型成为如下情况:整个系统包括若干个位置,每 个位置中有若干个主体,主体之间进行交往,交流资源和信息。这就是最基本的 回声模型。 这个基本的回声模型还过于简单,无法描述复杂的系统行为,因此霍兰在基本模 型的基础上逐步引入了“交换条件”、“资源转换”、“粘着”、“选择交配”、 “条件复制”等五种机制,形成了扩展的回声模型。 通过回声模型,霍兰清晰地解释了CAS(特别是基于计算机的CAS)的重要性质, 探讨了CAS如何演化、适应、聚集、竞争、合作,以及与此同时如何创造极大的 多样性和新颖性等。回声模型是使用很少的原理构建出极其优美的模型典范,为 复杂性如何涌现和适应设定了一个路标。
6
自组织临界性理论的沙堆模型 所谓自组织临界性指的是一类开放的、动力学的、远离平衡态的、由多个单 元组成的复杂系统能够通过一个漫长的自组织过程演化到一个临界态,处于 临界态的一个微小的局域扰动可能会通过类似“多米诺骨牌效应”的机制被 放大,其效应可能会延伸到整个系统,形成一个大的雪崩。临界性的特征为, 处于临界态的系统中会出现各种大小的“雪崩”事件,并且“雪崩”的大小 (时间尺度和空间尺度)均服从“幂次”分布。 人工生命研究中的人工生命模型 兰顿在隐喻性概念一一混沌边缘一一的基础上,与其他学者一起建立了探索 人工生命生成演化的各种模型,如自繁殖元胞自动机、鸟群(BiodS)模型、蚁 群模型、Tierra模型、Avida模型、“阿米巴世界”等。 正是通过这些模型,兰顿等人发现,生命的本质在于物质的组织形式而不在 具体的物质本身;如果我们在某种媒质中创造出产生混沌边缘的条件,那么我 们就可能在这种媒质中创造出生命来。
面对复杂性科学要探索科学认识方法的新范式
科学哲理面对复杂性科学,要探索科学认识方法的新范式!"#$$%#&’$()’*’&+$&",(’-’(,.$/0$)1"23*"45"678$9’):#&’$(&$肖显静#中科院研究生院人文学院,副教授、博士北京!$$$%&’还原论的方法论原则、实验经验和数学方法,促进了近现代科学的产生和蓬勃发展,由此上述原则、方法也备受当代众多科学家的推崇,且被认为在研究自然时是普遍有效的。
(!)但未来的科学认识方法难道应该永远遵循这个范式吗*本文拟对这一问题进行具体分析。
一、有什么样的自然观就有什么样的认识方法科学是人对自然的认识。
它是以人的自然观作为预设前提的,并且在这样的基础上产生相应的认识方法。
史前人类没有科学、没有文字而只有口头文化,没有现代人关于知识和真理的概念体系和任何自然规律的概念,没有因果决定论的自然观,也没有近现代科学所认可的那种事物间的机械的和物理的相互作用的概念。
他们只有通过想象来认识事物,认为宇宙中发生的事情是善恶两种力量作用的结果。
因此,他们是用人格化的力量来解释事物的运动变化的。
在他们的世界观中,拟人化的神对世界以及人类的干涉具有无限性,因此,对任何事情不可能得到可靠的预测;世界成了一个反复无常的世界;自然现象也被人格化和神化了,被看作是神意下的壮举,而根据神化的自然观是不可能获得对世界的有效认识的。
到了公元前六世纪,在这样的神化自然观盛行的同时,一种新的哲学思维模式———古希腊哲学诞生了。
它可分为两种趋向:一是机械论的世界观;一是内在目的论的自然观。
前者主要体现在阿那克思曼德、赫拉克利特、留基伯、毕达哥拉斯等对世界本原的直观探索上,具有机械还原论的内含。
他们探寻世界的成分、组成和它的运行等等;开始仔细思考、推论和证明自然的法则,形成对自然的独特的看法。
不过,由于那时,科学尚处于萌芽状态,人们对自然的上述认识是以思辨和直观的方式进行的。
研究复杂系统问题的科学方法:交换、比较、反复
研究复杂系统问题的科学方法:交换、比较、反复生命体和与生命有关的生态、政治、经济、军事等问题,都是复杂系统问题。
复杂系统由多子系统、多层次结构组成,既有集中统一的指挥、协调,各层级结构体又有一定的独立性,相互之间又有物理、化学、生物、信息等方面的作用和反作用,与外部环境也有物质、能量、信息等方面的交流。
这样的系统就像一个不断运动着的、立体的蛛网,牵一发而动全身,研究可逐步分解为单因素精确求解的简单系统问题,可以采用严格遵循形式逻辑规则的细分还原法。
但是使用这样的方法研究开放的巨复杂系统问题,既难以细分,更无法精确还原,得出的结果往往与客观事实大相径庭,有时甚至南辕北辙。
陈云同志总结他亲身经历的革命战争和经济建设经验,总结出交换、比较、反复的方法。
交换可以在其他变量大体不变的情况下,观察其中某一个变量的变化对输出端的影响,最大限度地排除其他因素的干扰,只对单个变量的多个不同状态进行比较,可以更容易找出其中的因果关系。
交换可以让两种被比较的对象处于对方的地位和环境,这样可以更公正地比较两者的利弊,结果更形象,也更有很说服力。
在上述设计中,其他变量大体不变是理论上的,在实践中总会有误差,少数一、两次试验出现误差的几率更大,多次反复可以从更多的数据中取平均值,尽量减少误差率,提高结果的可靠性。
由于受试的环境可能随着时间发生变化,所以即使是交换的方法也无法保证两者受试的条件绝对一致,公平只能是相对的。
葛森在寻找治疗自己偏头疼的方法时,开始就是采用排除法,只吃苹果,然后逐一增加。
发现这样比较容易发现哪种新增加的食物会触发偏头疼,由此发明了预防和治疗偏头疼的有效饮食方法。
以后他又逐步发现这种疗法不仅能治疗偏头疼,也能治疗皮肤结核、肺结核等结核病,能治好糖尿病。
到美国以后他潜心研究用饮食疗法治疗癌症,取得了巨大的成功。
坎贝尔根据印度医生的试验,做了摄入各种比例牛奶酪蛋白和黄曲霉菌与癌症产生、发展关系的实验,发现摄入5%以下的动物蛋白与各种剂量的黄曲霉菌都不会出发癌症,20%的动物蛋白和各种剂量的黄曲霉菌都可能触发癌症的产生和发展。
万法归一论——浅论复杂科学特点与研究方法
文章编号:1000-2375(2002)01-0001-05万法归一论———浅论复杂科学特点与研究方法李 兵,卢正鼎(华中科技大学计算机科学与技术学院,湖北武汉430074)摘 要:复杂科学是现代科学研究的前沿,属于多学科交叉范畴.应从演化性和整体性出发,应用综合方法去解决复杂性问题,并提出中国传统文化思想对复杂科学的研究具有重要的指导意义.同时,还阐述了元胞自动机理论以及作为复杂科学研究工具的优点.关键词:复杂科学;综合;中国传统文化思想;元胞自动机中图分类号:N03;TP301.1 文献标识码:A收稿日期:2001-03-13基础项目:国家高性能计算基金资助(99319)作者简介:李 兵(1969- ),男,博士生,讲师,工作单位:湖北大学数学与计算机科学学院1 引 言在西方近代科学产生之前,人们对世界的看法是混乱的,因此需要上帝来主宰一切.牛顿力学、微分学的诞生使得机械决定论取代了神学决定论,从而深深地影响了后来两百多年人类的信念、认知途径和思维方法.拉普拉斯将这一理论推广到全宇宙,认为宇宙间万事万物可以服从单一的因果关系,可以由微分方程描述,由初始条件、边界条件就可知事物的过去和未来.这种思想在哲学上就是机械决定论,在一个均匀的、没有演化、静止的宇宙中,物体、时间和空间是分离的,未来包含在过去中.爱因斯坦的相对论改变了牛顿的这一宇宙模型,物质和时间连在一起,空间和时间产生于物质,质量和能量是同一个问题的两个方面.他认为自然法则仍然是简单、美丽、和谐的统一,过去和现在的差异是我们的幻觉,未来仍然是可以预测的,随机性引入科学是我们无知的表现.这种思想在科学分析上导致了简化论和还原论,在科学分类上形成了极为精细的众多分支.例如,现代数学中就有上百个分支,任何一个数学家现在都不能完全掌握数学的全貌.1900年希尔伯特可以一个人提出23个带全局性的数学问题,而1976年在美国依利若斯大学的一次国际数学会议上,却是由25位著名数学家共同提出27个方面的数学问题.然而,随着科学研究的更深层次的研究,人们发现了许多出人意料的新问题,这些问题无法纳入到传统的理论框架之中.正如当代法国数学家曼德布罗特所说:“云不是球体,山不是锥体,闪电的展开也不是一条直线,大千世界充满着意想不到的复杂性.”这些问题就是复杂性问题,由此产生了复杂科学.2 复杂系统的演化性长期以来,人们一直认为,一个系统在确定性激励的作用下一定得到确定性的响应,只有在随机性的激励下,响应才是随机的.因此对确定性运动和随机性运动,分别采用不同的数学工具分开处理.一个确定的动力学系统的主要特点是由现在可以决定将来,由现在时刻的状态可以决定下一时刻的状态,相互之间的关系是完全确定的.一个确定性系统,在激励和初始扰动下,经过较长时间后,达到的状态称为定常状态,这种定常状态原来一直认为有平衡态(运动趋于不变的定态)和周期态(包括周期运动或似周期运动)两种.但是,后来人们发现还有第三种状态———混沌态.20世纪60年代初,气象学家Lorenz 以无限平板之间流体热对流运动作为大气对流的模型时,发现第24卷第1期2002年3月湖北大学学报(自然科学版)Journal of Hubei University (Natural Science Edition ) V ol.24 N o.1 Mar.,2002初始条件只有1Π1000的误差的两组计算结果却造成了其后果完全不同的演化过程.初始条件代表在起始时刻对系统所做的测量,测量越精确,初始条件对系统的扰动就越小.但在Lorenz模型中,初始条件的信息由于发散而丧失,这时便不能预测系统长时间的行为.Lorenz由此得出结论:“任何具有非周期性行为的物理系统,将是不可预测的,会导致混沌(chaos).”Lorenz方程是关于耗散系统中出现混沌的例子.对于保守系统,由于存在机械能守恒,它没有外激励,如果在初始扰动的作用下,保守系统的解是无规则的.就称为混沌解,否则称为规则解.关于线性保守系统以及单自由度保守系统(线性或非线性的)所有的解都是规则的,但是对于多自由度的保守系统,即使自由度为2,也可能出现混沌解[1].事实上,混沌现象在很多领域都普遍存在.在一个确定性的系统中出现了不可预测的随机运动———混沌,其中一个非常深刻的问题是时间的反演问题.在牛顿力学体系中,空间是均匀的,时间是对称的,运动在时间中保持不变,过去与将来是等价的,运动是可逆的.以牛顿第二定律为例:F=m d2r d t2 当改变时间t的符号时,t→-t,等式保持不变.其它许多理论,如麦克斯韦的电磁场论,爱因斯坦的相对论以及量子力学都有这个特点,即时间是没有方向的,可逆的.但是在热力学系统中,热传导和扩散过程不可逆,状态的演化是在单一时间方向上的,即熵的增加的方向.混沌现象的研究表明,即使只有3个粒子的系统也能得出熵增加的结果.系统进入混沌状态,运动变得极其复杂而不可预测,因而不确定,也说明时间是不可逆的.所以,世界总是处在发展和演化之中.混沌现象将人们带入了复杂性研究的领域,一般而言,复杂性对应的是一种非线性和非平衡问题.对于人们习惯的线性系统,有包括线性代数、线性微分方程、傅立叶分析、线性算子理论和随机过程的线性理论在内的强有力的解析方法和工具.然而除了非常简单的物理系统外,世界上几乎所有的事物和所有的人都处在充满关联的非线性环境中.不同领域中的非线性问题有着共同的性质和规律,对这一问题的研究正从形态和特征的研究,即范例研究,走向更高层次的研究.在对这一问题的研究中,必须充分考虑到复杂系统发展演化的特点.3 高层次的综合曾担任美国洛斯拉莫斯研究中心主任和著名的桑塔费研究所所长的乔治・考温曾说:“通往诺贝尔奖的堂皇之路通常是由简化论的思维取道的……这就造成了科学上越来越多的碎裂片.而真实的世界要求我们用更加整体的眼光去看问题.任何事情都会影响到其它事情,你必须了解事情的整个关联网.”[2]系统理论是现代科学不可缺少的指导性理论,对于复杂科学而言,更具有非同寻常的意义.系统是相互作用的各要素的总体.系统最基本的特性就是其整体性.系统的性质是组成系统的各个部分构成一个整体时才具备的.系统不等于各部分的简单相加,而是各部分有机的集合体.各部分之间的相互作用使系统产生了每个单独部分都不具备的性质.系统的整体性可以用一个公式来描述:N a(Q1,Q2,…,Q n)≥N a1(Q1)+…+N an(Q n). 式中Q1,Q2,…,Q n分别为组成系统的各个部分的定量表示(测度),可用它们代表系统的各部分. N a表示性质(功能).整体总是大于部分之和,只有在一些非常简单的机械系统中二者才会相等,非线性当然意味着不能简单叠加.系统的部分又表现为子系统,是一个层次结构.如人体由神经系统、呼吸系统、消化系统、血液循环等子系统组成,这些子系统又由心、肝、肺、肠、胃等器官组成,器官由无数细胞组成.复杂系统和简单系统的区别主要在于子系统的层次,而不是子系统的数目.高层次的问题可以是低层次所没有的问题.研究层次少、子系统之间相互作用弱的简单系统可以采用传统的还原论的方法,把事物分割开来研究、实验,然后再综合起来.但是对于复杂系统,即使知道如何分解,在低层次上已经没有了高层次性质,简单还原论必然导致只有树木,而不见森林.因此,对复杂系统的研究,只能立足于综合而不是分析,从整体上把握系统性质.我国学者钱学森对此提出采用从定性到定量综合集成(meta-synthesis)方法,即在将科学理论、经验知识和专家判断有机结合的基础上,提出经验假设(猜想,判断)———定性认识,然后用经验数据及大量参数的模型对其确定性进行检测,经过定量计算,通过反复对2湖北大学学报(自然科学版)第24卷比形成理论.这种方法虽然能解决一些实际问题,单从其实施过程看,它带有很强的摸索特点.4 中国传统文化思想的指导作用现代科学源于西方的文艺复兴运动.西方科学思想来源于一切都可以遵循数学设计的信念.西方科学结构起源于欧几里德几何的公理化思想,公理化方法是从少数几个初始概念和公理出发,由它们定义其它一切概念以及推演证明其它一切定理的方法.由此形成的理论体系称为公理系统.从柏拉图到笛卡尔,从康德到萨特,西方哲人总是追求对“存在”做出铨释,总是力图回答“是什么”的问题.这种孜孜不倦的追求导致了对世界、对问题的分解和分析,对每一个细分建立一套符合逻辑的公理化系统体系来加以解释和说明.牛顿力学和爱因斯坦的相对论都是用公理化方法建立的.公理是经验的集中表现,它们在个别的领域是正确的,可以说明问题的.事实上,这种方法在比较简单的无机世界中取得了辉煌的成就.然而,公理化方法是有局限的,希尔伯特在《几何基础》一书中曾提出公理化系统三原则:相容性、独立性和完备性.1931年哥德尔发表了《论数学原理和关于系统Ⅰ中的形式不可判定命题》,这篇论文证明了以他的名字命名的哥德尔不完备性定理:在包含初等数论的无矛盾的形式系统中,存在着一个不可判定的命题,即该命题和它的否定命题在这个系统中都不能证明.即一个无矛盾的逻辑体系不可能是完备的,相容性和完备性不可兼得.哥德尔定理被誉为数学和逻辑学上的里程碑,是人类思想最深刻的成就之一.实际上,哥德尔定理在认识论上也具有重要意义,它不但证明纯数学世界是无止境的,不可能从任何一组公理推导出所有的数学,同时也说明真理是相对的,低层次的问题是其自身无法解决的,只有上升到更高层才能解决.当科学发展到今天,人们的研究深入到复杂科学这种跨学科领域的时候,人们认识到世界并不是简单几个公式就可以描述的,宇宙的秩序也不是自然存在的,如何从整体上把握不断演化的复杂系统?这个问题是开拓21世纪科学的必由之路,它带来的将是一场可以与文艺复兴等量齐观的运动.然而西方科学在指导思想上显得有些力不从心了.开启新时代科学之门的钥匙只能在东方,在源远流长的中华文明的宝库之中寻找.中国传统文化最兴盛的时候是春秋战国的百家争鸣时代,最基本的宇宙观理论体系是源于远古河图、洛书的周易以及阴阳、五行、八卦、九宫的理论,而居于统治地位的是相辅相成的儒、道学说.让我们来看一看这些源于古代的智慧有什么深邃的思想.其一,多层次的整体系统观.中国古代学者认为万物同源,天人合一.老子曰:“有物混成,先天地生.寂兮寥兮,独立而不改,周行而不殆,可能为天地母.吾不知其名,强字之曰道,强为之名曰大.大曰逝,逝曰远,远曰反.故道大,天大,地大,人亦大.域中有四大,而人居其一焉.人法地,地法天,天法道,道法自然.”庄子也谈到:“天地与我并生,而万物与我为一.”宇宙中最重要的是无所不在的客观规律———道.天即宇宙,地是我们赖以生存的环境,人代表生命,是万物之灵,是我们所知的生命的最高表现形式,3个层次囊括一切,成为一个整体系统.其中,一以贯之的是道,万事万物从根本上讲是一致的.孔子曰:“道不远人.人之为道而远人,不可以为道.”因此,儒家思想的要旨讲求修身与用世,在生活中体现对道的崇尚和追求,在人的身与心层次上达到和谐,同时在人与社会的层次上进行统一.它反映了人在认识自然过程中的主观能动性.其二,生生不息的演化模型.中国文化的宇宙观是变化发展的,这种思想集中体现在《易经》中.《易经・系辞上传》说,“易与天地准,故能弥纶天地之道.”“是故,易有太极,是生两仪,两仪生四象,四象生八卦”,“一阴一阳之谓道,继之者善也,成之者性也.”“一阖一辟谓之变;往来不穷谓之通;”老子也提到:“道生一,一生二,二生三,三生万物.万物负阴而抱阳,冲气以为和.”后来的学者依据这些思想建立了太极图的模型,宇宙是太极,太极源于无极,无极相当于虚无,虚无这个概念并非真无,虚无也是气,而气是构成万物的基本单元,无极相当于一种既平衡又混沌的状态.在太极中生出两种基本力量:物质和能量,这就是阴阳.这两种力量处于一个整体或体系之中,它们相互独立、相互影响、相互配合,并处于积极的运动之中.“阳变阴合而生金木水火土,五气顺布,四时行焉……化生万物,万物生生而变化无穷焉.”即由阴阳而生五行,再产生生生不息的万事万物.其三,有机自组的过程理论.与西方文化不同,中国文化的内涵是关于人的有机体、一切有机世界和3第1期李 兵等:万法归一论———浅论复杂科学特点与研究方法4湖北大学学报(自然科学版)第24卷复杂事物间规律的描述以及对这些规律的原因探索.事物的各部分就像一个生物体那样互相关联协调而不可分.庄子讲:“彼出于是,是亦因彼.彼是莫得其偶,谓之道枢.枢始得其环中,以应无穷.是亦一无穷,非亦一无穷也”,“其分也,成也;其成也,毁也.凡物无成与毁,复通为一.”现代科学的一个热点是自组织现象,即某一系统或过程中自发形成时空有序结构或状态的现象.这种现象与热力学第二定律是相矛盾的.热力学第二定律认为宇宙的发展是趋于热的平衡,是走向无序的,是负的反馈.但是我们看到自然界,特别是生命体,存在大量的自组的有序现象,是正的反馈.对这一点,道德经非常深刻地指出:“天之道,损有馀而补不足.人之道,则不然,损不足以奉有馀.”从上面的简要说明可以看出,中华文化里面有非常丰富的营养值得我们去汲取.科学的过去兴盛于西方,科学的未来将昌明于中国.5 浅深聚散,万取一收宇宙间最有序的东西莫过于生命,生命现象也是最复杂的现象.生命从无到有,从低级到高级,不断进化,自强不息.达尔文的进化论揭示了生命形式的多样性,自然选择摒弃了上帝造人的谬论.但神学家们提出自我复制的生命形式不可能起源于原始汤中的随机性化学反应,其理由是从无机的基本粒子相互作用组成有机大分子,进而产生高度有序的生命的过程从统计学上讲是可能的,但所要求的时间超过宇宙的年龄.现代复杂科学研究回答了这个问题,那就是:生命并不是随机偶然产生的,但并非上帝的杰作,而是大自然自我组织的表现.现代科学中许多成果都来源于对生命现象的研究,其实质性的定量研究与计算机科学的发展是息息相关的,因为只有计算机才能承担如此复杂的计算任务.例如,洛斯拉莫斯的博士后克利斯・朗顿(Chris Langton)著名的人工生命的研究就是用计算机来模拟进化的基本生物机制和生命本身,而这一研究的基础是冯・诺依曼创立的元胞自动机理论.元胞自动机(Cellular Automaton,简称C A)是一种时间、空间、状态皆离散,空间上相互作用,时间上的因果关系都是局部的网格动力学模型[3].冯・诺依曼从20世纪40年代末期开始就对自我繁衍的问题产生兴趣.当时,他已设计完成了可编程的数学计算机,可编程的计算机在当时是新奇的事物,数学家和逻辑学家都想知道一个问题:一台机器能通过编程来复制自己吗?在1948年普林斯顿的一次课堂上,冯・诺依曼用计算机来比喻活细胞,它描述了活细胞的功能与机器之间的类比关系,肯定地回答了这个问题.并以此建立了称为“自动机的一般逻辑学说”(The G eneral and Logical Theory of Automata).冯・诺依曼做了一个比方,他说,想象一台机器飘浮在一个池塘的水面,这个池塘里还有许多机器的零部件.接着,再想象只要给出任何一台机器的描述,这台机器就能在池塘中一直划到寻找到制造机器所需要的合适的零部件,然后就制造出这台机器.特别是,如果向它描述一下它自己,它就能够复制出自己.但是,这还不完全是自我繁衍,因为新复制出的机器虽然零部件全都很合适,但它不会描述自己,也就不能继续复制自己.所以,还应该有一个对下一代机器的复制性描述,然后就能自我繁衍了.这个比喻实际上指明了自我繁衍的基本材料所应该具备的两个基本功能:一方面起到计算机程序的作用,是一种在繁衍后代的过程中能够运行的算法;另一方面,它必须起到被动数据的作用,是一个能够复制和传给后代的描述.直到1953年科学家发现了DNA的分子结构,证实了DNA的确同时具备冯・诺依曼指出的两个基本功能.20世纪初,哥德尔、图林、彻基等人指出,无论机器是用何种材料制成的,机器流程的实质,即导致机器行为的,根本就不是机器本身,而是一种抽象的控制结构,是可以用一种规则来表示的程序.这也就是说,机器的“机制”在于软件,而不是硬件.同样,生命体的“生命力”存在于分子的组织之中,而不存在于分子本身,分子本身只是维持生命体代谢的必要条件.冯・诺依曼的元胞自动机这个概念及其理论系统就是一种自我繁衍的“机制”的抽象理论.它想象一个可编程的宇宙,在这个宇宙中,时间是离散的,空间是一个个分离的细胞格.每一个细胞都是一个极为简单、抽象定义的计算机,一个有限的自动机.在任何一个时间和任何一个细胞中,自动机都会仅存在于无限多个状态中的唯一的一种状态之中.每一个时间变化,自动机就会转入一个新的状态,这种新的状态是根据其当前的状态及其邻居的状态所决定的.规律———演化规则被编入细胞转换表内,告诉每一个自动机根据其邻居的状态做出改变.于是,冯・诺依曼的元胞自动机模型证明:如果将自我繁衍看成生命体的唯一特征,那么机器也能做到.1984年,美国加州理工学院的物理学家史蒂芬・沃尔夫雷姆指出:元胞自动机不仅具有丰富的数学结构,而且与非线性动力学深刻相似.他在定量的计算机实验的基础上,根据C A 演化的长期动态,将C A 的动力学行为分为4类[4].①平衡型.趋于一个空间平稳的构型,即元胞的状态不再改变,对应动力学中的不动点;②周期型.趋于一系列简单的结构或周期结构,对应动力学系统中的周期轨道;③混沌型.表现出混沌的非周期行为,对应动力学中的混沌;④复杂型.出现复杂的局部结构,产生自组织现象.C A 具有非常深刻的思想性,这反映在许多范畴之中.第一,简单与复杂.C A 模型非常简单,但是非常简单的演化规则却能产生出复杂的现象.若元胞的状态有k 种,状态的更新由自身及其四周邻近的n 个元胞状态决定,那么可能的演化规则数,即元胞自动机的种类有k k n 种,这是个很大的数目,这正是模拟复杂现象需要的条件.在4种类型的C A 中,复杂型的演化在常规动力学系统中找不到相对应的行为.但这种类型的行为却正是C A 最为精妙之处.它总在不停地变化,但又不是完全的混沌,而是在繁衍、生长、重组.这种类型的最著名的例子就是“生命游戏”.第二,局部与整体.C A 是全离散的,演化规则是针对局部单元间的相互作用.这与复杂系统是相类似的,如神经元组成的大脑、个体组成的社会等.在这种系统中实际上是按照一种自涌计算(emergent com putation )来运作的,即高层次的宏观整体本身没有算法,而是数量庞大的微观局部计算所表现出的一种自涌行为.这种行为的另一个典型是神经网络.第三,无序与有序.序是反映事物的组成规律和出现的顺序,单个事物或因素不存在序的概念.系统的序结构反映系统内部组成要素之间有机联系方式和相互作用的顺序.平衡、对称与无序一体,非平衡、破缺与有序相连,非平衡是有序之源.在C A 中,同样的演化规则却可能既产生有序的行为,又产生无序的行为.这正与生物进化相似,衍生出丰富的多样性,更有序的结构往往是更能适应环境的,它们会在自然选择中生存下来.第四,确定与随机.复杂系统中单元的相互作用往往是比较简单的确定性过程,但系统行为是复杂的,不可预测的.C A 与Turing 机是等价的,因此,它具有强大的计算功能.但同时,它也是不可判定的,即不能用有限的程序步骤对C A 演化的终态给出一般性答案.同时,复杂型C A 远离平衡但又并非混沌,是“亦此亦彼”而不是“非此即彼”,是一种“混沌的边缘”,即保持在秩序和混沌的临界点上.所以C A 中存在确定性与随机性的高度统一.第五,偶然与必然.复杂型C A 的演化虽然具有自相似性,但并不是过去的简单重复,而是不可逆的发展变化.尽管不可前知会出现哪种类型的C A ,但它一定蕴含在其初始的细胞分布状态、边界条件和演化规则之中.因此,在C A 的变化过程中包含着偶然性和必然性的统一.由于C A 在计算模式上天然是同步并行的,所以它与当今对非冯・诺依曼体系结构计算机的研制方向是一致的.因此,随着计算机技术的进步,C A 在计算机模拟复杂系统方面必将具有越来越广阔的前景.6 结束语研究复杂科学的目的在于找到规律的统一.对于非线性、不规则的复杂问题,传统解析数学几乎无能为力,在研究方法和技术上只能依靠计算机和实验数学方法,对理论分析难以处理的复杂问题给出丰富的、系统性的、感性直观的启示.计算机可以计算和模拟许多客观世界中,甚至于想象世界中的复杂问题,可以建立模型,方便地修改参数,动态观察结果.对数学科学本身而言,利用越来越先进的计算机,现代数学甚至未来的数学将会是实验的数学.复杂科学研究依赖于计算机,而计算机本身并不是“以复杂取胜”,相反计算机工作原理是非常简单的,它是“以快取胜、以多取胜”.这也启示我们,复杂与简单是相对又相通的.复杂源于简单,复杂系统由简单单元构成,同时原来简单的事物随着认识深化可能变得复杂.诚如《道德经》所言“图难于其易,为大(下转第20页)5第1期李 兵等:万法归一论———浅论复杂科学特点与研究方法。
复杂性科学的方法论研究
复杂性科学的方法论研究复杂性科学的方法论研究复杂性科学(Complexity Science)是一门涵盖多门学科的研究领域,它致力于研究和探索系统的复杂性质和行为。
在过去几十年里,复杂性科学已经逐渐从理论上和应用上蓬勃发展,成为许多研究领域的热点和前沿。
在这一背景下,复杂性科学的方法论研究愈发重要,它不仅帮助我们理解复杂性现象的本质,还提供了一套可行的研究方法和工具,使我们能够更好地应对复杂性带来的挑战。
首先,复杂性科学的方法论研究强调系统思维和整体性观察。
传统科学往往采用分析思维,将问题拆解为简单的部分进行研究。
而复杂性科学认为,复杂系统的行为往往不仅仅受到单个部分的影响,还受到系统内部和系统外部各种因素的综合作用。
因此,我们需要通过整体性观察,深入理解系统内部的相互关系和外部环境对系统的影响,以揭示复杂系统的复杂性质。
其次,复杂性科学的方法论研究注重动态分析和模型建立。
复杂系统的行为是动态变化的,传统的静态模型无法捕捉到系统的演化过程。
因此,复杂性科学倡导基于时间序列数据进行动态分析,并建立动态模型来描述系统的行为。
动态模型可以通过数学方法、计算机模拟等手段进行建立和仿真,以揭示系统内部的动力学规律和行为演化。
此外,复杂性科学的方法论研究提倡异质性和非线性的思维方式。
复杂系统往往由多个元素构成,这些元素之间存在着差异和相互影响。
复杂性科学通过考虑元素间的异质性,并引入非线性的因子,使研究模型更加贴近实际情况。
例如,在经济学领域中,传统的经济模型假设市场是完全均衡的,但复杂性科学认为市场受到各种非线性因素的影响,如信息不对称、心理预期等,从而引发市场的失衡和波动。
此外,复杂性科学的方法论研究倡导自组织和涌现的观念。
复杂系统具有自组织的能力,即系统内部的元素和规则可以在无中央控制的情况下形成有序的整体行为。
涌现是指系统整体行为和性质不可简单由其组成部分的行为和性质所解释。
复杂性科学通过研究自组织和涌现的机制,揭示复杂系统内部的协同和新颖性,为对复杂现象的解释提供了新的视角和方法。
复杂性科学(2010)
27
3.元胞自动机在矿业中的应用
3.3 元胞自动机在矿业中的应用(续)
(2)东北大学周辉等根据岩石的细观非均质特征,从 基本的能量传递规则出发,建立了一种物理元胞自 动机PCA模型,对岩石破坏演化过程中的声发射和 混沌性进行有效模拟。(裂纹扩展CA模拟图)
2013年7月21日
sjcai@
2013年7月21日
sjcai@
18
2.国内外复杂性科学研究现状
2.4目前复杂性科学研究的热点问题(续) (3)复杂性研究的统一框架? J.Holland对棋类游戏、数字系统、神 经系统、元胞自动机等进行了研究归纳, 提出了一个复杂性研究的普适框架CGP( Constrained Generating Procedures)。
2013年7月21日
sjcai@
21
3.元胞自动机在矿业中的应用
3.1 元胞自动机(续) 3.1 元胞自动机(续) 邻居 :在一维元胞自动机中,通常以半径来 确定邻居;二维元胞自动机的邻居形式较为 复杂,如常用的有以下几种形式:
Von. Neumann型 Moore型 扩展Moore型
sjcai@
2
1.引言
1.1 定义 (1)复杂性(Complexity)-由于国内外研 究者在自然科学、社会与人文科学、工程技 术、管理科学中对“复杂性”的理解与研究 范畴有差异,目前尚无统一的严格定义。狭 义的可定义为:复杂性是指系统内部元素的 非线性相互作用而产生的行为无序性的外观 表象。
2013年7月21日
sjcai@
14
2.国内外复杂性科学研究现状
2.3 复杂性科学研究方法
(1)理论分析,即考察一个系统是否具有
“复杂性”:系统规模巨大、内在差别显
复杂性科学_复杂性科学与复杂性经济学
复杂性科学_复杂性科学与复杂性经济学复杂性科学的兴起表明了科学正处于一个转折点——那就是复杂性科学的兴起(成思危,1999),是人类历史上又一次科学范式的大变革。
如果说相对论排除了绝对空间和时间的幻觉,量子力学排除了可控测量过程的牛顿迷梦,那么,作为复杂性科学中的一个组成部分的混沌论则排除了拉普拉斯决定论的可预见性的狂想(格莱克,1990)。
而主流经济学的发展历史表明,自然科学每一次理论与方法的重大变革,都成为经济学创造思维的源泉(张永安、汪应洛,1997)。
因此,复杂性科学的兴起必然会对经济学的发展带来深远的影响。
本文拟就复杂性科学与经济学展开一些讨论。
二、复杂性概念苗东升(20XX年)认为,从科学方法论角度看,复杂性应是复杂性科学的首要概念,需要给出它的科学定义。
按照传统的理解,简单与复杂是相对的。
一个事物在未被认识以前是复杂的,一旦被认识了就简单了。
复杂性研究的提出最少可以追溯到20世纪40年代,明确提出建立复杂性科学也有10多年,但复杂性究竟是什么,目前还没有统一的说法。
不同的学者基于不同的学科背景和研究对象,给出不同的复杂性定义。
据郝柏林(1999)介绍,麻省理工学院的SethLloyd编辑了一份清单,至少有31种不同的复杂性的定义。
也许根本不存在统一的复杂性定义,至少目前不必追求这种统一定义,多样性、差异性是复杂性固有的内涵,只接受一种意义下的复杂性,就否定了复杂性本身(苗东升,20XX 年)。
但我们可以从以下几个方面来理解复杂性:(1)表现出复杂性的复杂系统一般是有大量的、不同的、相互作用的单元构成的网络。
每一单元都会受到其他单元变化的影响,并会引起其他单元的变化。
(2)各单元之间的相互作用是非线性的。
系统的整体不再为部分之和,部分与整体之间不只是现象上的因果关系,而是“一只活鸡被分成两半就不再是活鸡的两半”的关系。
复杂系统的过程具有不可逆性。
系统对初值具有很强的敏感性。
(3)复杂性是系统的某种动态行为,往往伴随涨落。
复杂系统的科学内涵及其研究方法
复杂系统的科学内涵及其研究方法引言在科学研究中,复杂系统成为了一个备受关注的领域。
复杂系统的研究涉及多个学科,如物理学、生物学、社会学等。
它不仅有着广泛的应用,而且在科学哲学上也有着重要的地位。
本文从科学内涵和研究方法两个方面来探讨复杂系统的重要性和研究特点。
一、复杂系统的科学内涵复杂系统的概念来自于物理领域,最早用于描述一些非线性、不可预测的系统,如混沌系统。
后来,这一概念逐渐扩展到了生物、社会等领域,并成为了跨学科研究的重要领域。
复杂系统的本质特征是由多个相互作用的个体组成的系统,个体之间形成复杂的关联。
这些关联使得系统的行为变得不可预测,系统呈现出非线性、不稳定甚至混沌的状态。
换言之,复杂系统的行为是具有非线性、车轮效应、分数维等特征的,它的行为具有随机性、不可预测性和不确定性。
从哲学角度来看,复杂系统具有“人类自然和社会现象的本质特征,其中包括不确定、不可逆、不平等、不可预测、不稳定、异质、自组织和适应性”等。
这些特征使得复杂系统成为了哲学上的重要研究对象。
对复杂系统的研究不仅为现代科学提供了新的思路,而且也为我们认识世界提供了新的方式和视角。
二、复杂系统的研究方法复杂系统的研究是一项具有挑战性的任务。
如何有效地研究复杂系统,是当前复杂系统研究领域中的一个热门话题。
1. 统计物理方法统计物理方法是研究复杂系统的一种重要方法。
这种方法突破了传统科学研究中固有的规律性和可预测性,采用统计学方法研究系统的不确定性和非线性特征。
在统计物理方法中,研究者经常使用复杂系统理论、随机矩阵理论、随机图理论等方法,对系统进行量化描述,可分析系统的复杂性。
2. 元胞自动机方法元胞自动机是复杂系统研究中的一种重要工具。
它是由元胞、状态和规则三部分构成的一个动态系统。
元胞自动机可以通过对复杂系统的计算来揭示系统中个体之间的相互作用,从而预测系统的演化。
3. 网络科学方法网络科学是近年来发展起来的一门新兴学科,它旨在从拓扑结构和网络属性等角度研究复杂系统的结构和功能。
复杂性科学的方法论探微
复杂性科学的方法论探微
蒋士会;郭少东
【期刊名称】《广西师范大学学报(哲学社会科学版)》
【年(卷),期】2009(045)003
【摘要】复杂性科学是系统科学发展的新阶段,非线性、不确定性、自组织性、涌现性等是复杂性科学方法论的具体特征.复杂性科学在对还原论进行批判和超越、对整体论进行追求和超越的基础上,创建了自己特有的方法论--融贯论.
【总页数】5页(P33-37)
【作者】蒋士会;郭少东
【作者单位】广西师范大学,教育科学学院,广西,桂林,541004;广西师范大学,教育科学学院,广西,桂林,541004
【正文语种】中文
【中图分类】G026
【相关文献】
1.复杂性科学对国家治理能力现代化的方法论意义 [J], 李振东;战伟平
2.复杂性科学视野下的城市设计方法论研究 [J], 肖彦
3.复杂性科学与思想政治教育现代化的方法论创新 [J], 马超
4.复杂性科学视域下学校评价结果解释研究的方法论探析 [J], 王薇;
5.房地产金融理论研究的方法论创新——复杂性科学的方法论对房地产金融理论研究的影响 [J], 李志锋
因版权原因,仅展示原文概要,查看原文内容请购买。
复杂性研究的若干方法论原则
Some Principles of Methodology of study of
Complexity Science
作者: 黄欣荣[1];吴彤[1]
作者机构: [1]清华大学科学技术与社会研究中心,北京100084
出版物刊名: 内蒙古社会科学
页码: 75-80页
主题词: 复杂性;复杂性科学;复杂性研究;方法论原则;研究过程;研究方法
摘要:在复杂性科学的研究过程中,我们应该遵循什么样的方法论原则呢?首先可以肯定,它不能离开现代科学方法的康庄大道完全去独辟蹊径,而是必须遵循一般科学方法论的基本规范,从各门科学中吸取、借鉴和提炼它的方法.不过,复杂性科学与传统的简单性科学相比,毕竟有其革命性的地方,所以传统的研究简单性科学的方法就不一定能完全照搬来用以研究复杂性的科学,故而其研究的方法论也应该有革命性的地方.对复杂性研究方法论的探索应该是复杂性研究的重要组成部分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复杂性科学的方法论研究
复杂性科学的方法论研究
引言
复杂性科学是一个跨学科的领域,涵盖了数学、物理学、生物学、社会学等多个学科的知识,并致力于研究和理解复杂系统的性质和行为。
复杂性科学的方法论是指在研究和解释复杂系统时所采用的研究方法和理论框架。
本文将探讨复杂性科学的方法论研究,并介绍一些常用的方法和工具。
一、复杂性科学的基础理论
复杂性科学的基础理论主要包括混沌理论、自组织理论和复杂网络理论。
混沌理论研究非线性系统的演化和随机性,在解释和模拟各种自然现象和社会现象时发挥了重要作用。
自组织理论探讨系统自动形成和演化的机制,强调系统内部的相互作用和调节作用。
复杂网络理论研究网络系统的结构和特性,包括小世界网络、无标度网络等。
这些基础理论为复杂性科学的方法论研究提供了理论基础和分析工具。
二、复杂性科学的研究方法
1. 模型构建和仿真
复杂性科学的研究方法之一是通过构建数学模型和进行计算机仿真来理解和预测复杂系统的行为。
模型可以是基于已有理论的数学方程,也可以是基于数据进行推导和构建的统计模型。
通过对模型进行仿真,研究人员可以观察和分析系统在不同参数条件下的演化和行为变化,从而揭示系统内部的规律和机制。
2. 多尺度分析
复杂系统往往具有多个层次和时间尺度的组成部分,不同
尺度的相互作用和调节关系是系统整体行为的重要因素。
因此,复杂性科学的研究方法需要采用多尺度分析的手段。
多尺度分析包括从微观到宏观的观察和测量,以及从瞬态到稳态的时间尺度分析。
通过多尺度分析,可以揭示系统内部的层次结构和相互作用模式,为理解和描述系统的复杂行为提供基础。
3. 数据挖掘和机器学习
随着信息技术的发展,我们现在可以获得大量的数据,这些数据可以用于研究和分析复杂系统。
数据挖掘和机器学习是复杂性科学的重要研究方法之一。
通过对大数据进行分析和建模,研究人员可以发现数据背后的规律和模式,并进行预测和优化。
数据挖掘和机器学习的方法可以应用于各种领域,如生物学、社会学和经济学等,帮助我们理解和解释复杂系统的行为。
三、复杂性科学的应用领域
复杂性科学的方法论研究在各个领域都有广泛的应用。
以下是一些典型的应用领域:
1. 生态系统和环境科学:复杂性科学的方法论可以用于
研究生物多样性、环境污染和气候变化等生态和环境问题。
通过模型构建和仿真,研究人员可以预测生态系统的演化和稳定性,为保护生态环境提供科学依据。
2. 社会网络和人类行为:复杂性科学的方法论可以用于
研究社交网络、人类合作和决策行为等社会现象。
通过分析和模拟社会网络的结构和动态,研究人员可以揭示社会行为的规律和机制。
3. 经济学和金融学:复杂性科学的方法论可以用于研究
经济系统和金融市场的行为。
通过分析和建模金融网络的结构和动态,研究人员可以预测和管理金融风险,为经济决策提供
参考。
4. 医学和生物学:复杂性科学的方法论可以用于研究生
物分子相互作用、神经系统和基因调控等生物过程。
通过分析和建模生物网络的结构和动态,研究人员可以理解和治疗复杂疾病,例如肿瘤和神经系统疾病。
结论
复杂性科学的方法论研究提供了一种全新的研究视角和分析方法,可以帮助我们理解和解释复杂系统的行为和演化。
通过模型构建和仿真、多尺度分析以及数据挖掘和机器学习等方法,研究人员可以揭示系统内部的规律和机制,为解决各种复杂问题提供科学依据。
复杂性科学的方法论研究在生态学、社会学、经济学、医学等各个领域都有广泛的应用,将为我们认识和改造世界带来新的启示和挑战
复杂性科学是一种跨学科的研究方法,可以帮助我们理解和解释复杂系统的行为和演化。
它不仅仅是一种理论框架,更是一种分析工具和问题解决方法,可以应用于生态学、社会学、经济学、医学等多个领域,为我们认识和改造世界带来新的启示和挑战。
首先,复杂性科学的方法论在生态学中具有重要的应用。
生态系统是由许多相互作用的生物体和环境组成的复杂系统。
通过分析和建模生态网络的结构和动态,研究人员可以揭示生态系统内部的规律和机制。
例如,在生态系统中,物种之间的相互作用和能量流动会形成复杂的食物网,研究人员可以通过构建模型和模拟来揭示食物网的结构和稳定性,从而预测和评估物种灭绝和生态系统崩溃的风险。
此外,复杂性科学的方法论还可以帮助我们理解生态系统的演化和适应机制,为保护生
态环境提供科学依据。
其次,复杂性科学的方法论可以用于研究社会网络和人类行为。
社交网络是由许多人的相互关系组成的复杂系统,人类合作和决策行为也具有复杂性和非线性。
通过分析和模拟社会网络的结构和动态,研究人员可以揭示社会行为的规律和机制。
例如,通过研究社交网络的结构和传播机制,研究人员可以预测信息传播的路径和速度,为社会管理和政策制定提供参考。
此外,复杂性科学的方法论还可以揭示人类合作和决策行为的模式和机制,为解决社会问题和提高社会效益提供科学依据。
此外,复杂性科学的方法论还可以应用于经济学和金融学的研究。
经济系统和金融市场是由许多相互作用的个体和机构组成的复杂系统,具有非线性和动态演化的特征。
通过分析和建模金融网络的结构和动态,研究人员可以预测和管理金融风险,为经济决策提供参考。
例如,通过研究金融市场的网络和交易机制,研究人员可以揭示金融危机的发生和传播机制,为金融监管和风险管理提供科学依据。
此外,复杂性科学的方法论还可以用于研究经济系统的演化和适应机制,为经济增长和发展提供科学依据。
最后,复杂性科学的方法论在医学和生物学的研究中也具有重要的应用。
生物分子相互作用、神经系统和基因调控等生物过程都是由许多相互作用的分子和调控元件组成的复杂系统。
通过分析和建模生物网络的结构和动态,研究人员可以理解和治疗复杂疾病,例如肿瘤和神经系统疾病。
例如,通过研究生物分子相互作用网络和信号传导机制,研究人员可以揭示疾病的发生和发展机制,为疾病的诊断和治疗提供科学依据。
此外,复杂性科学的方法论还可以揭示生物系统的演化和适应机制,为生物多样性保护和生物技术创新提供科学依据。
综上所述,复杂性科学的方法论研究提供了一种全新的研究视角和分析方法,可以帮助我们理解和解释复杂系统的行为和演化。
在生态学、社会学、经济学、医学等各个领域,复杂性科学的方法论都有广泛的应用,将为我们认识和改造世界带来新的启示和挑战。
未来,我们需要进一步发展和完善复杂性科学的方法论,以应对日益复杂和挑战性的问题,为解决各种复杂问题提供更加科学和可行的解决方案
综上所述,复杂性科学的方法论在各个领域都有广泛的应用。
在生态学中,复杂性科学的方法论帮助我们理解和解释生态系统的复杂性和演化机制,为生态保护和可持续发展提供科学依据。
在社会学中,复杂性科学的方法论帮助我们理解和解释社会系统的行为和演化,为社会问题的解决提供科学依据。
在经济学中,复杂性科学的方法论帮助我们理解和解释经济系统的复杂性和演化机制,为金融监管和风险管理提供科学依据,同时也为经济增长和发展提供科学依据。
此外,复杂性科学的方法论在医学和生物学的研究中也具有重要的应用。
生物分子相互作用、神经系统和基因调控等生物过程都是由许多相互作用的分子和调控元件组成的复杂系统。
通过分析和建模生物网络的结构和动态,研究人员可以理解和治疗复杂疾病,例如肿瘤和神经系统疾病。
复杂性科学的方法论还可以揭示生物系统的演化和适应机制,为生物多样性保护和生物技术创新提供科学依据。
总之,复杂性科学的方法论研究提供了一种全新的研究视角和分析方法,可以帮助我们理解和解释复杂系统的行为和演化。
在生态学、社会学、经济学、医学等各个领域,复杂性科学的方法论都有广泛的应用,将为我们认识和改造世界带来新
的启示和挑战。
未来,我们需要进一步发展和完善复杂性科学的方法论,以应对日益复杂和挑战性的问题,为解决各种复杂问题提供更加科学和可行的解决方案。
通过不断深入研究和应用复杂性科学的方法论,我们将能够更好地理解和利用复杂系统,为人类社会的可持续发展和健康进步做出更大的贡献。