2012年运筹学复习
运筹学2012年真题
1、B2、B3、A4、C5、D6对7对8 错9 对10 对11 标准化(用对偶单纯型法解)MAX Z=-5X1 -2X2 -4X3ST-3X1-X2-2X3+X4 = -4-6X1-3X2-5X3 +X5 = -10X1…X5>=0B (-4,-10) 含负数,不是最优解确定进基MIN()=MIN(Zi/x5)=2/3 所以进基X2单纯型表迭代B (-2/3,10/3) 含负数,不是最优解再迭代一次确定离基变量MIN (X4,X2)=MIN(-2/3,-10/3)=-2/3 所以X4 为离基确定进基MIN()=MIN(Zi/x5)=2/3 所以进基X1单纯型表迭代先X2行除以A11=-1每行-AI1*X1Z’=-26/3 所以Z=26/3 X=(2/3,10/3,0,0,0)对偶问题MAX W=4Y1+10Y2ST3Y1+6Y2<5Y1+3Y2<=2Y1+5Y2<=4Y1,Y2>=0最优解就是松弛变量Y1=2 Y2=4/312题表作业法此题是产销平衡问题检验σ不能小于0A11 =4-4+3-2=1A24=9-3+4-11=-1 24不通过,不是最优解检验31,没有标记的格子A31=8-5+6-11+4-3+2=1检验22,没有标记的格子A22=10-3+4-11+6-5=1最小的σ24=-1,需要变换对奇数转角变量减去A14 ,对偶数转角变量加上A14,本身不变于是运费为2×8+2×3+4×12+5×14+6×8+11×4。
运筹学复习考点
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60
•
整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0
运筹学 本(复习资料)
《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
运筹学期末考试复习资料
《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。
答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。
答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。
答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。
答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。
答案:对7.LP 问题的可行域是凸集。
答案:对8.动态规划实质是阶段上枚举,过程上寻优。
答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。
答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。
答案:错11.LP问题的基可行解对应可行域的顶点。
答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。
答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。
答案:对14.对偶问题的对偶问题一定是原问题。
答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。
运筹学2012年复习
•
• • • • • • • • • • • •
NO. ITERATIONS=
2
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 13.500000 1.750000 INFINITY X2 8.800000 1.400000 1.800000 X3 10.500000 2.700000 0.700000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 350.000000 202.000000 43.333332 460.000000 65.000000 168.333328
运筹学: 线性规划
x1 x2 x3 1 x2 x4 x1 x3 1
运筹学: 线性规划
<习题7> 某校篮球队准备从六名预备队 员中选拔三名为正式队员,并 使平均身高尽可能高。这六名 预备队员情况如表所示,队员 的挑选要满足如下条件: (1)至少补充一名后卫对员; (2)大李和小田之间只能入选 一个 (3)最多补充一名中锋 (4)只要大李或小赵入选,小 周就不能入选
运筹学: 线性规划
某个中型百货商场对售货人员(周工资200元)的 需求经统计如下表; 为了保证销售人员充分休息,销售人员每周连续工作5 天,连续休息2天。问应如何安排销售人员的工作时 间,使得所配售货人员的总费用最小?
星期
人数
一
12
二
15
三
12
运筹学课程复习
j =1 n
n , , ∑aij xj =bi (i =1 2,L m) j=1 xj ≥0 ( j =1 2,L n) , ,
式的解称为可行解。 (1 ) 全部可行解的集合称为可 可 行域。 行域 最优解:使目标函数(1) 最优解 (2) 达到最大值的可行解称为最优 (3) 解。
重点复习内容
第一章 线性规划及单纯形法
§1 - 1 §1 - 2 §1 - 3 §1 - 4 §1 - 5 线性规划问题及其数学模型 图解法 单纯形法原理 单纯形法计算步骤 单纯形法的进一步讨论
2012-5-15
2
组成线性规划模型的三个要素
目标函数:max Z=2x1+x2 5x2≤15 6x1+2x2≤24 约束条件 x1+x2≤5 x1,x2≥0 (3)约束条件: 约束条件: 指决策变量取值时受到的各种 资源条件的限制,通常用等式 或不等式来表达。 其中, 叫做非负约束。 其中,xij≥0叫做非负约束。
二、线性规划模型的一般形式
假设线性规划问题中含有n个变量,m个约束方程。则线性规 划模型的一般形式为: 向量形式: 向量形式: max(或min)z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn≤(或=,≥)b1 m 或m z =CX ax( in) a21x1+a22x2+…+a2nxn≤(或=,≥)b2 n ∑Pj xj ≤(或=,≥)b ………………………………………… j=1 am1x1+am2x2+…+amnxn≤(或=,≥)bm xj ≥ 0 ≥0 x1,x2,…,xn≥0 简写为: 简写为: n m 或m z = ∑cj xj ax( in)
运筹学复习整理(保准管用)
1. 简答题(1) 运筹学的工作步骤提出和形成问题:即要弄清问题的目标,可能的约束,问题的可控变量以及相关的参数,搜集相关资料;建立模型:即把问题中可控变量,参数,目标与约束之间的关系用模型表示出来;求解:用各种手段将模型求解,解可以是最优解,次优解,满意解。
复杂模型的求解需用计算机,解得精度要求可有决策者提出;解的检验:首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题;解的控制:通过控制解的变化过程决定对解是否做一定的改变; 解的实施:是指将解用到实际中必须考虑的实际问题,如向实际部门讲清解的用法,在实施中可能产生的问题和修改。
(2)退化产生原因及解决办法单纯形法计算中用θ规则确定换出变量时,有时存在两个以上相同的最小比值,这样在下一次迭代中就有一个或几个基变量等于零,这就出现退化解。
勃兰特规则:1.选取cj-zj >0中下标最小的非基变量xk 为换入变量,即k=min(j |cj-zj >0)2. 当按θ规则计算存在两个和两个以上最小比值时,选取下标最小的基变量为换出变量。
(3)对偶问题的经济解释• 这说明yi 是右端项bi 每增加一个单位对目标函数Z 的贡献。
• 对偶变量 yi 在经济上表示原问题第i 种资源的边际价值。
• 对偶变量的值 yi*所表示的第i 种资源的边际价值,称为影子价值。
∑∑=====n j mi i i j j y b x c Z 11ωiiy b Z=∂∂若原问题的价值系数Cj 表示单位产值,则yi 称为影子价格; 若原问题的价值系数Cj 表示单位利润,则yi 称为影子利润。
影子价格不是资源的实际价格,而是资源配置结构的反映,是在其它数据相对稳定的条件下某种资源增加一个单位导致的目标函数值的增量变化。
(4)分枝定界法步骤a) 先求出整数规划相应的LP(即不考虑整数限制)的最优解, b) 若求得的最优解符合整数要求,则是原IP 的最优解; c) 若不满足整数条件,则任选一个不满足整数条件的变量来构造新的约束,在原可行域中剔除部分非整数解。
《运筹学》复习资料
《运筹学》复习资料注:如学员使用其他版本教材,请参考相关知识点一、客观部分:(单项选择、多项选择、判断)(一)多选题1.线性规划模型由下面哪几部分组成?(ABC)A决策变量 B约束条件 C目标函数 D 价值向量★考核知识点: 线性规划模型的构成.(1.1)附1.1.1(考核知识点解释):线性规划模型的构成:实际上,所有的线性规划问题都包含这三个因素:(1)决策变量是问题中有待确定的未知因素。
例如决定企业经营目标的各产品的产量等。
(2)目标函数是指对问题所追求的目标的数学描述。
例如利润最大、成本最小等。
(3)约束条件是指实现问题目标的限制因素。
如原材料供应量、生产能力、市场需求等,它们限制了目标值所能到达的程度。
2.下面关于线性规划问题的说法正确的是(AB)A.线性规划问题是指在线性等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
B.线性规划问题是指在线性不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
C.线性规划问题是指在一般不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
D.以上说法均不正确★考核知识点: 线性规划模型的线性含义.(1.1)附1.1.2(考核知识点解释):所谓“线性”规划,是指如果目标函数是关于决策变量的线性函数,而且约束条件也都是关于决策变量的线性等式或线性不等式,则相应的规划问题就称为线性规划问题。
3.下面关于图解法解线性规划问题的说法不正确的是( BC )A在平面直角坐标系下,图解法只适用于两个决策变量的线性规划B 图解法适用于两个或两个以上决策变量的线性规划C 图解法解线性规划要求决策变量个数不要太多,一般都能得到满意解D 以上说法A正确,B,C不正确★考核知识点: 线性规划图解法的条件. (1.2)附 1.1.3(考核知识点解释):线性规划图解法的条件:对于只有两个变量的线性规划问题,可以在二维直角坐标上作图.4.在下面电子表格模型中,“决策变量”的单元格地址为( AB )A . C12B . D12C . C4 D. D4★考核知识点: 电子表格中如何建立线性数学模型. (1.3)附1.1.4(考核知识点解释):电子表格中的数学模型的建立:(1)要做出的决策是什么?(决策变量);(2)在做出这些决策时有哪些约束条件?(约束条件);(3)这些决策的目标是什么?(目标函数),将对应的问题数据放在相应的电子表格中即可.5.通常,在使用“给单元格命名”时,一般会给(ABCD )有关的单元格命名A 公式B 决策变量C 目标函数D 约束右端值★考核知识点: 给单元格命名的原则. (1.3)附1.1.5(考核知识点解释):给单元格命名的原则:一般给跟公式和模型有关的四类单元格命名。
《 运筹学》复习题
《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。
[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。
运筹学期末复习资料1
二,单纯形法举例 maxZ=2x1+3x2 x1+2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 xj ≥ 0
三,最优性检验与单纯形表 1.最优性检验 最优性定理:对某基可行解(XB,0…0),
若最优解.
无界解定理:若对某可行基B,存在σk>0, B-1 pk ≤0,则该线性规划问题无界解.
2 x1+2x2 ≤ 12 x1+2x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1, x2 ≥ 0 例2.maxZ= 2x1+x2 3x1+5x2 ≤ 15 6x1+2x2 ≤ 24 xj ≥ 0
第二节 线性规划问题的几何意义 基本概念 1.凸集:设k是n维空间的一个点集,若任 意两点x(1) ∈ k, x(2) ∈ K的连线上的 一切点α x(1) + (1-α) x(2) ∈ k,则称 k为凸集. 2.结论:线性规划问题的可行域是凸集. 凸集的每个顶点对应一个基可行解.若线 性规划问题有最优解,必在可行域某顶点 上达到.
四,线性规划问题的标准型 maxZ=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 …… am1x1+am2x2+…+amnxn=bm xj≥0
用向量和矩阵表示 设C=(c1, c2, c3,…, cn) X=(x1, x2, x3,…, xn)′ pj= (a1j, a2j, a3j,…, amj)′ b= (b1, b2, b3,…, bm)′ A= a11, a12, a13,…, a1n a21, a22, a23,…, a2n am1, am2, am3,…, amn = (p1, p2, p3,…, pn)
运筹学总复习
《运筹学》总复习第1章线性规划及其对偶问题• 基本概念基本要素:决策变量、目标函数、约束条件线性规划定义:决策变量为可控的连续变量,目标函数和约束条件为决策变量的线性函数。
标准形式:目标函数取“max ”、约束条件取“="、约束右端项非负、决策变量非负解的概念:凡满足约束条件的决策变量的取值称为线性规划的可行解,所有可行解的集合称 为线性规划的可行域,使目标函数达到最优值的可行解称为线性规划的最优解。
•数学建模与求解建模步骤:科学选择决策变量、找出所有约束条件、明确目标要求、非负变量的选择 单纯形法与对偶单纯形法:单纯形法对偶单纯形法原规划基本解是可行解原规划基本解的检验数小于等于零无可行解解无界计算:nr b । …b9 = min{-a\a > 0] = -i- a ka以a为中心元素进行迭代以a为中心元素进行迭代计算:o = max(o . o , > 0)计算:b = min(b\b < 0)计算:两阶段法:第一阶段:添加人工变量,构造人工变量之和为最小的目标函数辅助线性规划,由松驰变量和人工变量构成初始单纯形表,进行迭代。
在最终单纯形表中如果存在人工变量,由无可行解,否则转第二阶段。
第二阶段:在第一阶段求解的最终单纯形表中去掉人工变量,目标系数恢复为标准模型的目标系数,按单纯形法继续迭代。
•练习题:1.某厂利用原料A、B生产甲、乙、丙3种产品,已知生产单位产品所需原料数、单件利2.某旅馆在不同时段所需服务员数如表所示:每班服务员从开始上班到下班连续工作8小时,为满足每班所需要的最少服务员数,这个旅3.min w = x + 2 x + 3 x1 2 3x + 2 x + 3 x = 15s.t < 2x + x + 5x = 20x > 011~34.用对偶单纯形法求解线性规划问题:min w = 5 x + 2 x + 4 x1 2 33 x + x + 2 x > 4s .t < 6 x + 3 x + 5 x > 12x1 > 02 31 1~3第2章整数规划与分配问题•0-1变量的用法及建模理解0-1变量的9种用途,其中(1)(2)(4)(8)重点掌握(1)多个取1:¥x = 1,x,= 0,或 1.j=1(2) n 中取 k :X % = k , x - 0,或 1.j =in 中至少取k ,改为E x > k , x = 0,或1.j -i n 中最多取k , 改为Yx < k , x = 0,或 1.j -i(3)变量取离散数值:x^^^cy.vi =1 i i£y = 1, y = 0或 1i i =1⑷选甲必须选乙,选乙不一定选甲:、 <久,、, 丁或1 (5)两个约束条件只需满足一个:(8)选了甲或乙,丙就不能入选,选了丙,甲、乙都不能入选■%+ x w <1< x + x < 1 x , x , x 丙=0或 1I 0,当 x = 0⑼对f (x )= 1 k + cx ,当x > 0可表述为:匈牙利法 步骤:x + x > 2 一 y M < 3 x + 2 x < 10 + y M/ + y 2 = 1,片 y 2 = 0或 1式中:M 为任意大正数 (6)n个约束条件中满足k 个:I x + x > 2 一(1 一 y ) M或1 12一 |3x + 2x < 10 + yM ,y =2ax < 嗔yM< j =1(i = 1,2,L , n )i =1⑺若x 2 < 4,则x 5 >;否则x 2> 4,। x < 4 + y M<x 5>0-y 1M, x 2 > 4- y2Mx 5 < 3 + y 2y 1 +y 2 = y। x < 4 + yMx : > 0 - yM 或1 5 - x 2 > 4 - (1 - y ) M 「0I f (x ) = yk + cx< y < Mx x < My1.从每行中减去最小数2.再从每列中减去最小数3.⑴先看行,从第一行开始,如该行只有一个0,给该0打A,划去该为所在列,如有两个以上0或无0,转下一行,到最后一行;(2)再看列,如该列只有一个0,给该0打A,划去该0所在行,如无0或两个以上0,转下一列;⑶重复(1)(2),可能出现三种结局:a.有m个打A的0,令对应A号的xij=1,即为最优.b.存在0的闭回路.对闭回路上的0按顺时针编号,任取单号或双号打A,分别对打A的0都划去所在行(或都划去所在列)返回3(1)C.打A的0的数<m转44.从未被划去的数字中找出最小数字k,对未被划去的行分别减k;对被划去的列加k,回到3练习题:1.某公司有5000万元可用于投资,有6个投资方案,其投资额、安排员工数和年利润额如要求:(1)投资额不超过5000万元;(2)至少安排150人员就业;(3)年利润额尽可能地多。
《运筹学》期末复习总结题
一、单项选择题1、下列叙述正确的是()。
A.线性规划问题,若有最优解,则必是一个基变量组的可行基解B.线性规划问题一定有可行基解C.线性规划问题的最优解只能在最低点上达到D.单纯形法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次答案:A2、线性规划的变量个数与其对偶问题的()相等。
A.变量目标函数B.变量约束条件C.约束条件个数D.不确定答案:C3、在利用表上作业法求各非基变量的检验数时,有闭回路法和()两种方法。
A.西北角法B.位势法C.最低费用法D.元素差额法答案:B4、下列各项()不是目标规划的特点。
A.多目标B.单一目标C.具有优先次序D.不求最优答案:B5、下列关于图的说法中,错误的为()。
A.点表示所研究的事物对象B.边表示事物之间的联系C.无向图是由点及边所构成的图D.无环的图称为简单图答案:D6、利用单纯形法求解线性规划问题时,首先需要()。
A.找初始基础可行基B.检验当前基础可行解是否为最优解C.确定改善方向D.确定入变量的最大值和出变量答案:A7、对偶问题最优解的剩余变量解值()原问题对应变量的检验数的绝对值。
A.大于B.小于C.等于D.不能确定答案:C8、当某个非基变量检验数为零,则该问题有()。
A.无解B.无穷多最优解C.退化解D.惟一最优解答案:B9、PERT 网络图中,()表示一个工序。
A.节点B.弧C.权D.关键路线答案:B10、假设对于一个动态规划问题,应用顺推法以及逆推解法得出的最优解分别为P和D,则有()。
A.P>D B.P<DC.P=D D.不确定答案:C11、下列有关线性规划问题的标准形式的叙述中错误的是()。
A.目标函数求极大B.约束条件全为等式C.约束条件右端常数项全为正D.变量取值全为非负答案:C12、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A.非负条件B.顶点集合C.最优解D.决策变量答案:D13、如果原问题有最优解,则对偶问题一定具有()。
运筹学期末复习提纲
dk- ,dk+ ≥ 0 ,
k =1,2,…,K
33
目标规划模型的一般形式:
Min ﹛Pl(∑( wKlk-dk- + wlk+dk+ )),l=1,2…,L﹜
k =1
n
∑aij xj ≤(=,≥) bi ,i =1,2,…,m
j =1
S.t.
n ∑ckj xj
+ dk- - dk+ = gk
,
k =1,2,…,K
灵敏度分析
约束条件右端向量b的变化
3 目标规划
目标规划基本概念
(1)偏差变量
d+:正偏差变量,表示决策值超出目标值的部分
d-:负偏差变量,表示决策值未达到目标值的部分
按定义有:d+ ≥0, d- ≥0 ,d+ • d- = 0
(2)绝对约束和目标约束
绝对约束(硬约束):必须严格满足的约束条件
运筹学复习
1 线性规划
线性规划问题及其数学模型 图解法 单纯形法原理 单纯形法计算步骤 单纯形法的进一步讨论
线性规划的概念
目标能表成求 MAX 或 MIN 达到目标有多种方案 实现目标有一定条件 目标和条件都能用线性函数表示
例如,对于线性规划问题
其系数矩阵为
max z x1 2x2 3x3 6x4
目标约束(软约束):目标规划特有
(3)优先因子(P)和权系数(W)
优先因子用P1,P2,…, Pl表示,规定 Pl>> Pl+1,表示 Pl比Pl+1有更大的优先权。 (4)目标函数
决策值=目标值
min{ f (d+ + d- ) }
决策值<目标值
运筹学试习题及答案
运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
最全的运筹学复习题及答案-图文
最全的运筹学复习题及答案-图文5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量某i或某ij的值(i=1,2,…mj=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2.图解法适用于含有两个变量的线性规划问题。
3.线性规划问题的可行解是指满足所有约束条件的解。
4.在线性规划问题的基本解中,所有的非基变量等于零。
5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13.线性规划问题可分为目标函数求极大值和极小_值两类。
14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。
19.如果某个变量某j为自由变量,则应引进两个非负变量某j,某j,同时令某j=某j-某j。
运筹学复习题及参考答案
中南大学网络教育课程考试复习题及参考答案运筹学一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ]5.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]6.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ] 12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ] 15.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]16.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
《运筹学》期末复习题.docx
《运筹学》期末复习题第一讲 运筹学概念一、填空题1 •运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2. 运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科 学决策的依据。
3. 模型是一件实际事物或现实情况的代表或抽彖。
4通帘对问题屮变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5. 运筹学研究和解决问题的某础是最优化技术,并强调系统整体优化功能。
运筹学研究 和解决问题的效果具冇连续性。
6. 运筹学用系统的观点研究功能Z 间的关系。
7. 运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8. 运筹学的发展趋势是进一步依赖于宝篡枇的应用和发展。
9. 运筹学解决问题吋首先要观察待决策问题所处的坯境。
10. 用运筹学分析与解决问题,是一个科学决策的过程。
11・运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳力案。
12.运筹学中所使用的模型是数学模型°用运筹学解决问题的核心是建立数学模型,并対 摸型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14. 运筹学的系统特征Z —是用系统的观点研究功能关系。
15. 数学模型中,“s ・t”表示约束。
16. 建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17. 运筹学的主要研究对象是各种有组织系统的篮理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小纟R 简称为 ORo二、单选题1. 建立数学模型时,考虑可以由决策者控制的因素是(A ) A.销售数量 B.销售价格 C.顾客的需求2. 我们可以通过(C )来验证模型最优解。
A.观察 B.应用 C.实验3. 建立运筹学模型的过程不包括(A )阶段。
A.观察环境B.数据分析C.模型设计4. 建立模型的一个基本理由是去揭晓那些重要的或有关的(B )7. 运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
(完整版)《运筹学》复习参考资料知识点及习题
第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(2,6)T∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论(6分)
1、了解运筹学的分支,运筹学产生的背景、研究的内容和意
义。
2、运筹学研究的基本特征与研究方法
第一章线性规划及单纯形法(10分)
3、线性规划模型的特点
4、建立线性规划模型
5、线性规划模型的表达形式
6、图解法
6、用单纯形法求解线性规划问题
注意:判断解得情况(唯一最优解、无穷多个最优解、无界解、无解)7、单纯形表格的表达形式
第二章线性规划的对偶问题及对偶单纯形法
8、能写出对偶问题
9、对偶问题的性质
10、对偶单纯形法
11、线性规划问题的灵敏度分析
第三章运输问题
12、能写出运输问题的数学模型
13、指出运输问题的模型及解得特点
14、能用表上作业法求解运输问题
第四章目标规划
15、能建立目标规划的数学模型
16、能用单纯形法求解线性目标规划问题
第五章整数规划问题
17、割平面法和分支定界法
18、能构建0-1整数规划问题的数学模型
19、能用匈牙利算法求解指派问题
第七章动态规划
20、什么是多阶段决策问题
21、用动态规划方法求解多阶段决策问题的有关概念
22、用用动态规划方法求解多阶段决策问题的建模步骤
23、求解动态规划模型的方法
24、针对一个具体的问题,能构建动态规划模型和求解
第八章图与网络分析
25、图与网络的基本概念
26、中国邮路问题
27、树及最小生成树的构建
28、求最短路
29、最大流问题
30、最小费用流问题
试卷组成
1.能按模型建立的步骤建立具体问题的数学模型(12分)
2.线性规划部分(一、二章25分)
3.运输问题部分(10分)
4.目标规划部分(10分)
5.整数规划部分(13分)
6.动态规划部分(15分)
7.图论与网络分析(15分)
试卷
一、(20分)
公司决定使用1000万元新产品开发基金开发A ,B ,C 三种新产品。
经预测估计,开发A ,B ,C 三种新产品的投资利润率分别为5%,7%,10%。
由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标: 第一,A 产品至少投资300万元;
第二,为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的
35%;
第三,应至少留有10%的开发基金,以备急用; 第四,使总的投资利润最大。
试建立投资分配方案的目标规划模型。
二、
(1) 写出下面的线性规划问题的对偶问题
(2) 要求用对偶单纯形法求解原问题,同时写出对偶问题的最优解。
1
2
3
1
2
3
1
2
3
1
2
3
3
4
min 234234230
z x x x
x x x
x x x x x x ≥≥=++++-+≥
三、运输问题的数据如下表:
用表上作业法求最优的运输方案。
四、用动态规划方法求解下面的问题:
1
2
1
2
3
2
3
100(1,2,3)2max 49i
x i x z x x x x x =⎧⎪
⎨
⎪≥=⎩+=+++且取整 五、请用大M 法求解下列线性规划问题,并指出解的类型
六、设有一辆栽重为10吨的卡车,用以装载三种货物,每种货物的单位重量及单件价值如表3所示,问各种货物应装多少件,才能既不超过总重量又使总价值最大?
表3
七、车辆数(以1000辆为1个计量单位),试求从城市①到城市④的最大流量及安排。
八、求下面的网络图中从v s至v t的最小费用最大流。
每弧旁
v v)的最大容量与单位费用。
的数字是(C i j,d i j),C i j与d i j分别是边(,i j
v1(3,3)v3
(5,2) (4,1)(1,2)
(1,1)(1,2)
v s v t
(5,3)(2,4)
v2(2,4)v4
九、用图解法求出下列整数规划问题的最优解:(图尽量准)
Max z = 4x1+5x2
x1 + 2x2≤ 6
s.t. 2x1 + x2≤ 8
x1,x2是非负整数
十、请用标号法求下图所示的从结点①到⑥的最短路问题,弧上数字为距离:。