2021届高考数学二轮复习核心热点突破-专题四第四讲 通过构造函数解决导数与不等式问题

合集下载

运用构造函数法解答导数问题的步骤

运用构造函数法解答导数问题的步骤

导数问题的难度较大,对同学们的数学抽象思维能力和运算能力有着较高的要求.导数与函数之间的联系紧密,所以在解答导数问题时,通常要根据已知条件来构造合适的函数模型,利用函数的图象、性质来求得问题的答案.这就是构造函数法.运用构造函数法解答导数问题的步骤为:1.仔细研究题目中给出的关系式的结构特征;2.灵活运用幂函数的求导公式(x n)′=nx n-1、指数函数的求导公式(a x)′=a x ln a(特例(e x)′=e x,(e nx)′=ne nx(n∈N*,n≥2))、对数函数的求导公式(log a x)′=1x ln a(特例(ln x)′=1x)、三角函数的求导公式(sin x)′=cos x,(cos x)′=-sin x等,对已知关系式中的部分式子进行求导或积分;3.根据导数的运算法则(u±v)′=u′±v′,(uv)′=u′v+uv′,(u v)′=u′v-uv′v2将目标式或已知关系式进行变形,并将变形、化简后的式子构造成新函数模型;4.根据导函数与函数的单调性之间的关系判断出函数的单调性;5.根据函数的单调性求函数的极值,比较函数式的大小.把导数问题转化为函数问题来求解,可以达到化繁为简、化难为易的目的.例1.已知函数f(x)是定义在(-∞,0)上的可导函数,且xf′(x)+3f(x)>0,那么不等式(x+2021)3f(x+2021)+27f(-3)>0的解集是().A.(-2024,+∞)B.(-2022,-2021)C.(-∞,-2022)D.(-2024,-2021)解:在不等式xf′(x)+3f(x)>0的两边同乘以x2,可得x3f′(x)+3x2f(x)>0,即x3f′(x)+(x3)′f(x)>0,得(x3f(x))′>0.设函数g(x)=x3f(x),则g′(x)>0,所以g(x)在(-∞,0)上单调递增.而(x+2021)3f(x+2021)+27f(-3)>0可变形为(x+2021)3f(x+2021)>(-3)3f(-3),即g(x+2021)>g(-3).可得-3<x+2021<0,解得-2024<x<-2021.故选D.先根据指数函数的求导公式(x3)′=3x2以及导数的运算法则(uv)′=u′v+uv′将xf′(x)+3f(x)>0变形,即可化简不等式;再构造出函数g(x)=x3+f(x),探讨其单调性,便可根据函数的单调性求得问题的答案.例2.已知函数f(x)是R上的可导函数,且(x-1)⋅(f′(x)-f(x))>0,f(2-x)=f(x)e2-2x,那么一定正确的是().A.f(1)<f(0)B.f(2)>ef(0)C.f(3)>e3f(0)D.f(4)<e4f(0)解:将不等式(x-1)(f′(x)-f(x))>0变形,可得(x-1)∙e x f′(x)-(e x)′f(x)(e x)2>0,即(x-1)∙(f(x)e x)′>0,设函数g(x)=f(x)e x,易知:当x>1时,g′(x)>0;当x<1时,g′(x)<0,所以函数g(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.将f(2-x)=f(x)e2-2x变形,可得f(2-x)e2-x=f(x)e x,即g(2-x)=g(x),所以函数g(x)的图象关于直线x=1对称.根据函数g(x)的单调性、对称性可得g(0)=g(2)<g(3),即f(0)e0<f(3)e3,因此e3f(0)<f(3).故选C.我们以指数函数的求导公式(a x)′=a x ln a为切入点,根据导数的运算法则(u v)′=u′v-uv′v2,构造商式函数g(x)=f(x)e x,即可根据其单调性和对称性求得问题的答案.备考指南54例3.已知函数f (x )是定义在(1,+∞)上的可导函数,对∀x ∈(1,+∞)均有f '(x )ln x >1+ln x xf (x )恒成立,则().A.12f (2)>3f (4)>f (8)B.3f (4)>12f (2)>f (8)C.f (8)>3f (4)>12f (2)D.f (8)>12f (2)>3f (4)解:在f ′(x )ln x >1+ln x xf (x )的两边同乘以x ,移项可得f ′(x )x ln x -(1+ln x )f (x )>0,再变形得f ′(x )ln x -(x ln x )′f (x )(x ln x )2>0,得(f (x )x ln x )′>0,显然该不等式对∀x ∈(1,+∞)恒成立.设函数g (x )=f (x )x ln x,则g ′(x )>0,所以函数g (x )在(1,+∞)上单调递增.所以g (2)<g (4)<g (8),即f (2)2ln 2<f (4)4ln 4<f (8)8ln 8,变形得f (2)2ln 2<f (4)8ln 2<f (8)24ln 2,可得f (8)>3f (4)>12f (2).故选C.根据已知条件和对数函数的求导公式(log a x )′=1x ln a,得到(x ln x )′=1+ln x ,便可根据导数的运算法则(uv )′=u ′v +uv ′和(u v )′=u ′v -uv ′v 2,将不等式进行变形、化简,进而构造出函数g (x )=f (x )x ln x,利用函数的单调性即可解题.例4.已知函数f (x )是定义在(-π2,π2)上的可导函数,且f ′(x )cos x +f (x )sin x >0恒成立,那么下列不等式不成立的是().A.2f (π3)<f (π4)B.2f (-π3)<f (-π4)C.f (0)<2f (π4) D.f (0)<2f (π3)解:将f ′(x )cos x +f (x )sin x >0变形,得f ′(x )cos x -f (x )(cos x )′(cos x )2>0,即(f (x )cos x )′>0,设g (x )=f (x )cos x,得g ′(x )>0,所以函数g (2)在(-π2,π2)上单调递增.因为-π2<-π3<-π4<0<π4<π3<π2,所以f (-π3)cos(-π3)<f (-π4)cos(-π4)<f (0)cos 0<f (π4)cos π4<f (π3)cos π3,化简得2f (-π3)<2f (-π4)<f (0)<2f (-π4)<2f (π3),所以A 选项不正确.故本题选A.由f ′(x )cos x +f (x )sin x >0的结构特征,可联想到三角函数的求导公式(cos x )′=-sin x 以及导数的运算法则(uv )′=u ′v +uv ′,将不等式进行变形、化简,便可构造出新函数g (x )=f (x )cos x.例5.设定义在R 上的函数f (x )是连续可导函数,对任意的x ∈R 都有f (x )+f (-x )=2x 2.当x ∈(0,+∞)时,f ′(x )<2x .若不等式f (2-a )-f (a )≥4-4a 成立,则实数a 的取值范围是().A.(0,1]B.[1,2)C.(-∞,1]D.[1,+∞)解:当x ∈(0,+∞)时,根据不等式f ′(x )<2x ,可得f ′(x )-2x <0,再变形得f ′(x )-(x 2)′<0,即(f (x )-x 2)′<0.设函数g (x )=f (x )-x 2,则g ′(x )<0,所以函数g (x )在(0,+∞)上单调递减.因为对任意的x ∈R 都有f (x )+f (-x )=2x 2,所以g (x )+g (-x )=f (x )-x 2+f (-x )-(-x )2=0,所以函数g (x )是R 上的奇函数.因为f (x )是连续函数,所以函数g (x )在R 上单调递减.不等式f (2-a )-f (a )≥4-4a 可变形为f (2-a )-(2-a )2≥f (a )-a 2,即g (2-a )≥g (a ).由函数g (x )的单调性可知2-a ≤a ,解得a ≥1.故选D.根据已知条件f ′(x )<2x ,可知需要利用指数函数的求导公式(x 2)′=2x 以及导数的运算法则(u ±v )′=u ′±v ′,将不等式变形并化简,进而构造函数g (x )=f (x )-x 2,分析其函数的单调性、奇偶性,即可解题.对于本题,还可以将f (x )+f (-x )=2x 2变形为f (x )-x 2+f (-x )-(-x )2=0,再根据f (x )-x 2与f (-x )-(-x )2的结构特征构造函数g (x )=f (x )-x 2.导数问题侧重于考查一些常见的求导公式与导数的四则运算法则(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′,(u v )′=u ′v -uv ′v2的灵活应用.导数问题较为复杂,同学们不仅要灵活运用导数和函数知识,还需培养数学抽象、逻辑推理以及数学运算能力,才能轻松解题.(作者单位:甘肃省河州中学教育集团附属中学)备考指南55。

构造函数法在高考解导数和数列问题

构造函数法在高考解导数和数列问题

用构造函数法给出两个结论的证明.(1)构造函数()sin f x x x =-,则()1cos 0f x x '=-≥,所以函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=.所以sin 0x x ->,即sin x x <.(2)构造函数()ln(1)f x x x =-+,则1()1011x f x x x'=-=>++.所以函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=,所以ln(1)x x >+,即ln(1)x x +<.要证111,n e n +⎛⎫+> ⎪⎝⎭两边取对数,即证11ln 1,1n n ⎛⎫+>⎪+⎝⎭ 事实上:设11,t n +=则1(1),1n t t =>- 因此得不等式1ln 1(1)t t t >->构造函数1()ln 1(1),g t t t t=+->下面证明()g t 在(1,)+∞上恒大于0.211()0,g t t t'=->∴()g t 在(1,)+∞上单调递增,()(1)0,g t g >= 即1ln 1,t t>-∴ 11ln 1,1n n ⎛⎫+>⎪+⎝⎭ ∴111,n e n +⎛⎫+> ⎪⎝⎭以上两个重要结论在高考中解答与导数有关的命题有着广泛的应用.例如:2009年广东21,2008年山东理科21,2007年山东理科22.1.【09天津·文】10.设函数()f x 在R 上的导函数为()f x ',且22()()f x xf x x '+>,下面的不等式在R 上恒成立的是A .0)(>x fB .0)(<x fC .x x f >)(D .x x f <)( 【答案】A【解析】由已知,首先令0=x 得0)(>x f ,排除B ,D .令2()()g x x f x =,则[]()2()()g x x f x xf x ''=+,① 当0x >时,有2()2()()()0g x f x xf x x g x x'''+=>⇒>,所以函数()g x 单调递增,所以当0x >时, ()(0)0g x g >=,从而0)(>x f .② 当0x <时,有2()2()()()0g x f x xf x x g x x'''+=>⇒<,所以函数()g x 单调递减,所以当0x <时, ()(0)0g x g >=,从而0)(>x f .综上0)(>x f .故选A .【考点定位】本试题考察了导数来解决函数单调性的运用.通过分析解析式的特点,考查了分析问题和解决问题的能力. 2.【09辽宁·理】21.(本小题满分12分)已知函数21()(1)ln 2f x x ax a x =-+-,1a >. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)证明:若5a <,则对任意12,(0,)x x ∈+∞,12x x ≠,有1212()()1f x f x x x ->--.解:(Ⅰ)()f x 的定义域为(0,)+∞.211(1)(1)()a x ax a x x a f x x a x x x --+--+-'=-+== …………………2分(i )若11a -=即2a =,则2(1)()x f x x-'=,故()f x 在(0,)+∞单调增加.(ii )若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,'()0f x <; 当(0,1)x a ∈-及(1,)x ∈+∞时,'()0f x >.故()f x 在(1,1)a -单调减少, 在(0,1),(1,)a -+∞单调增加.(iii )若11a ->,即2a >,同理可得()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (II )考虑函数()()g x f x x =+21(1)ln 2x ax a x x =-+-+. 则21()(1)(1)11)a g x x a a x -'=--+≥-=-. 由于15,a <<故()0g x '>,即()g x 在(0,)+∞单调增加,从而当120x x >>时有12()()0g x g x ->,即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---. ………………………………12分 3.【09全国Ⅱ·理】22.(本小题满分12分)设函数()()21f x x aln x =++有两个极值点12x x ,,且12x x <.(I )求a 的取值范围,并讨论()f x 的单调性; (II )证明:()21224ln f x ->. 【解】(I )由题设知,函数()f x 的定义域是1,x >-()222,1x x af x x++'=+且()0f x '=有两个不同的根12x x 、,故2220x x a ++=的判别式480a ∆=->,即 1,2a <且 121122x x ---+== …………………………………①又11,x >-故0a >. 因此a 的取值范围是1(0,)2.当x 变化时,()f x 与()f x '的变化情况如下表:因此()f x 在区间1(1,)x -和2(,)x +∞是增函数,在区间12(,)x x 是减函数. (II )由题设和①知22210,2(1),2x a x x -<<=-+ 于是 ()()2222222(1)1f x x x x ln x =-++.设函数 ()()22(1)1,g t t t t ln t =-++则 ()()2(12)1g t t t ln t '=-++当12t =-时,()0g t '=; 当1(,0)2t ∈-时,()0,g t '>故()g t 在区间1[,0)2-是增函数.于是,当1(,0)2t ∈-时,()1122().24ln g t g ->-=因此 ()22122()4ln f x g x -=>.5.2009届山东省德州市高三第一次练兵(理数)21.(本小题满分12分)已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (1)求)(x f 、)(x g 的表达式;(2)求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (3)当1->b 时,若212)(xbx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围. 解:(1),2)(xax x f -='依题意]2,1(,0)(∈>'x x f ,即22x a <,]2,1(∈x . ∵上式恒成立,∴2≤a ① …………………………1分又xax g 21)(-=',依题意)1,0(,0)(∈<'x x g ,即x a 2>,)1,0(∈x .∵上式恒成立,∴.2≥a ② …………………………2分 由①②得2=a .…………………………3分∴.2)(,ln 2)(2x x x g x x x f -=-= …………………………4分 (2)由(1)可知,方程2)()(+=x g x f ,.022ln 22=-+--x x x x 即 设22ln 2)(2-+--=x x x x x h ,,1122)(xx x x h +--='则 令0)(>'x h ,并由,0>x 得,0)222)(1(>+++-x x x x x 解知.1>x ………5分 令,0)(<'x h 由.10,0<<>x x 解得 …………………………6分 列表分析:可知)(x h 在1=x 处有一个最小值0, …………………………7分当10≠>x x 且时,)(x h >0,∴0)(=x h 在(0,+∞)上只有一个解.即当x >0时,方程2)()(+=x g x f 有唯一解. …………………………8分(3)设2'23122()2ln 2()220x x x bx x x b x x xϕϕ=--+=---<则, …………9分 ()x ϕ∴在(0,1]为减函数min ()(1)1210x b ϕϕ∴==-+≥ 又1b >-………11分所以:11≤<-b 为所求范围. …………………………12分 7.山东省滨州市2009年5月高考模拟试题(理数)20.(本题满分12)已知函数2()ln .f x ax x =+ (Ⅰ)求()f x 的单调区间;(Ⅱ)当0a =时,设斜率为k 的直线与函数()y f x =相交于两点1122(,)(,)A x y B x y 、 21()x x >,求证:121x x k<<. 解:(Ⅰ)略(Ⅱ)当0a =时,()ln .f x x =以下先证11x k>, 21212121ln ln 0,y y x x k x x x x --==>--所以只需证21211ln ln 1x x x x x -<-,即2212111ln1.x x x x x x x -<=- 设()ln 1(1)t t t t ϕ=-+ >,则1()10(1)t t tϕ'=-< >.所以在(1,)t ∈+∞时,()t ϕ为减函数, ()(1)0(1t t ϕϕ<= >.即ln 1(1)t t t <- >.又211x x >, ∴2211ln1x x x x <-成立,即11x k>. 同理可证21x k<. ∴121x x k<<. 9.山东省安丘、五莲、诸城、兰山四地2009届高三5月联考22.(本题满分14分)已知函数1()ln sin g x x xθ=+⋅在[)1,+∞上为增函数,且(0,)θπ∈,1()ln m f x mx x x-=--,m R ∈. (1)求θ的取值范围;(2)若()()f x g x -在[)1,∞上为单调函数,求m 的取值范围;(3)设2()eh x x=,若在[]1,e 上至少存在一个0x ,使得000()()()f x g x h x ->成立,求m 的取值范围.解:(1)由题意,211()0sin g x x x θ'=-+≥⋅在[)1,+∞上恒成立,即2sin 10sin x x θθ⋅-≥⋅(0,),s i n θπθ∈ ∴>.故sin 10x θ⋅-≥在[)1,+∞上恒成立, ……………2分 只须sin 110θ⋅-≥,即sin 1θ≥,只有sin 1θ=.结合(0,),θπ∈得2πθ=.…4分(2)由(1),得()()2ln .m f x g x mx x x-=--()222()().mx x m f x g x x -+'∴-=()()f x g x -在[)1,∞上为单调函数,220mx x m ∴-+≥或者220mx x m ∴-+≤在[)1,∞恒成立. …………….. 6分220mx x m -+≥等价于2(1)2,m x x +≥即22,1xm x ≥+ 而2222,max 11111x m x x x x x ⎧⎫⎪⎪== ∴≥⎨⎬+⎪⎪++⎩⎭. …………………………………8分 220mx x m ∴-+≤等价于2(1)2,m x x +≤即221xm x ≤+在[)1,∞恒成立,而(]220,1,01x m x∈≤+. 综上,m 的取值范围是(][),01,-∞+∞. ………………………………………10分(3)构造函数2()()()(),()2ln .m e F x f x g x h x F x mx x x x=--=--- 当0m ≤时,[]1,,0m x e mx x ∈-≤,22ln 0ex x--<,所以在[]1,e 上不存在一个0x , 使得000()()()f x g x h x ->成立.当0m >时,22222222().m e mx x m eF x m x x x x-++'=+-+= …………12分 因为[]1,,x e ∈所以220e x -≥,20mx m +>,所以()0F x '>在[]1,e 恒成立.故()F x 在[]1,e 上单调递增,max 4()4F x me e =--,只要440me e-->, 解得24.1em e >-故m 的取值范围是24,.1e e ⎛⎫+∞ ⎪-⎝⎭……………………………………………14分。

2021年高考数学热点04 导数及其应用(解析版)

2021年高考数学热点04 导数及其应用(解析版)

故选:D
4.(2020·安徽高三月考(文))已知函数 f (x) xex , g(x) x ln x ,若
ln t f (x1) g(x2 ) t ,t>0,则 x1x2 的最大值为( )
1 A. e2
4 B. e2
1 C. e
2 D. e
【答案】C
【分析】由题意得, x1ex1 t , x2 ln x2 t ,即 eln x2 ln x2 t , f (x) (1 x)ex ,易得 f(x)
2 cos
3
0
,则
3
2
k
k
Z
,解得
k k Z
6
.
f
f
4
2 sin
2
2 sin
2
2 sin
2 cos
2
2
sin
4
0


sin
4
0
2m
,可得
4
2m
m Z
,解得
2m 3 2m m Z
4
4
.
所以,当
取最小正数时,
π 6
,所以,
f
x
sin
不等式
f
t
f
3
t
sin
t
sin
t
3
可化
f
(t) sin t
f
3
t
sin
3
t


g (t )
g
3
t
,由
g(x)
是偶函数得
g(
t
)
g
3
t
,而
g(x)
在[0, )

高考重难点突破---构造函数法解决导数问题

高考重难点突破---构造函数法解决导数问题

高考重难点突破---构造函数法解决导数问题一、多选题1.函数()ln 1xx kf x e x+=--在()0,∞+上有唯一零点0x ,则( ) A .001xx e = B .0112x << C .1k = D .1k >2.已知函数()y f x =在R 上可导且()01f =,其导函数()f x '满足[](1)()()0x f x f x '+->,对于函数()()xf xg x e =,下列结论正确的是( ) A .函数()g x 在(),1-∞-上为增函数 B .1x =-是函数()g x 的极小值点 C .函数()g x 必有2个零点D .2()(2)e e f e e f >3.设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B C .2e D 4.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x '≤<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .(2)(1)2f f >B .(2)(1)2f f < C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 5.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则( ) A .1'0f e ⎛⎫= ⎪⎝⎭B .()f x 在1=x e处取得极大值 C .()011f <<D .()f x 在()0,∞+单调递增6.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2ln h x e x =(e 为自然对数的底数),则( ) A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增; B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-; C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,1-;D .()f x 和()h x 之间存在唯一的“隔离直线”y e =-. 7.已知定义在0,2π⎛⎫⎪⎝⎭上的函数()f x ,()'f x 是()f x 的导函数,且恒有cos ()sin ()0xf x xf x '+<成立,则( )A .64f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C .63f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭D 64ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭二、单选题8.已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1-C D .e9.已知函数[](),1,2,xae f x x x =∈且[]()()12121212,1,2,1f x f x x x x x x x -∀∈≠<-,恒成立,则实数a 的取值范围是( ) A .24,e ⎛⎤-∞ ⎥⎝⎦B .24,e ⎡⎫+∞⎪⎢⎣⎭C .(],0-∞D .[)0+,∞ 10.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( ) A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞11.已知()f x 是定义在()(),00,-∞⋃+∞上的奇函数,且0x >时()()20xf x f x '+>,又()10f -=,则()0f x <的解集为( ) A .()(),11,-∞-+∞ B .()()1,00,1- C .()()1,01,-⋃+∞ D .()(),10,1-∞-⋃12.已知偶函数()y f x =对于任意的[0,)2x π∈满足'()cos ()sin 0f x x f x x +>(其中'()f x 是函数()f x 的导函数),则下列不等式中成立的是( )A ()()34f ππ-< B ()()34f ππ-<-C .(0)()4f π>- D .()()63f ππ<13.已知奇函数() f x 的导函数为()f x ',当0x ≠时,()()0xf x f x '+>,若()()11,,1a f b ef e c f ee ⎛⎫==--= ⎪⎝⎭,则,,a b c 的大小关系正确的是( ) A .a b c << B .b c a << C . a c b << D .c a b <<14.设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为( )A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞,,15.若曲线21:C y x =与曲线2:(0)xe C y a a=>存在公切线,则实数a 的取值范围( )A .(0,1)B .21,4e ⎛⎤ ⎥⎝⎦C .2,24e ⎡⎤⎢⎥⎣⎦D .2,4e ⎡⎫+∞⎪⎢⎣⎭16.丹麦数学家琴生(Jensen )是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数()f x 在(),a b 上的导函数为()f x ',()f x '在(),a b 上的导函数为()f x '',若在(),a b 上()0f x ''<恒成立,则称函数()f x 在(),a b 上为“凸函数”.已知()2ln x f x e x x px =--在()1,4上为“凸函数”,则实数p 的取值范围是( )A .1,22e ⎛⎤-∞- ⎥⎝⎦B .[)1,e -+∞C .41,28e ⎡⎫-+∞⎪⎢⎣⎭D .(),e +∞17.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数.若()()1f x f x '-<,且()01f =,则不等式()12xf x e +≥的解集为( )A .(],0-∞B .[)1,-+∞C .[)0,+∞D .(],1-∞-18.函数()y f x =,x ∈R ,()12021f =,对任意的x ∈R ,都有()2'30f x x ->成立,则不等式()32020f x x <+的解集为( )A .(),1-∞-B .()1,1-C .()1,+∞D .(),1-∞19.已知函数()(1)f x lnx a x =-+,若不等式2()1f x ax b ≤+-对于任意的非负实数a 都成立,求实数b 的取值范围为( ) A .(-∞,0]B .(-∞,1]C .[0,)+∞D .[1,)+∞20.定义在R 上的偶函数f (x )的导函数为f ′(x ),若∀x ∀R ,都有2f (x )+xf ′(x )<2,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围是( )A .{x |x ≠±1}B .(-1,0)∀(0,1)C .(-1,1)D .(-∞,-1)∀(1,+∞)21.设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是( )A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭22.设()'f x 是函数()f x 的导函数,若对任意实数x ,都有[]()()()0x f x f x f x '-+>,且(1)2020f e =,则不等式()20200x xf x e -≥的解集为( ) A .[1,)+∞B .(,1]-∞C .(0,2020]D .(1,2020]23.已知()f x 是可导的函数,且()()f x f x '<,对于x ∈R 恒成立,则下列不等关系正确的是( ) A .()()10f ef >,()()202020200f ef < B .()()10f ef >,()()211f e f >-C .()()10f ef <,()()211f e f <- D .()()10f ef >,()()202020200f ef >24.已知函数()f x 的导函数为()'f x ,e 为自然对数的底数,对x R ∀∈均有()()()'f x xf x xf x +>成立,且()22=f e ,则不等式()2xxf x e >的解集是( )A.(),e -∞ B .(),e +∞ C .(),2-∞D .2,25.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数()f x ',且满足()()20xf x f x '+>,则不等式()()()202020202222020x f x f x ++<+的解集为( )A .{}2018x x <-B .{}20202018x x -<<-C .{}2018x x >-D .{}20200x x -<< 26.已知函数f (x )的定义域为R ,f (-1)=3,对任意x ∀R ,f ′(x )>3,则f (x )>3x +6的解集为( ) A .(-1,+∞)B .(-1,1)C .(-∞,-1)D .(-∞,+∞)27.奇函数()f x 定义域为()(),00,ππ-⋃,其导函数是()'f x .当0x π<<时,有()()'sin cos 0f x x f x x -<,则关于x 的不等式()sin 4f x x π⎛⎫< ⎪⎝⎭的解集为( )A .ππ4(,) B .ππππ44(,)(,)-⋃ C .ππ0044-⋃(,)(,) D .ππ0π44-⋃(,)(,) 28.若对任意的1x ,[)22,0x ∈-,12x x <,122112x x x e x e a x x -<-恒成立,则a 的最小值为( ) A .23e -B .22e - C .21e -D .1e-29.函数()f x 是定义在R 上的奇函数,其导函数记为()f x ',当0x >时,()()f x f x x'<恒成立,若()20f =,则不等式()01f x x >-的解集为( ) A .()()2,01,2- B .()()2,00,1-⋃ C .()()1,2,2⋃-∞- D .()()2,02,-+∞30.已知a 、b R ∈,函数()()3210f x ax bx x a =+++<恰有两个零点,则+a b 的取值范围( ) A .(),0-∞B .(),1-∞-C .1,4⎛⎫-∞-⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭31.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+32.已知函数()3x f x e ax =+-,其中a R ∈,若对于任意的12,[1,)x x ∈+∞,且12x x <,都有()21x f x ()()1212x f x a x x -<-成立,则a 的取值范围是( )A .[3,)+∞B .[2,)+∞C .(,3]-∞D .(,2]-∞33.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞三、解答题34.已知函数()()ln af x x a R x=-∈. (1)讨论()f x 的单调性;(2)若1x ,2x 是方程()2f x =的两个不同实根,证明:1232x x e +>.35.已知函数()()()ln 1,f x a x bx a b R =+-∈在点()()1,1f 处的切线方程为212ln 20x y ++-=. (1)求实数a ,b 的值﹔ (2)若函数()2()()12t g x f x x t =+≥,试讨论函数()g x 的零点个数.36.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈. (1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.37.设函数()2ln af x x x=+,()323g x x x =--. (1)讨论函数()f x 的单调性;(2)如果对于任意的12123x x ⎡⎤∈⎢⎥⎣⎦,,,都有()()112x f x g x ≥成立,试求a 的取值范围.38.已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.39.给出如下两个命题:命题:[0,1]p x ∃∈,1426(5)0x x a a a +⋅-⋅+-=;命题:q 已知函数8()|ln |1a g x x x -=++,且对任意1x ,2(0,1]x ∈,12x x ≠,都有2121()()1g x g x x x -<--. (1)若命题p ⌝为假,求实数a 的取值范围.(2)若命题p q ∧为假,p q ∨为真,求实数a 的取值范围.40.已知函数()212ln 2f x x ax x =-+,a ∈R . (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 、()212x x x <,求()()212f x f x -的取值范围.41.已知函数22()(, 2.718)xx a f x a R e e-+=∈=.(1)求()f x 的单调区间.(2)若()f x 在区间21,1a e -⎛⎫+ ⎪⎝⎭上不单调,证明:1111a a a +>-+.42.已知函数1()ln f x a x x x=-+,其中0a >. (1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由43.已知函数()ln 2f x x kx =++. (1)讨论函数()f x 的单调性;(2)若函数()2x e g x x ax =-+,当1k =-且202e a <≤,求证:()()g xf x >.44.已知函数()e xf x x =.(1)求函数()f x 的最小值;(2)若()0,x ∀∈+∞,()32f x x ax x >-++恒成立,求实数a 的取值范围.45.已知函数()f x 满足:∀定义为R ;∀2()2()9xxf x f x e e +-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.。

构造函数解决高考导数问题

构造函数解决高考导数问题

构造函数解决高考导数问题导数大题是全国各地的高考试卷中必考的一道压轴题,主要考查利用导数讨论原函数的单调性和单调区间,通过讨论将其转化为最值问题,着重考查分类讨论思想,对分类讨论的原因和讨论流程的要求较高.解题的关键在于讨论之后如何将问题精准地转化为最值问题,以得到我们所需的式子或结果.导数问题的难点在于分类讨论和最值的转化,通常在进行分类讨论或者转化为函数的最值问题之前,函数形式或者可转化为函数形式的式子比较复杂,因此我们需要进行相应的构造函数工作,把函数形式变得更加简单,其中最重要的就是函数形式的转换,本文把利用构造函数解决导数问题这类题型进行了总结,如下。

题型一直接作差构造函数方法总结:在导数问题中,这类题型是最一般的情况. 如果要证明涉及一个变量、两个函数的不等式成立,或者不等式可转化为利用一个函数来证明,可通过移项构造一个新的函数来解决,关键是对于如练习中所描述的某函数图象恒在另一个函数图象的上方或者下方,或者函数图象与某直线无交点(即函数图象恒在某直线的上方或下方)等进行正确的条件转化.题型二分离函数构造函数当要证明的不等式两边含有有理函数和超越函数的乘积或商的形式时,我们需要把这两种形式的函数分离之后再来研究,这样在解决具体问题时,对于超越函数的性质研究和求取最值就会变得简单.方法总结:我们在研究这样的不等式时,往往需要对函数的形式进行处理,先把不等式两边含有有理函数和超越函数的乘积或者商的这两种形式分离,然后再研究函数的性质. 对于高中而言,常见的超越函数和有理函数之间的叠加主要有以下几种:当遇到这类函数时,应优先使用分离策略,即先把不等式两边含有有理函数和超越函数的乘积或者商的形式分离,简化函数的形式,再进行研究.题型三从导函数特征入手构造原函数方法总结:我们总结了以上的导数形式进行转化,总体的目标是构造已有的函数来取代题目中比较复杂的式子,以得到我们所需要的形式方便解题.题型四换元法构造函数证明方法总结:在证明类似问题时需要抽象出变量,然后利用换元,将整数变量的形式转化为一个函数的自变量的形式.题型五消参换元构造函数在证明不等式中的某一步时,当遇到式子比较复杂的情况,我们可以在其中的一步通过构造新的函数自变量来替代较为复杂的参数,以达到证明的目的。

第4讲 导数中构造函数比大小问题题型总结(解析版)-2024高考数学常考题型

第4讲 导数中构造函数比大小问题题型总结(解析版)-2024高考数学常考题型

第4讲导数中构造函数比大小问题题型总结【典型例题】题型一:构造()xxx f ln =比较大小此函数定义域为()+∞,0,求导()2ln 1x xx f -=',当()e x ,0∈时,()0>'x f ,故()x f 为增函数,当()+∞∈,e x 时,()0<'x f ,故()x f 为减函数,当e x =时,()x f 取得极大值为()ee f 1=,且()()222ln 42ln 244ln 4f f ====,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若1ln 2ln 3,,e 23a b c ===,则,,a b c 的大小关系为()A .a c b >>B .b c a>>C .c b a>>D .a b c>>【答案】A 【解析】【分析】通过对三个数的变形及观察,可以构造出函数()ln xf x x=,通过求导分析其单调性即可得到答案【详解】解:1ln e ln 2ln 4ln 3,,e e 243a b c =====,设()()2ln 1ln ,x x f x f x x x -'==,则e x >时,()0f x '<,故()f x 在()e,∞+上单调递减,则()()()3e 4f f f >>,即ln e ln 3ln 4e34>>,所以a c b >>.故选:A.【例2】(2023·全国·高三专题练习)设24ln 4a e -=,ln 22b =,1c e =,则()A .a c b <<B .a b c<<C .b a c<<D .b c a<<【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数()ln xf x x=,然后结合导数与单调性关系分析出e x =时,函数取得最大值()1e ef =,可得c 最大,然后结合函数单调性即可比较大小.【详解】设()ln x f x x =,则()21ln xf x x -'=,当e x >时,()0f x '<,函数单调递减,当0e x <<时,()0f x '>,函数单调递增,故当e x =时,函数取得最大值()1e ef =,因为()2222e ln 22ln22e e e 22a f -⎛⎫=== ⎪⎝⎭,()()4ln2l e n 4e 1,24b f c f =====,2e 42e << ,当e x >时,()0f x '<,函数单调递减,可得()()2e 4e 2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是()①ln 32<;②ln π<;③15<;④3e ln 2>.A .1B .2C .3D .4【答案】B 【解析】【分析】本题首先可以构造函数()ln x f x x =,然后通过导数计算出函数()ln xf x x=的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数()ln xf x x=的单调性即可比较出大小.【详解】解:构造函数()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,e x >时,()0f x '<,所以函数()ln xf x x=在()0,e 上递增,在()e,+∞上递减,所以当e x =时()f x 取得最大值1e,ln 322ln 2ln 22<⇔⇔,2e <<可得()2ff <,故①正确;lnπ<⇔e <<,可得f f <,故②错误;ln 2ln 4152ln1524<⇔<⇔<<,因为函数()ln xf x x=在()e,+∞上递减,所以()4f f<,故③正确;因为e >,所以(()e f f <,ln ee <1e <,则3e <即3e ln 2<④错误,综上所述,有2个正确.故选:B .【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a ,b ,c 均为区间()0,e 内的实数,且ln 55ln a a =,ln 66ln b b =,ln 77ln c c =,则a ,b ,c 的大小关系为()A .a c b >>B .a b c>>C .c a b>>D .c b a>>【答案】B 【解析】【分析】构造函数()ln xf x x=,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,函数()F x 在()0,e 上单调递增,当e x >时,()0f x '<,函数()f x 在()e,+∞上单调递减,因为765e >>>,所以()()()765f f f <<,因为a ,b ,c 均为区间()0,e 内的实数,且ln 5ln 5a a =,ln 6ln 6b b =,ln 7ln 7c c=,所以()()()f a f b f c >>,所以a b c >>,故选:B.【例5】(2022·江西·高三阶段练习(理))设ln 28a =,21e b =,ln 612c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【答案】B 【解析】【分析】根据a 、b 、c 算式特征构建函数()2ln xf x x =,通过求导确定函数单调性即可比较a 、b 、c 的大小关系.【详解】令()2ln x f x x =,则()42ln 0x x xx x f x '-==⇒=因此()2ln xf x x =在)∞+上单调递减,又因为ln 2ln 4(4)816a f ===,22ln e1=(e)e e b f ==,ln 612c f ===,因为4e >>>a b c <<.故选:B .【题型专练】1.(2022·四川省资阳中学高二期末(理))若ln212ln3,,29e a b c ===,则()A .b a c>>B .b c a>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】令()ln xf x x=,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a 、c ,即可得解;【详解】解:令()ln x f x x =,则()21ln xf x x-'=,所以当0e x <<时()0f x '>,当e x >时()0f x '<,所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max ln e 1e e e f x f ===,所以1e ln22>又94ln22ln39ln 24ln 3ln 2ln 3ln 512ln 91029181818----===>所以ln22ln329>,即b a c >>.故选:A2.(2022·浙江台州·高二期末)设24ln 4e a -=,ln 22b =,c =,则()A .a b c <<B .b a c <<C .a c b<<D .b c a<<【答案】B 【解析】【分析】由题设22e ln2e 2a =,ln 44b =,ln 33c =,构造ln ()xf x x =并利用导数研究单调性,进而比较它们的大小.【详解】由题设,222e ln4ln 42e e 2a -==,ln 2ln 424b ==,ln 33c ==,令ln ()xf x x=且0x >,可得21ln ()x f x x -'=,所以()0f x '>有0e x <<,则(0,e)上()f x 递增;()0f x '<有e x >,则(e,)+∞上()f x 递减;又2e 43e 2>>>,故c a b >>.故选:B3.(2022·四川广安·模拟预测(理))在给出的(1ln 32)43ln 34<e (3)ee ππ>.三个不等式中,正确的个数为()A .0个B .1个C .2个D .3个【答案】C 【解析】【分析】根据题目特点,构造函数()ln x f x x =,则可根据函数()ln xf x x=的单调性解决问题.【详解】首先,我们来考察一下函数()ln xf x x=,则()21ln xf x x -'=,令()0,f x '>解得0e x <<,令()0,f x '<解得e x >,故()ln xf x x=在区间()0,e 上单调递增,在区间()e,+∞单调递减,所以,(1)ff <ln 3>,则正确;(2)()43e 3f f ⎛⎫< ⎪⎝⎭,即4343lne ln33e <,即43e ln 34⋅>,则错误;(3)()()πf e f >,即e e e e e e ππππππln ln ln ln ln ln >⇒>⇒>,所以,e e ππ>,则正确故选:C.4.(2022·四川资阳·高二期末(文))若ln 33a =,1eb =,3ln 28c =,则()A .b a c >>B .b c a >>C .c b a >>D .c a b>>【答案】A 【解析】【分析】设函数ln (),(0)xf x x x=>,求出其导数,判断函数的单调性,由此可判断出答案.【详解】设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当0e x <<时,()0f x '>,()f x 递增,当e x >时,()0f x '<,()f x 递减,当e x =时,函数取得最小值,由于e 38<<,故lne ln 3ln 8e 38>>,即b a c >>,故选:A5.(2022·山东日照·高二期末)π是圆周率,e 是自然对数的底数,在e 3,3e ,33,e e ,πe ,3π,π3,e π八个数中,最小的数是___________,最大的数是___________.【答案】e e π3【解析】【分析】分别利用指数函数的单调性,判断出底数同为3,e 以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数()ln xf x x=的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e .函数3x y =是增函数,且e 3π<<,∴e 3π333<<;函数e x y =是增函数,且e 3π<<,e 3πe e e <<;函数πx y =是增函数,且e 3π<<,e 3ππ<;函数e y x =在()0,∞+是增函数,且e 3π<<,e e e e 3π<<,则八个数中最小的数是e e 函数πy x =在()0,∞+是增函数,且e 3<,ππe 3<,八个数中最大的数为3π或π3,构造函数()ln xf x x=,求导得()21ln xf x x -'=,当()e,x ∈+∞时()0f x '<,函数()f x 在()e,+∞是减函数,()()3πf f >,即ln 3ln π3π>,即πln 33ln π>,即π3ln 3ln π>,π33π∴>,则八个数中最大的数是π3.故答案为:e e ;π3.6.(2022·安徽省宣城中学高二期末)设24ln41,,e ea b c -===,,a b c 的大小关系为()A .a b c <<B .b a c<<C .a c b<<D .c a b<<【答案】D 【解析】【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案.【详解】设ln ()(0)xf x x x=>,则221ln 1ln ()x xx x f x x x ⋅--'==,当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数,当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2(2)2c f ===,又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为()A .b c a <<B .c b a<<C .a b c<<D .b a c<<【答案】C 【解析】【分析】判断出01,01,1a b c <<<<>,构造函数ln (),(0)xf x x x=>,判断01x <<时的单调性,利用其单调性即可比较出a,b 的大小,即可得答案.【详解】由ln ln ln 0e a a b cb c==-<,得01,01,1a b c <<<<>,设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当01x <<时,()0f x '>,()f x 单调递增,因为01a <<,所以e 1>>a a ,所以ln ln e a aa a>,故()()ln ln ln e =>∴>a a b a f b f a b a ,则b a >,即有01a b c <<<<,故a b c <<.故选:C.题型二:利用常见不等式关系比较大小1、常见的指数放缩:)1();0(1=≥=+≥x ex e x x e xx证明:设()1--=x e x f x,所以()1-='xe xf ,所以当()0,∞-∈x 时,()0<'x f ,所以()x f 为减函数,当当()+∞∈,0x 时,()0>'x f ,所以()x f 为增函数,所以当0=x 时,()x f 取得最小值为()00=f ,所以()0≥x f ,即1+≥x e x2.常见的对数放缩:)(ln );1(1ln 11e x exx x x x x =≤=-≤≤-3.常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫⎝⎛∈π【例1】(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x=+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知910a =,19eb -=,101ln 11c =+,则a ,b ,c 的大小关系为()A .a b c <<B .b a c<<C .c b a <<D .c a b<<【答案】B【解析】【分析】首先设()e 1x f x x =--,利用导数得到()e 10xx x >+≠,从而得到11b a>,设()ln 1g x x x =-+,利用导数得到()ln 11x x x <-≠,从而得到111ln 1010<和c a >,即可得到答案.【详解】解:设()e 1x f x x =--,()e 1xf x '=-,令()0f x ¢=,解得0x =.(),0x ∈-∞,()0f x ¢<,()f x 单调递减,()0,x ∞∈+,()0f x ¢>,()f x 单调递增.所以()()00f x f ≥=,即e 10x x --≥,当且仅当0x =时取等号.所以()e 10xx x >+≠.又1911101e 199b a=>+==,0,0a b >>,故11b a >,所以b a <;设()ln 1g x x x =-+,()111xg x x x-'=-=,令()0g x ¢=,解得1x =.()0,1∈x ,()0g x ¢>,()g x 单调递增,()1,x ∈+∞,()0g x ¢<,()g x 单调递减.所以()()10g x g ≤=,即ln 10x x -+≤,当且仅当1x =时取等号.所以()ln 11x x x <-≠,故11111ln 1101010<-=,又1011011lnln ln ln1011101110c a -=+>+==,所以c a >,故b a c <<.故选:B.【例3】(2022·四川凉山·高二期末(文))已知0.01e a =, 1.01b =,1001ln 101c =-,则().A .c a b >>B .a c b>>C .a b c>>D .b a c>>【答案】C 【解析】【分析】构造函数()e 1x f x x =--,由导数确定单调性,进而即得.【详解】设()e 1x f x x =--,则e ()10x f x '=->,在0x >时恒成立,所以()f x 在(0,)+∞上是增函数,所以e 1(0)0x x f -->=,即e 1x x >+,0x >,∴0.01e 1.01>,又ln1.010>,∴ln1.01e 1ln1.01>+,即1001.011ln 101>-,所以a b c >>.故选:C .【例4】(2022·四川绵阳·高二期末(理))若8ln 7a =,18=b ,7ln 6c =,则()A .a c b <<B .c a b<<C .c b a <<D .b a c<<【答案】D 【解析】【分析】构造函数()1ln 1f x x x=+-,其中1x >,利用导数分析函数()f x 的单调性,可比较得出a 、b 的大小关系,利用对数函数的单调性可得出c 、a 的大小关系,即可得出结论.【详解】构造函数()1ln 1f x x x=+-,其中1x >,则()221110x f x x x x -'=-=>,所以,函数()f x 在()1,+∞上为增函数,故()()10f x f >=,则88781ln 1ln 077878f ⎛⎫=+-=-> ⎪⎝⎭,即a b >,78lnln 67> ,因此,b a c <<.故选:D.【例5】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解.【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A 【题型专练】1.(2022·福建·莆田一中高二期末)设ln1.01a =, 1.0130e b =,1101c =,则()A .a b c <<B .a c b <<C .c b a <<D .c a b<<【答案】D 【解析】【分析】构造函数()ln 1f x x x =-+(0x >),证明ln 1≤-x x ,令 1.01x =,排除选项A,B,再比较,a b 大小,即得解.【详解】解:构造函数()ln 1f x x x =-+(0x >),()10f =,()111xf x x x-'=-=,所以()f x 在()0,1上()0f x '>,()f x 单调递增,()f x 在()1,+∞上()0f x '<,()f x 单调递减,所以max ()(1)0,ln 10,ln 1f x f x x x x ==∴-+≤∴≤-,令 1.01x =,则 ln a x =,30e x b =,11c x=-,考虑到ln 1≤-x x ,可得11ln 1x x ≤-,1ln 1x x -≥-等号当且仅当 1x =时取到,故 1.01x =时a c >,排除选项A ,B.下面比较,a b 大小,由ln 1≤-x x 得 1.01ln1.01 1.0130e<<,故b a >,所以c a b <<.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知1cos 5a =,4950b =,15sin 5=c ,则()A .b a c >>B .c b a >>C .b c a >>D .c a b>>【答案】D 【解析】【分析】构造函数21()cos 12f x x x =+-,利用导数求解函数()f x 的单调性,利用单调性进行求解.【详解】解:设21()cos 1,(01)2f x x x x =+-<<,则()sin f x x x '=-,设()sin ,(01)g x x x x =-<<,则()1cos 0g x x '=->,故()g x 在区间(0,1)上单调递增,即()(0)0g x g >=,即()0f x '>,故()f x 在区间(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,可得149cos 550>,故a b >,利用三角函数线可得0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >,所以11tan 55>,即1sin1515cos 5>,所以115sincos 55>,故c a >综上,c a b >>故选:D.3(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x =+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知1ln 22a a -=,1ln 33b b -=,e ln e cc -=,其中12a ≠,13b ≠,e c ≠,则a ,b ,c 的大小关系为().A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A 【解析】【分析】构造函数()()ln 0f x x x x =->,并求()f x ',利用函数()f x 的图象去比较a b c 、、三者之间的大小顺序即可解决.【详解】将题目中等式整理,得11ln ln 22a a -=-,11ln ln 33b b -=-,ln e ln e c c -=-,构造函数()()ln 0f x x x x =->,()111x f x x x-'=-=,令()0f x '=,得1x =,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,函数()f x 的大致图象如图所示.因为()12f a f ⎛⎫= ⎪⎝⎭,()13f b f ⎛⎫= ⎪⎝⎭,()()e f c f =,且12a ≠,13b ≠,e c ≠,则由图可知1b a >>,01c <<,所以c a b <<.故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设 1.01e a =,3eb =,ln 3c =,其中e 为自然对数的底数,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b>>D .a b c>>【答案】D 【解析】【分析】可判断 1.012e a =>,e32b =<,ln 32c =<,再令()ln exf x x =-,[e x ∈,)∞+,求导判断函数的单调性,从而比较大小.【详解】解: 1.012e a =>,e 32b =<,ln 32c =<,令()ln exf x x =-,[e x ∈,)∞+,11()0e e e x f x x x-'=-=<,故()f x 在[e ,)∞+上是减函数,故()()e 3f f <,即3ln 30e-<,故 1.013l e e n 3<<,即c b a <<,故选:D .【例3】(2022·全国·高三专题练习)已知ln 32a =,1e 1b =-,ln 43c =,则a ,b ,c 的大小关系是()A .b a c >>B .b c a >>C .c a b >>D .c b a>>【答案】A 【解析】【分析】根据给定条件构造函数ln ()e)1xf x x x =≥-,再探讨其单调性并借助单调性判断作答.【详解】令函数ln ()(e)1x f x x x =≥-,求导得()211ln ()1x x f x x --'=-,令()11ln g x x x =--,则()210,(e)xg x x x -'=<≥,故()11ln g x x x =--,(e)x ≥单调递减,又()111ln101g =--=,故()0,(e)g x x <≥,即()0,(e)f x x '<≥,而e 34<<,则(e)(3)(4)f f f >>,即1ln 3ln 4e 123>>-,所以b a c >>,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设110a =,ln1.1b =,910ec -=,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<【答案】D 【解析】【分析】利用指数函数的性质可比较,a c 的大小,再构造函数()ln(1)f x x x =-+,利用导数判断函数的单调性,再利用其单调性可比较出,a b ,从而可比较出三个数的大小【详解】因为e x y =在R 上为增函数,且9110-<-,所以9110e e --<,因为11e 10-<,所以9101e 10-<,即a c <,令()ln(1)f x x x =-+(0x >),得1()1011xf x x x'=-=>++,所以()f x 在(0,)+∞上递增,所以()(0)0f x f >=,所以ln(1)x x >+,令0.1x =,则0.1ln1.1>,即1ln1.110>,即a b >,所以b a c <<,故选:D【例5】(2022·四川南充·高二期末(理))设0.010.01e a =,199b =,ln 0.99c =-,则()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)-上单调递减,1)x ∀∈,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈时,e 1xx x x<-,取0.01x =,则有0.010.0110.01e10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈,()(0)0h x h <=,有()0g x '>,则()g x 在1)上单调递增,1)x ∀∈,()(0)0g x g >=,因此当1)x ∈时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c a b <<.故选:A 【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是()A .a b c >>B .c a b>>C .a c b>>D .b a c>>【答案】B 【解析】【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>.【详解】2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π306f ⎛⎫'=-< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且ππ30124f ⎛⎫'=-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>.故选:B【例7】(2022·河南洛阳·三模(理))已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .a c b >>D .a b c>>【答案】D 【解析】【分析】构造函数()()18ln f x x x =-,8x ≥,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造()()18ln f x x x =-,8x ≥,()18ln 1f x x x+'=--,()18ln 1f x x x+'=--在[)8,+∞时为减函数,且()295558ln 81ln 8ln e 204444f =-+-=-<-=-<',所以()18ln 10f x x x=-+-<'在[)8,+∞恒成立,故()()18ln f x x x =-在[)8,+∞上单调递减,所以()()()8910f f f >>,即10ln89ln 98ln10>>,所以10988910>>,即a b c >>.故选:D 【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若0.2e a =,b =ln 3.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a>>【答案】B 【解析】构造函数()()e 10x f x x x =-->,利用导数可得0.2e 1.2b a >>=,进而可得 1.2e 3.2>,可得a c >,再利用函数()()21ln 1x g x x x -=-+,可得ln 3.2 1.1>,即得.【详解】令()()e 10x f x x x =-->,则()e 10x f x '=->,∴()f x 在()0,∞+上单调递增,∴0.20.21 1.2e a b >+=>=,0.2 1.21.e ln 2e a >==,ln 3.2c =,∵()()()6551.262.7387.4,3.2335.5e e >≈≈=,∴ 1.2e 3.2>,故a c >,设()()21ln 1x g x x x -=-+,则()()()()()22221211011x x x g x x x x x +--=-=≥++',所以函数在()0,∞+上单调递增,由()10g =,所以1x >时,()0g x >,即()21ln 1x x x ->+,∴()()22121.6155ln 3.2ln 2ln1.611 1.121 1.613950--=+>+=>=++,又1 1.2 1.21,1 1.1b <<<<,∴ 1.1c b >>,故a c b >>.故选:B.【点睛】本题解题关键是构造了两个不等式()e 10x x x >+>与()21ln (1)1x x x x ->>+进行放缩,需要学生对一些重要不等式的积累.【题型专练】1(2022·山东烟台·高二期末)设a =0.9,b =9ln e10c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .b c a>>B .b a c >>C .c b a >>D .c a b>>【答案】B【分析】构造函数()ln 1f x x x =--,()g x x =-.【详解】令()ln 1f x x x =--,因为11()1x f x x x'-=-=所以,当01x <<时,()0f x '<,()f x 单调递减,所以(0.9)0.9ln 0.91(1)0f f =-->=,即90.9ln 0.91ln(e)10>+=,a c >;令()g x x =()1g x '=-所以,当114x <<时,()0g x '>,()g x 单调递增,所以(0.9)(1)g g <,即0.90<,0.9a b <.综上,c a b <<.故选:B2.(2022·山东青岛·高二期末)已知ln3a π=,2b =,1sin 0.042c ⎫=-⎪⎪⎭,则a ,b ,c 的大小关系是()A .c b a>>B .a b c >>C .b a c >>D .a c b >>【答案】C【解析】【分析】构造函数得出,a b 大小,又0c <即得出结论.【详解】构造函数()()()2ln 212ln 1f x x x x x =--=-+,则a b f -=,()1210f x x ⎛⎫'=-< ⎪⎝⎭在()1,+∞上恒成立,则()y f x =在()1,+∞上单调递减,故()10a b f f -=<=,则0b a >>,()π103x x =+>,则()π30121100433.x .-+-=>=,由对于函数()πsin 02g x x x x ⎛⎫=<< ⎪⎝⎭-,()πcos 1002g x x ,x ⎛⎫'=<<< ⎪⎝⎭-恒成立,所以,()()sin 00g x x x g =<=-即sin x x <在π0,2⎛⎫ ⎪⎝⎭上恒成立.所以,1sin0.04sin sin 02x x x ⎫<=<-<⎪⎭(注:004009020305.x .,...<<<<)所以,b a c>>故选:C3.(2022·湖北襄阳·高二期末)设253e 4a =,342e 5b =,35c =,则()A .b c a<<B .a b c <<C .c b a<<D .c a b <<【答案】C【解析】【分析】根据式子结构,构造函数()()e ,01xf x x x=<<,利用导数判断单调性,得到2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即可判断出a b >.记()()e 2,01x g x x x =-<<,推理判断出b c >.【详解】24452533e 23e 542e e 534a b ==.记()()e ,01x f x x x =<<,则()()2e 10x x f x x-'=<,所以()e xf x x =在()0,1上单调递减.所以2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以a b >.433422e e 5325354b c ⎛⎫-= ⎪⨯⎝--⎭=.记()()e 2,01x g x x x =-<<,则()e 2x g x '=-.所以在()0,ln 2x ∈上,()0g x '<,则()g x 单调递减;在()ln 2,1x ∈上,()0g x '>,则()g x 单调递增;所以()()()ln 2min ln 2e 2ln 221ln 20g x g ==-⨯=->,所以()min 304g g x ⎛⎫>> ⎪⎝⎭,即3422e 0534b c ⨯⎛⎫-> ⎪⎝⎭=-.所以b c >.综上所述:c b a <<.故选:C4.(2022·福建宁德·高二期末)已知a ,R b ∈,且221a b >>,则()A .ln ln a b a b-<-e e B .ln ln b a a b <C .e a bb a ->D .sin sin 1a b a b-<-【答案】D【解析】【分析】由题设有0a b >>,分别构造e ln x y x =-、ln x y x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误.【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除;B :若ln x y x =且,()0x ∈+∞,则21ln x y x -'=,所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减;故y 在(0,)+∞上不单调,则ln ln a b a b<不一定成立,排除;C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增,所以e e a b a b >,即e a b b a-<,排除;D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增,所以sin sin a a b b ->-,即sin sin 1a b a b-<-,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设 1.01e a =,3e b =,ln3c =,则a ,b ,c 的大小关系是()A .b a c>>B .c a b >>C .a c b >>D .a b c>>【答案】D【解析】【分析】分析可得2a >,(1,2)b ∈,(1,2)c ∈,令()ln ,[e,)ex f x x x =-∈+∞,利用导数可得()f x 的单调性,根据函数单调性,可比较ln 3和3e的大小,即可得答案.【详解】由题意得 1.011e e 2a =>>,3(2e1,)b =∈,ln 3(1,2)c =∈,令()ln ,[e,)ex f x x x =-∈+∞,则11e ()0e ex f x x x -'=-=≤,所以()f x 在[e,)+∞为减函数,所以(3)(e)f f <,即3e ln 3ln e 0e e-<-=,所以3ln 3e<,则 1.013e ln 3e >>,即a b c >>.故选:D 6.(2022·重庆南开中学高二期末)已知6ln1.25a =,0.20.2e b =,13c =,则()A .a b c<<B .c b a <<C .c a b<<D .a c b<<【答案】A【解析】【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1x g x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1x g x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>,所以函数()g x 在(),0∞-上递减,在()0,∞+上递增,所以()()0.200g g >=,即0.21e 10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >,所以c b >,综上所述a b c <<.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知212ln 204a a -=>,22122ln 0e b b --=>,221ln 303c c -=>,则()A .c b <B .b a <C .c a <D .b c<【答案】AC【解析】【分析】根据题意可将式子变形为2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,构造函数()ln f x x x =-,利用导数求解函数()f x 的单调性,即可求解.【详解】解:由题意知,211,1,23a b c >>>,对三个式子变形可得2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,设函数()ln f x x x =-,则()111x f x x x -'=-=.由()0f x ¢>,得1x >;由()0f x <,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为211101e 43<<<<,所以222b a c >>,所以c a b <<.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知01x y z ∈、、(,),且满足2e 2e x x =,3e 3e y y =,4e 4e z z =,则()A .x y z <<B .x z y <<C .z y x <<D .z x y<<【答案】C【解析】【分析】先对已知条件取对数后得到ln ln22x x -=-,ln ln33y y -=-,ln ln44z z -=-.根据式子结构,构造函数()ln m x x x =-,利用导数判断单调性,比较大小.【详解】由2e 2e x x =得2ln ln2,x x +=+即ln ln22x x -=-.同理得:ln ln33y y -=-,ln ln44z z -=-.令()ln ,m x x x =-则()111xm x x x -=-='.故()m x 在()0,1上单调递增,1∞+(,)上单调递减.所以z y x <<.故选:C.。

2021届高考数学专题突破利用导数运算法则构造函数求解不等式问题【解析版】

2021届高考数学专题突破利用导数运算法则构造函数求解不等式问题【解析版】

导数与不等式都是高考中的重点与难点,以导数为背景的抽象函数与不等式交汇问题是高考中的热点,求解此类问题的关键是根据导数的运算法则构造合适的函数,再利用导数的运算法则确定所构造函数的单调性,最后由单调性研究不等式问题.1.【2015全国Ⅱ】设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)-?? C .(,1)(1,0)-∞-- D .(0,1)(1,)⋃+∞【答案】A【解析】构造新函数()()f x g x x =,()()()2'xf x f x g x x '-=,当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.一、根据()()f x g x ''±构造函数()()f x g x c ±+【例1】【山东省威海市2019届高三二模】已知函数()f x 的定义域为R ,1122f ⎛⎫=-⎪⎝⎭,对任意的x R ∈满足()4f x x '>.当[0,2]απ∈时,不等式(sin )cos 20f αα+>的解集为( )A .711,66ππ⎛⎫⎪⎝⎭B .45,33ππ⎛⎫⎪⎝⎭C .2,33ππ⎛⎫⎪⎝⎭D .5,66ππ⎛⎫⎪⎝⎭【答案】D【分析】根据题意构造函数2()()21g x f x x =-+,则()()40g x f x x ''=->,所以得到()g x 在R 上为增函数,又2111()()2()10222g f =-⨯+=.然后根据(sin )cos20f αα+>可得21(sin )(sin )2sin 1(sin )cos20()2g f f g ααααα=-+=+>=,于是1sin 2α>,解三角不等式可得解集.【解析】由题意构造函数2()()21g x f x x =-+,则()()40g x f x x ''=->,∴函数()g x 在R 上为增函数.∵1122f ⎛⎫=- ⎪⎝⎭,∴2111()()2()10222g f =-⨯+=. 又(sin )cos20f αα+>,∴21(sin )(sin )2sin 1(sin )cos20()2g f f g ααααα=-+=+>=, ∴1sin 2α>,∵02απ≤≤,∴566ππα<<, ∴不等式(sin )cos20f αα+>的解集为5,66ππ⎛⎫ ⎪⎝⎭.故选D .【点评】解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.一般地,若给出条件()f x k '>,可构造函数()()y f x kx b =-+ 若给出条件()f x kx '>,可构造函数()212y f x kx b =-+ 【对点训练】【2019年山西省忻州市静乐县高三下学期6月月考】定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1'()'()02g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到 2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D二、根据()()xf x nf x '+(或()()xf x nf x '-)构造函数【例2】【黑龙江大庆市2019届高三第四次模拟】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为( )A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【分析】构造新函数()()2g x x f x =,根据条件可得()g x 是奇函数,且单调增,将所求不等式化为()()()()222018+20184222x f x f f +<--=,即()()20182g x g +<,解得20182x +<,即2016x <-【解析】设()()2g x x f x =,因为()f x 为R 上奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上奇函数对()g x 求导,得()()()2g x x f x xf x '=+'⎡⎤⎣⎦,而当0x >时,有()()220f x xf x x +'>≥故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增不等式()()()22018+2018420x f x f +-<+,()()()22018+201842x f x f +<--,()()()22018+201842x f x f +<,即()()20182g x g +<所以20182x +<,解得2016x <-,故选A.【点评】一般地,若给出条件()()2xf x nf x kx '+>,可构造函数()33nk y x f x x b =-+. 【对点训练】【海南省海口市2019届高三高考调研测试】已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( )A .(0)02(1)f f <<B .0(0)2(1)f f <<C .02(1)(0)f f <<D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>, 所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<. 故选B .三、根据()()f x nf x '+(或()()f x nf x '-)构造函数【例3】【四川省名校联盟2019届高考模拟信息卷】设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +>,()02020f =,则不等式()22018x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,∞+ B .()2018,+∞ C .()2020,+∞ D .()(),02018,-∞+∞【答案】A【分析】构造函数()()2xxg x e f x e =-,则可判断()'0g x >,故()g x 是R 上的增函数,结合()02018g =即可得出答案.【解析】设()()2xxg x e f x e =-,则()()()''2xxxg x e f x e f x e =+-()()'2xe f x f x =+-⎡⎤⎣⎦,∵()()'2f x f x +>,0x e >,∴()()()''20xg x e f x f x =+->⎡⎤⎣⎦,∴()g x 是R 上的增函数,又()()0022018g f =-=,∴()2018g x >的解集为()0,∞+,即不等式()22018xxe f x e >+的解集为()0,∞+.故选A.【点评】若()()f x f x k '+>,可构造()xy f x e kx ⎡⎤=-⎣⎦.【对点训练】【山东师范大学附属中学2019届高三第四次模拟】定义在R 上的奇函数()f x 的导函数满足()()f x f x '<,且()()4f x f x =+,若()2019f e =-,则不等式()x f x e <的解集为______.【答案】{}()01,⋃+∞ 【解析】()()4f x f x =+,()f x ∴的周期为4,()2019f e =-,()()()2019505411f f f e ∴=⨯-=-=-,定义在R 上的奇函数()f x ,()()11f f e ∴=--=,① ()0f x ≠时,令()()xf xg x e=,则()()()xf x f xg x e'-'=,()()f x f x '<,()0g x '∴<,即()g x 单调递减,又()()111f g e==,()()11g x g <=,1x ∴>,∴不等式()x f x e <的解集为()1,+∞,② 0x =时,()0100f e =<=,0x ∴=时,不等式成立,综上所述,{}()01,x ∈⋃+∞.四、根据()()tan f x f x x '+(或()()tan f x f x x '-)构造函数【例4】【云南省玉溪市2019届第二次调研】已知定义在(0,)2π上的函数f(x),f’(x)是它的导函数,且对任意的(0,)2x π∈,都有()'()tan f x f x x <恒成立,则( )A ()()43ππ>B ()()64f ππ>C ()()63f ππ>D .(1)2()sin16f f π>【答案】D【分析】构造函数()()sin f x g x x=,求函数导数,利用函数单调性即可得大小关系. 【解析】由题得()cos '()sin f x x f x x <,即()cos '()sin 0f x x f x x -<,令()()sin f x g x x =(0,)2x π∈,导函数2'()sin ()cos '()0sin f x x f x x g x x -=>,因此g(x)在定义域上为增函数.则有()()(1)()643g g g g πππ<<<,代入函数得(1)2()()()64sin13f f f πππ<<<,由该不等式可得(1)2()sin16f f π>,故选D.【点评】若给出条件()()tan 0f x f x x '+>,可构造函数()s i n y f x x =,若给出条件()()tan 0f x f x x '->,可构造函数()sin f x y x=. 【对点训练】【福建省三明市2019届高三质量检查测试】已知函数()f x 的定义域为,22ππ⎛⎫-⎪⎝⎭,其导函数为()f x '.若()tan [()]f x x f x x '=⋅+,且(0)0f =,则下列结论正确的是( )A .()f x 是增函数B .()f x 是减函数C .()f x 有极大值D .()f x 有极小值【答案】A【解析】设函数g x f x x =∙()()cos因为()()tan f x x f x x '⎡⎤=⋅+⎣⎦化简可得xf x f x x x'=+sin ()[()]cos , 即为f x x xf x x x '-=∙()cos sin ()sin , 故g x x x '=∙()sin , 因为x 22ππ∈--(,)所以g x x x 0'=∙≥()sin 恒成立, 所以()y g x =在x 22ππ∈--(,)上单调递增,又因为(0)0f =,所以g 0f 000=∙=()()cos , 所以当(,0)2x π∈-时,()0g x <,当(0,)2x π∈时,()0g x >,2g x g x x g x xf x x x '∙+''==()()cos ()sin ()[]cos cos , 当(,0)2x π∈-时,()0g x <,()0g x '>,cos 0x >,sin 0x <,故2g x g x x g x xf x 0x x'∙+''==>()()cos ()sin ()[]cos cos 恒成立; 当(0,)2x π∈时,()0g x >,()0g x '>,cos 0x >,sin 0x >,故2g x g x x g x xf x 0x x'∙+''==>()()cos ()sin ()[]cos cos 恒成立;所以y f x 0''=≥()在x 22ππ∈--(,)上恒成立,故()y f x =在x 22ππ∈--(,)上单调递增,故函数没有极值,不可能单调递减,故选A.五、根据()()()f x f x g x ±-=构造函数【例5】【河南省郑州市2019届高三第三次质量检测】设函数()f x 在R 上存在导函数'()f x ,x R ∀∈,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --≥-+-,则实数m 的取值范围为( ) A .[1,1]- B .(,1]-∞C .[1,)+∞D .(,1][1,)-∞-+∞【答案】B【分析】由题,构造新函数3()()2x g x f x =-,再由题判断出新函数()g x 的奇偶性和单调性,再利用()()22364f m f m m m --≥-+-可得出(2)()g m g m -≥,即可求得m 的取值.【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=--令3()()()()2x g x f x g x g x =-∴=-即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ''=->即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --≥-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+≥即(2)()g m g m -≥,所以2m m -≥,解得1m ≤ ,故选B.【点评】求解本题的关键是根据()()3f x f x x --=,构造偶函数()()32x g x f x =-,一般地,若给出()()()f x f x g x ±-=可构造偶函数或奇函数.【对点训练】.已知定义在R 上的函数()f x 的导数为()f x ',且满足()()2sin f x f x x +-=,当0x ≥时()sin cos f x x x x '>-- ,则不等式()π22f x f x ⎛⎫-- ⎪⎝⎭sin 2cos x x <+的解集为A.π,2⎛⎫-∞-⎪⎝⎭ B. π,6⎛⎫+∞ ⎪⎝⎭ C. ππ,26⎛⎫-⎪⎝⎭ D. ππ,,26⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】设()()sin g x f x x =-,则()()sin g x f x x -=-+,所以()()g x g x --=()()f x f x --2sin 0x -=,所以()g x 是偶函数,设()()sin 0h x x x x =-≥,则()1cos 0h x x '=-≥,所以()()0h x h '≥,即sin 0x x -≥,所以0x ≥时()sin cos cos f x x x x x '>--≥- , 所以0x ≥时()()cos 0g x f x x ''=+>,()g x 在[)0,+∞上是增函数,所以()π22f xf x ⎛⎫--⎪⎝⎭s i n 2x x <+()2s in 2f xx ⇔- ππsin 22f x x ⎛⎫⎛⎫<--- ⎪ ⎪⎝⎭⎝⎭()π22g x g x ⎛⎫⇔<- ⎪⎝⎭()π22g x g x ⎛⎫⇔<- ⎪⎝⎭π22x x ⇔<-⇔()22π22x x ⎛⎫<- ⎪⎝⎭ππ3022x x ⎛⎫⎛⎫⇔+-< ⎪⎪⎝⎭⎝⎭ππ26x ⇔-<<,故选C.1.【甘肃省兰州市2019届高三6月高考冲刺模拟】定义在∞(0,+)上的函数f x ()满足21()0f x x '+>,522f =(),则关于x 的不等式12ln f lnx x >+() 的解集为( )A .2(1,)eB .2(0,)eC .2(,)e eD .2(,)e +∞【答案】D【解析】根据题意,令1()()g x f x x=-,(0)x >,则其导数21()()0g x f x x '='+>,函数()g x 在(0,)+∞为增函数, 又由f (2)52=,则g (2)51222=-=,11()2()2()(2)f lnx f lnx g lnx g lnx lnx>+⇒->⇒>, 则有2lnx >,解可得2x e >;即不等式1()2f lnx lnx>+的解集为2(+)e ∞,. 故选D .2.【安徽省1号卷A10联盟2019年高考最后一卷】已知函数()f x 的导函数为()'f x ,e 为自然对数的底数,对x R ∀∈均有()()()'f x xf x xf x +>成立,且()22f e =,则不等式()2xxf x e >的解集是( )A .(),e -∞B .(),e +∞C .(),2-∞D .()2,+∞【答案】D【解析】原不等式等价于()2x xf x e >,令()()xxf x g x e =, 则()()()()0xf x xf x xf xg x e'+-'=>恒成立,()g x \在R 上是增函数, 又()22f e =,()22g ∴=,∴原不等式为()()2g x g >,解得2x >,故选D .3.【云南省昆明市2019届高三第四次统测】己知奇函数()f x 的导函数为'()f x ,x R ∈.当(0,)x ∈+∞时,'()()0xf x f x +>.若()2(2)(2)af a f a af a ≥-+-,则实数a 的取值范围是( ) A .(,1)-∞- B .[1,1]- C .(,1][1,)-∞-+∞ D .[1,)+∞【答案】D【解析】设()()g x xf x =''()()()0g x f x xf x ⇒=+>所以当(0,)x ∈+∞时,()g x 是增函数,因为()f x 是奇函数,所以有()()f x f x -=-,因此有()()()()()g x x f x xf x g x -=--==,所以()g x 是偶函数, 而2(2)(2)2(2)(2)(2)(2)f a af a f a af a a f a -+-=---=--,()2(2)(2)af a f a af a ≥-+-可以化为()(2)(2)()(2)af a a f a g a g a ≥--⇒≥-,()g x 是偶函数,所以有()(2)()(2)g a g a g a g a ≥-⇒≥-,当(0,)x ∈+∞时,()g x 是增函数,所以有21a a a ≥-⇒≥,故选D.4.【山东省枣庄市2019届高三月考】已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且(2)f x +为偶函数,(4)1f =,则不等式()x f x e <的解集为( ) A .(),0-∞ B .()0,∞+C .()4,e-∞D .()4,e +∞【答案】B 【解析】设()()x f x h x e=则()()()()()2x x e f x f x h x e '-'=∵()()f x f x '<,∴()'0h x <. 所以函数()h x 是R 上的减函数, ∵函数()2f x +是偶函数, ∴函数()()22f x f x -+=+, ∴函数关于2x =对称, ∴()()041f f ==, 原不等式等价为()1h x <,∴不等式()xf x e <等价()()()10h x h x h <⇔<,()()01x f x f e e<=.∵()h x 在R 上单调递减, ∴0x >.故选B .5.【山西省太原市2019届高三模拟试题】已知定义在()0,+∞上的函数()f x 满足()()0xf x f x -<',且()22f =,则()0x x f e e ->的解集是( )A .(),ln2-∞B .()ln2,+∞C .()20,eD .()2,e +∞【答案】A 【解析】令()g x =()()()()()2,0,g x f x xf x f x g x x x '-'=<∴ 在()0,+∞上单调递减,且()()221,2f g ==故()0xxf ee->等价为()()2,2x xf e f e >即()()2x g e g >,故2xe <,解x<ln2,故解集为(),ln2-∞,故选A 6.已知定义在R 上的函数()f x 满足2()()0f x f x '-<,且(ln 2)2f =,则(ln )0f x >的解集是( ) A .(0,2) B.C .(0,)eD.【答案】A【解析】令ln ,x t t R =∈,构造函数'22''22()()()2()()(2()())24t t tt tf t e e f x f tg t g t e f t f t e e --=⇒==-, 由已知可知:'2()()0f t f t -<,所以'()0()g t g t <⇒是R 上的减函数, 当ln 2t <时,ln 21ln 222(ln 2)2()(ln 2)1)f g t g ee >===,22()()1()t t f t g t f t e e=>⇒>,所以当ln ln 2x <时,ln 2(ln )(ln )0x f x ef x >=⇒>成立,也就是当02x <<时,ln 2(ln )(ln )0x f x ef x >=⇒->成立,故本题选A.7.【新疆乌鲁木齐2019届高三第二次质量检测】()f x 的定义域是()0,+∞,其导函数为()f x ',若()()1ln f x f x x x'-=-,且()2f e e =(其中e 是自然对数的底数),则( ) A .()()221f f <B .()()4334f f <C .当x e =时,()f x 取得极大值2eD .当0x >时,()0f x ex -≤【答案】C【解析】设()()f x h x x =,则()()()()()211ln f x x f x f x x h x f x x x x x x '-⎛⎫''==-=- ⎪⎝⎭则()21ln (ln )2h x x x c =-+ 又()2f e e =得()()21ln (ln )2f e e e e c e e h ==-+= 即112c e -+=,所以12c e =- 即()211ln (ln )22h x x x e =-+-()1ln 1ln x xh x x x x-'=-=,0x >∴由()0h x '>得1ln 0x ->,得0x e <<,此时函数()h x 为增函数由()0h x '<得1ln 0x -<,得x e >,此时函数()h x 为减函数 则()()21h h >,即()()2121f f >,则()()221f f >,故A 错误 ()()34h h >,即()()3434f f >,则()()4334f f >,故B 错误 当0x =时,()h x 取得极小值()h e e = 即当0x >,()()h x h e e ≥=,即()f x e x≥,即()0f x ex -≥,故D 错误 当0x =时,()h x 取得极小值()h e e =∴此时()()f e h e e e==,则()f x 取得极大值()2f e e = 本题正确选项:C8.【安徽省黄山市2019届高三毕业班第二次质量检测】已知函数()f x 在R 上都存在导函数()f x ',对于任意的实数都有2()e ()x f x f x -=,当0x <时,()()0f x f x '+>,若e (21)(1)a f a f a +≥+,则实数a 的取值范围是( ) A .20,3⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .[0,)+∞D .(,0]-∞【答案】B【解析】令()()xg x e f x =,则当0x <时,()[()()]0xg x e f x f x ''=+>, 又()()()()xx g x ef x e f xg x --=-==,所以()g x 为偶函数,从而()()211ae f a f a +≥+等价于211(21)(1),(21)(1)a a f a e f a g a g a e+++≥++≥+, 因此22(|21|)(|1|),|21||1|,3200.3g a g a a a a a a -+≥-+-+≥-++≤∴-≤≤选B. 9.【宁夏六盘山2019届高三下学期第二次模拟】定义域为R 的奇函数()f x ,当(),0x ∈-∞时,()()0f x xf x '+<恒成立,若()()33,1a f b f ==,()22c f =--,则( ) A .a b c >> B .c b a >> C .c a b >> D .a c b >>【答案】D【解析】构造函数()()g x xf x =,因为()f x 是奇函数,所以()()g x xf x =为偶函数 当(),0x ∈-∞时,()()0f x xf x '+<恒成立,即()'0g x <,所以()()g x xf x =在(),0x ∈-∞时为单调递减函数 ()()g x xf x =在()0,x ∈+∞时为单调递增函数根据偶函数的对称性可知()()33,1a f b f ==,()22c f =--所以a c b >>,所以选D10.【2019届湘赣十四校高三联考第二次考试】已知函数(2)f x +为R 上的偶函数,且当2x ≥时函数()f x 满足32'()3()x e x f x x f x x+=,3(3)81e f =,则381()f x e <的解集是( ) A .(1,3) B .(,1)(2,3)-∞ C .(1,2)(3,)+∞ D .(,1)(3,)-∞+∞【答案】A【解析】设()()3h x x f x =,则()()()32''3xe h x xf x x f x x=+=,∴()()32'3x e x f x x f x x =-,化简可得()()()4433'xx f x e h x e f x x x x-=-=. 设()()3xg x e h x =-,∴()()33'xx xe x e g x e x x-=-=, ∴[)2,3x ∈时,()'0g x <,因此()g x 为减函数, ∴()3,x ∈+∞时,()'0g x >,因此()g x 为增函数, ∴()()()()334333330g x g e h e f ≥=-=-=,∴()'0f x ≥,∴()f x 在[)2,+∞上为增函数. ∵函数()2f x +是偶函数, ∴函数()()22f x f x -+=+, ∴函数关于2x =对称,又∵()381f x e <,即()()3f x f <,又()f x 在[)2,+∞上为增函数,∴23x ≤<,由函数关于2x =对称可得,13x <<,故选A.11.【河南省六市2019届高三第一次联考】函数()f x 是定义在()1,∞+上的可导函数,()f'x 为其导函数,若()()()()2f x x 1f'x x x 2+-=-,且()2f e 0=,则不等式()x f e 0<的解集为( )A .()0,1B .()0,2C .()1,2D .()2,∞+【答案】C【解析】函数()f x 是定义在()1,∞+上的可导函数,()'f x 为其导函数, 令()()()1x x f x ϕ=-,则()()()()()2'1'2x x f x f x x x ϕ=-+=-,可知当()1,2x ∈时,()x ϕ是单调减函数,并且()()()0'111210f x f ⋅+=-=-<,即()10f <,则()10ϕ=,()2,x ∞∈+时,函数()x ϕ是单调增函数,()20f e =,则()()()22210eef e ϕ=-=,则不等式()0x f e <的解集就是()()10xx ef e -<的解集,即()()2xee ϕϕ<2102xee x ∴<<∴<< 又x>1,所以12x <<,故不等式的解集为:{|12}x x <<.故选C .12.【晋冀鲁豫中原名校2019届高三第三次联考】已知定义在R 上的函数()f x 的导函数为'()f x ,满足'()()f x f x <,且(2)f x +为偶函数,(4)2f =,则不等式()2x f x e <的解集为______.【答案】(0,)+∞ 【解析】∵(2)y f x =+为偶函数,∴(2)y f x =+的图象关于0x =对称,∴()y f x =的图像关于2x =对称,∴(4)(0)f f =.又(4)2f =,∴(0)2f =.设()()()x f x g x x R e =∈,则()2'()()'()()'()x x x x f x e f x e f x f x g x e e --==. 又∵'()()f x f x <,∴'()()0f x f x -<,∴'()0g x <,∴()y g x =在R 上单调递减.∵()2xf x e <,∴()2xf x e<,即()2g x <.又∵0(0)(0)2f g e ==,∴()(0)g x g <,∴0x >. 13.【山东省烟台市2019届高三3月诊断】若定义域为R 的函数()f x 满足'()()f x f x >,则不等式(ln )(1)0ef x xf -<的解集为______(结果用区间表示).【答案】(0,)e【解析】令()()x f g x x e =,则2(()())()x x e f x f x g x e'-'=, 因为()()f x f x '>,所以()0g x '>,所以,函数()g x 为(,)-∞+∞上的增函数, 由(ln )(1)ef x xf <,得:ln 1(ln )(1)x f x f e e<,即(ln )(1)g x g <, 因为函数()g x 为(,)-∞+∞上的增函数,所以ln 1x <.所以不等式的解集是(0,)e .故答案为(0,)e .14.【黑龙江省大庆市2019届高三下学期二模】已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',对定义域内的任意x ,都有()()22f x xf x '+<成立,则使得()()22424x f x f x -<-成立的x 的取值范围为_____.【答案】()(),22,-∞-⋃+∞【解析】由()f x 是偶函数,所以当0x >时,由()()22f x xf x '+<得()()220f x xf x '+-<, 设()()22g x x f x x =-,则()()()()()222220g x xf x x f x x x f x xf x '''=+-=+-<⎡⎤⎣⎦,即当0x >时,函数()g x 为减函数,由()()22424f x f x x -<-得()()22424x f x x f -<-,即()()2g x g <,因为()f x 是偶函数, 所以()g x 也是偶函数,则()()2g x g <,等价为()()2g x g <, 即2x >,得2x >或2x <-,即x 的取值范围是()(),22,-∞-⋃+∞, 故答案为:()(),22,-∞-⋃+∞.15.【四川省攀枝花市2019届高三下学期第三次统考】已知函数2()()()x b lnx f x b R x--=∈.若存在[1,2]x ∈,使得()'()0f x xf x +>,则实数b 的取值范围是_________.【答案】7(,)4-∞【解析】∵2()ln (),0x b x f x x x --=>,∴222()1()ln '()x x b x b xf x x ----+=, ∴()'()f x xf x +=22()ln 2()1()1x b x x x b x b nxx x------++2()1x x b x --=,∵存在[1,2]x ∈,使得()'()0f x xf x +>即2()10x x b -->,∴12b x x <-在[1,2]上有解,设1()2g x x x =-,∴max ()b g x <,1()2g x x x=-在[1,2]上为增函数, ∴max 7()(2)4g x g ==.∴74b <.实数b 的取值范围是7(,)4-∞.。

新高考数学之冲破压轴题讲与练 专题04 应用导数研究函数的极(最)值【解析版】

新高考数学之冲破压轴题讲与练 专题04 应用导数研究函数的极(最)值【解析版】

新高考数学:冲破压轴题讲与练第一章 函数与导数专题04 应用导数研究函数的极(最)值【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究函数的极(最)值问题的主要命题角度有:已知函数求极值(点)、已知极值(点),求参数的值或取值范围、利用导数研究函数的最值、函数极值与最值的综合问题.本专题就应用导数研究函数的极(最)值问题,进行专题探讨,通过例题说明此类问题解答规律与方法. 一、函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值. (2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 二、函数最值的基本求法1.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: 第一步,求函数在(a ,b )内的极值;第二步,求函数在区间端点处的函数值f (a ),f (b );第三步,将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 三、求解函数极值与最值综合问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【压轴典例】例1.(2017课标II ,理11)若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e -- C.35e - D.1 【答案】A【解析】例2.(2019·北京高考真题(文))已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值. 【答案】(Ⅰ)0x y -=和2727640x y --=.(Ⅱ)见解析; (Ⅲ)3a =-. 【解析】 (Ⅰ)23()214f x x x '=-+,令23()2114f x x x '=-+=得0x =或者83x =. 当0x =时,(0)0f =,此时切线方程为y x =,即0x y -=;当83x =时,88()327f =,此时切线方程为6427y x =-,即2727640x y --=; 综上可得所求切线方程为0x y -=和2727640x y --=.(Ⅱ)设321()()4g x f x x x x =-=-,23()24g x x x '=-,令23()204g x x x '=-=得0x =或者83x =,所以当[2,0]x ∈-时,()0g x '≥,()g x 为增函数;当8(0,)3x ∈时,()0g x '<,()g x 为减函数;当8[,4]3x ∈时,()0g x '≥,()g x 为增函数;而(0)(4)0g g ==,所以()0g x ≤,即()f x x ≤; 同理令321()()664h x f x x x x =-+=-+,可求其最小值为(2)0h -=,所以()0h x ≥,即()6f x x ≥-,综上可得6()x f x x -≤≤.(Ⅲ)由(Ⅱ)知6()0f x x -≤-≤, 所以()M a 是,6a a +中的较大者,若6a a ≥+,即3a -≤时,()3M a a a ==-≥; 若6a a <+,即3a >-时,()663M a a a =+=+>; 所以当()M a 最小时,()3M a =,此时3π.例3.(2019·全国高考真题Ⅲ(理))已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+. 若3127a b -+=-,b =1,则332a =,与0<a <3矛盾. 若3127a b -+=-,21a b -+=,则33a =或33a =-或a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1. 例4.(2017·山东高考真题(文))已知函数()3211,32f x x ax a R =-∈. (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(Ⅰ)390x y --=;(Ⅱ)见解析. 【解析】(Ⅰ)由题意()2f x x ax '=-,所以,当2a =时, ()30f =, ()22f x x x '=-,所以()33f '=,因此,曲线()y f x =在点()()3,3f 处的切线方程是()33y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()()cos sin cos g x f x x x a x x =+---'',()()sin x x a x a x =--- ()()sin x a x x =--,令()sin h x x x =-, 则()1cos 0h x x ='-≥, 所以()h x 在R 上单调递增,因为()00h =,所以,当0x >时, ()0h x >;当0x <时, ()0h x <. (1)当0a <时, ()()()sin g x x a x x -'=-,当(),x a ∈-∞时, 0x a -<, ()0g x '>, ()g x 单调递增; 当(),0x a ∈时, 0x a ->, ()0g x '<, ()g x 单调递减; 当()0,x ∈+∞时, 0x a ->, ()0g x '>, ()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是()31sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是()0g a =-. (2)当0a =时, ()()sin g x x x x -'=,当(),x ∈-∞+∞时, ()0g x '≥, ()g x 单调递增;所以()g x 在(),-∞+∞上单调递增, ()g x 无极大值也无极小值. (3)当0a >时, ()()()sin g x x a x x -'=-,当(),0x ∈-∞时, 0x a -<, ()0g x '>, ()g x 单调递增; 当()0,x a ∈时, 0x a -<, ()0g x '<, ()g x 单调递减; 当(),x a ∈+∞时, 0x a ->, ()0g x '>, ()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是()0g a =-; 当x a =时()g x 取到极小值,极小值是()31sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(),a -∞和()0,+∞上单调递增,在(),0a 上单调递减,函数既有极大值,又有极小值,极大值是()31sin 6g a a a =--,极小值是()0g a =-; 当0a =时,函数()g x 在(),-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(),0-∞和(),a +∞上单调递增,在()0,a 上单调递减,函数既有极大值,又有极小值,极大值是()0g a =-,极小值是()31sin 6g a a a =--. 例5.(2016·山东高考真题(文))设f(x)=xln x –ax 2+(2a –1)x ,a R.(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值.求实数a 的取值范围. 【答案】(Ⅰ)当时,函数单调递增区间为,当时,函数单调递增区间为,单调递减区间为; (Ⅱ)【解析】(Ⅰ)由 可得,则, 当时,时,,函数单调递增;当时,时,,函数单调递增, 时,,函数单调递减.所以当时,单调递增区间为;当时,函数单调递增区间为,单调递减区间为.(Ⅱ)由(Ⅰ)知,. ①当时,,单调递减. 所以当时,,单调递减. 当时,,单调递增. 所以在x=1处取得极小值,不合题意.②当时,,由(Ⅰ)知在内单调递增,可得当当时,,时,,所以在(0,1)内单调递减,在内单调递增,所以在x=1处取得极小值,不合题意. ③当时,即时,在(0,1)内单调递增,在内单调递减,所以当时,,单调递减,不合题意.④当时,即,当时,,单调递增,当时,,单调递减,所以f(x)在x=1处取得极大值,合题意. 综上可知,实数a 的取值范围为.例6.(2019·全国高考真题(理))已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见详解;(2) 01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.【解析】(1)对32()2f x x ax b =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a -∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 当0a =时,(,)-∞+∞区间上单调递增;当0a >时,(,0)-∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以若0a <,(,)3a -∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增;此时在区间[0,1]上单调递增,所以(0)1f =-,(1)1f =代入解得1b =-,0a =,与0a <矛盾,所以0a <不成立.若0a =,(,)-∞+∞区间上单调递增;在区间[0,1].所以(0)1f =-,(1)1f =代入解得 01a b =⎧⎨=-⎩.若02a <≤,(,0)-∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增.即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==-+≥,故所以区间[0,1]上最大值为(1)f .即322()()13321a a ab a b ⎧-+=-⎪⎨⎪-+=⎩相减得32227a a -+=,即(33)(33)0a a a -+=,又因为02a <≤,所以无解.若23a <≤,(,0)-∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==-+≤,故所以区间[0,1]上最大值为(0)f .即322()()1331a a ab b ⎧-+=-⎪⎨⎪=⎩相减得3227a =,解得332x =,又因为23a <≤,所以无解.若3a >,(,0)-∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =⎧⎨-+=-⎩解得41a b =⎧⎨=⎩.综上得01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.例7.(2018·全国高考真题(理))已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.【答案】(1)见解析;(2)见解析 【解析】(1)的定义域为,. (i )若,则,当且仅当,时,所以在单调递减.(ii )若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.【思路点拨】(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间; (2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.(3)本题涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,确定函数的定义域,要对参数进行讨论.同时,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.例8. (2017·山东高考真题(理))已知函数()22cos f x x x =+, ()()cos sin 22xg x ex x x =-+-,其中 2.71828e =L 是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)22ππ2y x =-- (2)见解析 【解析】 (Ⅰ)由题意()22fππ=-又()22sin f x x x =-', 所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即 222y x ππ=--.(Ⅱ)由题意得 ()()()2cos sin 222cos x h x e x x x a x x =-+--+, 因为()()()()cos sin 22sin cos 222sin xx h x ex x x e x x a x x =-+-+--+--'()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =- 则()1cos 0m x x ='-≥ 所以()m x 在R 上单调递增. 因为()00,m =所以 当0x >时, ()0,m x > 当0x <时, ()0m x <(1)当0a ≤时, xe a - 0>当0x <时, ()0h x '<, ()h x 单调递减, 当0x >时, ()0h x '>, ()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--; (2)当0a >时, ()()()ln 2sin x a h x e e x x '=--由 ()0h x '=得 1ln x a =, 2=0x ①当01a <<时, ln 0a <,当(),ln x a ∈-∞时, ()ln 0,0x a e e h x '-, ()h x 单调递增; 当()ln ,0x a ∈时, ()ln 0,0xae eh x -><', ()h x 单调递减; 当()0,x ∈+∞时, ()ln 0,0xae eh x ->>', ()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--; ②当1a =时, ln 0a =,所以 当(),x ∈-∞+∞时, ()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值; ③当1a >时, ln 0a >所以 当(),0x ∈-∞时, ln 0x a e e -<, ()()0,h x h x '>单调递增; 当()0,ln x a ∈时, ln 0x a e e -<, ()()0,h x h x '<单调递减; 当()ln ,x a ∈+∞时, ln 0x a e e ->, ()()0,h x h x '>单调递增; 所以 当0x =时()h x 取得极大值,极大值是()021h a =--; 当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时, ()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增, 在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【压轴训练】1.(2019·青海湟川中学高三月考)已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则a 的最小值是( ) A .14B .12C .13D .15【答案】A 【解析】由题意知:函数定义域为()0,∞+,且()()22222x x a a f x x x x-+'=+-=()f x Q 在定义域上为单调递增函数 20x x a ∴-+≥对()0,x ∈+∞恒成立即:2a x x ≥-+对()0,x ∈+∞恒成立 当12x =时,2x x -+取得最大值:111424-+= 14a ∴≥,即a 的最小值为14本题正确选项:A2.(2019·湖北黄冈中学高考模拟(理))已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈)A .5B .6C .7D .8【答案】A 【解析】'()ln 2()=1a a x f x a x x f x x x -=-+⇒-=,当x a >时,'()0f x <,函数()f x 单调递减,当0x a <<时,'()0f x >,函数()f x 单调递增,故max ()()ln 2f x f a a a a ==-+,又当0,()x f x →→-∞,所以函数()f x 的值域为(,ln 2]a a a -∞-+,令'()ln 2()ln 11ln ,t a a a a t a a a =-+⇒=+-='1,()0a a Z t a >∈∴>Q 因此()t a 是单调递增函数,因此当2,a a Z ≥∈时, ()(2)2ln 20t a t ≥=>,令()ln 2f x a x x n =-+=由上可知:ln 2n a a a ≤-+,(())()y f f x f n ==,由上可知函数(n)f 在0x a <<时,单调递增,在x a >时,单调递减,要想(())()y f f x f n ==的值域为(,ln 2]a a a -∞-+,只需ln 2a a a a ≤-+,即ln 220a a a -+≥,设()ln 22g a a a a =-+,2,a a Z ≥∈,'()ln 1g a a =-,所以当3,a a Z ≥∈时,函数()g a 单调递增,(2)2ln 240,(3)3ln 340g g =-<=-<,(4)4ln 460,(5)5ln 580g g =-<=->,所以a 的最小值是5,故本题选A.3. (2019·湖北高考模拟(理))已知直线x t =与曲线()()()ln 1,xf x xg x e =+=分别交于,M N 两点,则MN的最小值为________ 【答案】1. 【解析】令()()()ln(1)th t g t f t e t =-=-+,1'()()()1t h t g t f t e t =-=-+,显然为增函数,且'(0)0h = 所以当(1,0)t ∈-时,'()0,()h t h t <单调递减; 当(1,)t ∈+∞时,'()0,()h t h t >单调递增.所以min ()(0)1h t h ==. 故答案为1.4.(2018届海南省高三第二次联考)若1x =是函数()()ln x f x e a x =+的极值点,则实数a =__________. 【答案】e -【解析】因为()1ln +x x f x e x e a x='+⋅(),且1x =是函数()()ln x f x e a x =+的极值点,所以()10f e a '=+=,解得a e =-.5.(2019·甘肃兰州一中高考模拟(理))已知函数()()()121102x f x f ef x x -'=-+,其中()f x '是函数()f x 的导数, e 为自然对数的底数, ()212g x x ax b =++ (a R ∈,b R ∈). (Ⅰ)求()f x 的解析式及极值;(Ⅱ)若()()f x g x ≥,求(1)b a +的最大值. 【答案】(Ⅰ)()212xf x e x x =-+,0x =为极大值点,且(0)1f =;(Ⅱ)2e.【解析】(Ⅰ)由已知得()()()110x f x f ef x -''=-+,令1x =, 得()()()1101f f f ''=-+,即()01f =,又()()'10f f e=, ∴()1f e '=,从而()212xf x e x x =-+, ∴()1x x f e x '=+-, 又()1xx f e x '=+-在R 上递增,且()00f '=,∴当0?x <时, ()0f x '<;当0x >时, ()0f x '>, 故0x =为极大值点,且(0)1f =. (Ⅱ)由()()f x g x ≥得()212f x x ax b ≥++, 令()()10xh x e a x b =-+-≥,得()()1xh x e a '=-+, ①当10a +≤时, ()()0h x y h x '>⇔=在x ∈R 上单调递增,x →-∞时, ()h x →-∞与()0h x ≥相矛盾;②当10a +>时, ()0ln(1)h x x a >'>⇔+,()()0ln 1h x x a '<⇔<+ ∴当()ln 1x a =+时, ()()()()min 11ln 10h x a a a b =+-++-≥, 即()()()11ln 1a a a b +-++≥,∴()()()()22111ln 1a b a a a +≤+-++,()10a +>,令()()22ln 0F x x x x x =->,则()()12ln F x x x '=-,∴()00F x x e '>⇔<<,()0F x x e '<⇔>, 当x e =时, ()max 2e F x =, 即当1a e =-,2eb =时, ∴()1b a +的最大值为2e , 6.(2019·山东高考模拟(理))已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x-+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.7.(2018届江西省上饶市高三二模)设函数()22ln x e kf x k x x x=++(k 为常数, 2.71828e =L 为自然对数的底数).(1)当0k ≥时,求函数()f x 的单调区间;(2)若函数()f x 在()0,3内存在三个极值点,求实数k 的取值范围.【答案】(1) ()f x 的单调递减区间为()0,2,单调递增区间为()2,.+∞(2)322,,322e e e e ⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭.【解析】(1) 函数()f x 的定义域为()0,+∞.()()()2423222xx x x e kxx e xe k k f x x x x x -+-=-'+=. 由0,0k x ≥>可得0xe kx +>,所以当()0,2x ∈时, ()0f x '<;当()2,x ∈+∞时, ()0f x '>.故()f x 的单调递减区间为()0,2,单调递增区间为()2,.+∞(2)由(1)知,当0k ≥时,函数()f x 在()0,2内单调递减,在()2,3内单调递增,故()f x 在()0,3内仅存在一个极值点2x =;当0k <时,令0x xe e kx k x +=⇒-=, ()x e g x x =,依题函数y k =-与函数()xe g x x=, ()0,3x ∈的图象有两个横坐标不等于2的交点.()()21x e x g x x='-,当()0,1x ∈时, ()0g x '<,则()g x 在()0,1上单调递减,当()1,3x ∈时, ()0g x '>,则()g x 在()1,3上单调递增;而()()()231,2,3.23e e g e g g === 所以当2323e e k <-<即3232e e k -<<-时,存在12023x x <<<<使得xe k x-=, 且当()10,x x ∈时()0f x '<,当()1,2x x ∈ ()0f x '>,当()22,x x ∈时()0f x '<,当()2,3x x ∈时()0f x '>,此时()f x 存在极小值点12,x x 和极大值点2;同理,当22e e k <-<即22e k e -<<-时,存在3402x x <<<使得xe k x-=,此时()f x 存在极小值点1,2x 和极大值点2x .综上,函数()f x 在()0,3内存在三个极值点时,实数k 的取值范围为322,,322e e e e ⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭.8.(2018届北京市城六区高三一模)已知函数()1e ln xf x a x x ⎛⎫=⋅++ ⎪⎝⎭,其中a R ∈. (Ⅰ)若曲线()y f x =在1x =处的切线与直线exy =-垂直,求a 的值;(Ⅱ)当()0,ln2a ∈时,证明: ()f x 存在极小值. 【答案】(Ⅰ)0a =.(Ⅱ)见解析.【解析】(Ⅰ) ()f x 的导函数为()2211121e ln e e ln x x x f x a x a x x x x x x ⎛⎫⎛⎫⎛⎫=⋅+++⋅-=⋅+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭'.依题意,有 ()()1e 1e f a =⋅+=',解得0a =. (Ⅱ)由()221e ln xf x a x x x ⎛⎫=⋅++'- ⎪⎝⎭及e 0x >知, ()f x '与221ln a x x x +-+同号. 令()221ln g x a x x x =+-+, 则 ()()22331122x x x g x x x -='+-+=. 所以对任意()0,x ∈+∞,有()0g x '>,故()g x 在()0,+∞单调递增. 因为()0,ln2a ∈,所以()110g a =+>, 11ln 022g a ⎛⎫=+<⎪⎝⎭, 故存在01,12x ⎛⎫∈⎪⎝⎭,使得()00g x =. ()f x 与()f x '在区间1,12⎛⎫⎪⎝⎭上的情况如下:x01,2x ⎛⎫ ⎪⎝⎭0x()0,1x()f x ' -+()f x↘极小值↗所以()f x 在区间01,2x ⎛⎫⎪⎝⎭上单调递减,在区间()0,1x 上单调递增. 所以()f x 存在极小值()0f x .9.(2019·天津高三期中(理))已知函数()()3232f x ax x b x R =-+∈在1x =处有极值32. (Ⅰ)求a 、b 的值;(Ⅱ)在[]1,1x ∈-时,求函数()f x 的最值.【答案】(Ⅰ)1,2a b ==;(Ⅱ)最大值为2,最小值为12-. 【解析】(Ⅰ)由函数的解析式可得:2'()33f x ax x =-,则3(1)2(1)0f f ⎧=⎪⎨⎪=⎩',即:3322330a b a ⎧-+=⎪⎨⎪-=⎩,解得:12a b =⎧⎨=⎩. 经检验1,2a b ==符合题意. (Ⅱ)由(Ⅰ)可知:()32322f x x x =-+,()2'()3331f x x x x x =-=-, 令'()0f x =可得0x =或1x =,由于:()3111222f -=--+=-,()3311222f =-+=,()02f =, 故函数的最大值为()02f =,函数的最小值为()112f -=-.10.(2019·新疆高考模拟(文))已知函数(Ⅰ)若,求函数的单调区间;(Ⅱ)若函数有两个极值点,求征:.【答案】(Ⅰ)在上单调递增,在上单调递减;(Ⅱ)详见解析.【解析】 (Ⅰ)当时,,,当时,,当时,在上单调递增,在上单调递减;(Ⅱ),有两个极值点得,,,令,则 ,在上单调递增,.11.(2019·广西高考模拟(理))设函数.(1)当时,讨论的单调性;(2)已知函数在上有极值,求实数的取值范围.【答案】(1)在上单调递增,在上单调递减;(2).【解析】(1).当时.由有,解得;.所以函数在上单调递增,在上单调递减.(2)设,,因为函数在上有极值点,所以函数在上有零点.当时,,∴,∴,∴在上单调递增,∵,所以当时恒成立,即函数在上没有零点.当时,,,时,,时,,∴在上单调递减,在上单调递增∵,且在上单调递减,∴.对于,当时,,所以存在使.所以函数在上有零点.所以函数在上有极值点时,实数的取值范围是.12.(2019·天津高考模拟(理))已知函数2()ln (21)f x a x x a x =-+-,其中a R ∈. (Ⅰ)当a=1时,求函数()f x 的单调区间: (Ⅱ)求函数()f x 的极值;(Ⅲ)若函数()f x 有两个不同的零点,求a 的取值范围.【答案】(Ⅰ)单调减区间为(1,+∞) ,增区间为(0,1); (Ⅱ)见解析(Ⅲ)a>1 【解析】(Ⅰ)当a=1时,()2f x ?lnx x x =-+, f′(x )=()()2x 1x 112x 1x x+--+=- 当f′(x )<0时,x>1; f′(x )>0时,0<x<1∴函数()f x 的单调减区间为(1,+∞) ,增区间为(0,1) (Ⅱ)f (x )的定义域是(0,+∞), f′(x )()()()2x 1x a a2x 2a 1x x+-=-+-=-, 若a≤0,则f′(x )<0,此时f (x )在(0,+∞)递减,无极值 若a >0,则由f′(x )=0,解得:x =a ,当0<x <a 时,f′(x )>0,当x >a 时,f′(x )<0, 此时f (x )在(0,a )递增,在(a ,+∞)递减;∴当x=a 时,函数的极大值为f(a)=a lna a 1)+-(,无极小值 (Ⅲ)由(Ⅱ)可知当 a≤0时,f (x )在(0,+∞)递减,则f(x)至多有一个零点,不符合题意,舍去; 当a >0时,函数的极小值为f(a)=a lna a 1)+-(, 令g(x)=lnx+x-1(x>0)∵()110,g x x+>'=∴g(x)在(0,+∞)单调递增,又g(1)=0, ∴0<x<1时,g(x)<0;x>1时,g(x)>0 (i) 当0<a≤1,f(a)=ag(a) ≤0,则函数f(x)至多有一个零点,不符合题意,舍去; (ii) 当a>1时,f(a)=ag(a)>0 ∵21211f 10a e e e e⎛⎫⎛⎫=---< ⎪⎪⎝⎭⎝⎭∴函数f(x)在(1,a e )内有一个零点,∵f(3a -1)=aln(3a-1)-()()()()()23121313131a a a a ln a a ⎡⎤-+--=---⎣⎦ 设h(x)=lnx-x(x>2) ∵()110,h x x-<'=∴h(x)在(2,+∞)内单调递减,则h(3a-1)<h(2)=ln2-2<0 ∴函数f (x )在(a,3a-1)内有一个零点.则当a>1时,函数f(x)恰有两个零点 综上,函数()f x 有两个不同的零点时,a>113.(2019·北京高考模拟(文))已知函数()(1)ln ()f x m x x m =++∈R . (1)当1m =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若函数211()+()2g x x f x x=-在区间(1,2)内有且只有一个极值点,求m 的取值范围. 【答案】(Ⅰ)310x y --=(Ⅱ)见解析(Ⅲ)124m -<<【解析】(Ⅰ)当1m =时,()2ln f x x x =+, 所以1(x)2'=+f x,(1)3f '=. 又(1)2f =,所以曲线()y f x =在(1,(1))f 处的切线方程为310x y --= (Ⅱ)函数()f x 的定义域为(0,)+∞.1(1)1()1m x f x m x x'++=++=, (1)当10m +…即1m -…时, 因为(0,)x ∈+∞,()0f x '>,所以()f x 的单调增区间为(0,)+∞,无单调减区间. (2)当10+<m ,即1m <-时,令()0f x '=,得11x m =-+.当101<<-+x m 时,()0f x '>; 当11x m >-+时,()0f x '<; 所以()f x 的单调增区间为10,1m ⎛⎫-⎪+⎝⎭,减区间为1,1m ⎛⎫-+∞ ⎪+⎝⎭.综上,当1m -…时,()f x 的单调增区间为(0,)+∞,无单调减区间; 当1m <-时,()f x 的单调增区间为10,1m ⎛⎫- ⎪+⎝⎭,减区间为1,1m ⎛⎫-+∞ ⎪+⎝⎭.(Ⅲ)因为211()(1)ln 2g x x m x x x=+-+-, 所以322211(1)1()(1)x m x x g x x m x x x'-+--=--+-=. 令322()(1)1,()32(1)1h x x m x x h x x m x '=-+--=-+-.若函数()g x 在区间(1,2)内有且只有一个极值点, 则函数()h x 在区间(1,2)内存在零点. 又(0)10h '=-<,所以()h x '在(0,)+∞内有唯一零点0x . 且()00,x x ∈时,()0h x '<()0,x x ∈+∞时,()0h x '>则()h x 在()00,x 内为减函数,在()0,x +∞内为增函数. 又因为(0)10h =-<且()h x 在(1,2)内存在零点, 所以(1)0(2)0h h <⎧⎨>⎩解得124m -<<. 显然()h x 在()1,2内有唯一零点,记为1x .当()11,x x ∈时,()1()0,,2h x x x <∈时,()0h x >,所以()h x 在1x 点两侧异号,即()g x '在1x 点两侧异号,1x 为函数()g x 在区间(1,2)内唯一极值点.当2m ≤-时,(1)20h m =--≥ 又(1)0,()0h h x ''>>在(1,2)内成立,所以()h x 在(1,2)内单调递增,故()g x 无极值点.当14m ≥时,(2)0,(0)0h h ≤<易得(1,2)x ∈时,()0h x <故()g x 无极值点. 所以当且仅当124m -<<时,函数()g x 在区间(1,2)内有且只有一个极值点.14.(2019·北京高考模拟(理))已知函数21()2sin +1,()cos 2f x x xg x x m x =-=+. (Ⅰ)求曲线()y f x =在0x =处的切线方程; (Ⅱ)求()f x 在(0,)π上的单调区间;(Ⅲ)当1m >时,证明:()g x 在(0,)π上存在最小值.【答案】(Ⅰ)1y x =-+;(Ⅱ)单调递减区间为(0,)3π,单调递增区间为()3ππ,;(Ⅲ)详见解析.【解析】(Ⅰ)因为()2sin 1f x x x =-+,所以'()12cos f x x =-则(0)1f =,'(0)1f =-,所以切线方程为1y x =-+(Ⅱ)令'()0f x =,即1cos 2x =,()0,x π∈,得3x π= 当x 变化时,(),()f x f x '变化如下:x (0,)3π3π ()3ππ, '()f x-0 +()f x减最小值增所以函数()f x 的单调递减区间为(0,)3π,单调递增区间为()3ππ,(Ⅲ)因为21()cos 2g x x m x =+,所以'()sin g x x m x =- 令'()()sin h x g x x m x ==-,则'()1cos h x m x =-因为1m >,所以1(0,1)m∈ 所以'()1cos 0,h x m x =-=即1cos x m=在()0,π内有唯一解0x 当()00,x x ∈时,()0h x '<,当()0,x x π∈时,()0h x '>, 所以()h x 在()00,x 上单调递减,在()0,x π上单调递增. 所以0()(0)0h x h <=,又因为()0h ππ=>所以()sin h x x m x =-在0(,)(0,)x ππ⊆内有唯一零点1x 当()10,x x ∈时,()0h x <即'()0g x <,当()1,x x π∈时,()0h x >即'()0g x >,所以()g x 在()10,x 上单调递减,在()1,πx 上单调递增. 所以函数()g x 在1x x =处取得最小值 即1m >时,函数()g x 在()0,π上存在最小值15.(2019·山东高考模拟(理))设函数()2ln f x x a x =-.(1)讨论函数()f x 的单调性; (2)当2a =时,①求函数()f x 在1,e e⎡⎤⎢⎥⎣⎦上的最大值和最小值;②若存在1x ,2x ,…,1,n x e e ⎡⎤∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x f x -+++≤L 成立,求n 的最大值.【答案】(1)见解析(2)①()min 1f x =,()2max 2f x e =-②6【解析】(1)()222a x af x x x x='-=-,故当0a ≤时,()0f x '≥,所以函数()f x 在()0,∞+上单调递增;当0a >时,令()0f x '>,得22a x >,所以函数()f x 在2,2a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增; 令()0f x '<,得22a x <,所以函数()f x 在20,2a ⎛⎫ ⎪ ⎪⎝⎭上单调递减. 综上,当0a ≤时,函数()f x 在()0,∞+上单调递增;当0a >时,函数()f x 在2,2a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,在20,2a ⎛⎫⎪ ⎪⎝⎭上单调递减(2)①当2a =时,由(1)知,函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增.故()()min 11f x f ==,又因为21123f e e⎛⎫=+< ⎪⎝⎭,()2225.29 2.722 2.82 5.84f e e =-<=-<-=, 故()()2max 2f x f e e ==-. ②由于,()()()()()()()21212111n n e f e f x f x f x f x n f n --=≥≥+++≥-=-L ,故217n e ≤-<.由于1,x e e ⎡⎤∈⎢⎥⎣⎦时,()21,2f x e ⎡⎤∈-⎣⎦,取123451x x x x x =====,则()()()212552f x f x f x e +++=<-L ,故n 的最大值为6.16.(2019·山东高考模拟(文))已知函数.(Ⅰ)若函数在上单调递减,求实数的取值范围; (Ⅱ)若,求的最大值. 【答案】(Ⅰ)(Ⅱ)【解析】 (Ⅰ)由题意知, 在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(Ⅱ)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,. 所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.。

高考数学二轮总复习第2篇经典专题突破核心素养提升专题6函数与导数第4讲导数的综合应用课件

高考数学二轮总复习第2篇经典专题突破核心素养提升专题6函数与导数第4讲导数的综合应用课件

∴g(x)在0,lnaa上单调递增,在lnaa,+∞上单调递减.
又lxi→m0 g(x)=-1<0,xl→im+∞g(x)=-1<0,
∴g(x)max=glnaa
>0,
则lnaaa>alnaa⇒lnaa>aln1a,
两边取以 e 为底的对数得
ln
lnaa>ln aln图所示: 由图象可得 0<lnaa<1e,解得 a>1 且 a≠e, 即 a 的取值范围是(1,e)∪(e,+∞). 方法二:令 g(x)=f(x)-1(x>0), g′(x)=xa-1a-ax xln a, 1)0<a<1 时,∴g(x)至多一个零点,故舍去; 2)a>1 时,g′(x)=0⇒x=lnaa,
自主先热身 真题定乾坤
真题热身
(理) 1.(2021·全国甲卷)已知 a>0 且 a≠1,函数 f(x)=xaax(x>0). (1)当 a=2 时,求 f(x)的单调区间; (2)若曲线 y=f(x)与直线 y=1 有且仅有两个交点,求 a 的取值范围.
【解析】 (1)a=2 时,f(x)=x22x, f′(x)=2x·2x-22xx2ln 2·x2=x2-2xxln 2=ln 2·x2lnx22-x, 当 x∈0,ln22时,f′(x)>0, 当 x∈ln22,+∞时,f′(x)<0, 故 f(x)在0,ln22上单调递增,在ln22,+∞上单调递减.
当x<0时,f′(x)<0,当x>0时,f′(x)>0,
故f(x)的减区间为(-∞,0),增区间为(0,+∞).
(2)设 h(x)=xeax-ex+1,则 h(0)=0, 又 h′(x)=(1+ax)eax-ex,设 g(x)=(1+ax)eax-ex, 则 g′(x)=(2a+a2x)eax-ex, 若 a>12,则 g′(0)=2a-1>0, 因为 g′(x)为连续不间断函数, 故存在 x0∈(0,+∞),使得∀x∈(0,x0),总有 g′(x)>0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市秦淮中学二轮复习专题四函数与导数 第四讲 通过构造函数解决导数与不等式问题一:前测训练:1.(2020年全国卷Ⅱ--12题).若2233x y x y ---<-,则A.ln(y-x+1)>0B. ln(y-x+1)<0C. ln|x-y|>0D. ln|x-y|<02.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0>x 时,0)()(<-'x f x f x ,若e ef a )(=,2ln )2(ln f b =,3)3(--=f c ,则a ,b ,c 的大小关系正确的是( ) A. b c a B. a c b C. c b a D. b a c 3.已知定义在R 上的函数()f x 满足()()f x f x >-',则关于m 的不等式()()132120m f m f m e -+-->的解集是( )A. 1,3⎛⎫+∞ ⎪⎝⎭B. 10,3⎛⎫ ⎪⎝⎭C. 1,3⎛⎫-∞ ⎪⎝⎭D. 11,23⎛⎫-⎪⎝⎭4. 已知定义在R 上的函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2xf x e >的解集为( )A. (),0-∞B. ()0,∞+C. (),2-∞D. ()2,+∞5.已知变量1x ,()()20,0x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为( )A. eB.C.1eD. 1二:方法联想:三:知识运用:1.已知2ln(3)ln 51,,35e a b c e +===,则A.a>b>cB.c>b>aC.a>c>bD.b>a>c2.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的解集为________.3.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.4.已知定义在R 上的奇函数)(x f 的导函数为)(x f ',当0≠x 时,0)()(>+'x x f x f ,若)21(21f a =,)2(2--=f b ,)21(ln 21lnf c =,则a 、b 、c 的关系为( ) A.c b a >> B.a c b >> C.a b c >> D.c a b >>5.已知函数()f x 的导函数为'()f x ,若'()()2,(0)5f x f x f +>=,则不等式()32x f x e -->的解集为A .(0,)+∞B .(,0)-∞C .(,0)(1,)-∞+∞D .(1,)+∞6.设)(x f '是定义在R 上的函数)(x f 的导函数,且)()(x f x f >',e f =)1((e 为自然对数的底数),则不等式x x f <)(ln 的解集为( )A. ),0(eB. ),0(e C .)2,1(ee D .),(e e7.已知)(x f 是定义在R 上的奇函数,其导函数为f ′(x ),且当x >0时, f ′(x ) ·ln x +f (x )x >0, 则不等式()()012x f x -的解集为A .(-1, 1)B .(-∞,-1)∪(0,1)C . (-∞,-1)∪(1,+∞)D .(-1,0)∪(1,+∞)8.已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( )A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()024f f π⎛⎫<⎪⎝⎭ D .()023f f π⎛⎫< ⎪⎝⎭9.设)(x f 是定义在()(),00,-∞⋃+∞上的奇函数,对任意的()12,0,x x ∈+∞,12x x ≠,满足:()()2211210x f x x f x x x ->-,且()24f =,则不等式()80f x x->的解集为( ) A.()(),22,-∞⋃+∞ B.()()2,00,2-⋃ C.()(),40,4-∞⋃D.()()2,02,-⋃+∞10. 已知函数()f x 是定义在区间(0,)+∞上的可导函数,满足()0f x >且()'()0f x f x +<('()f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( )A. ()(1)()f a a f b >+B. ()(1)()f b a f a >-C. ()()af a bf b >D. ()()af b bf a >11.(多选题)已知定义在⎪⎭⎫⎢⎣⎡20π,上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )sin x <0,则下列判断中正确的是( )A.)4(26)6(ππf f B.0)3(ln πfC. )3(3)6(ππf fD.)3(2)4(ππf f四:压轴提高复杂构造,是对题意条件所给函数关系进行深入分析,研究其结构特征关系,构造出新函数,从而达到解决问题的目的。

1.设)(x f y =是定义在R 上的可导偶函数,若当x>0时,0)(2)('<+xx f x f ,则函数21)()(xx f x g -=的零点个数为( ) A .0 B .1 C .2 D .0或22.设函数)(x f 满足x e x xf x f x x =+')(2)(2,8)2(2e f =,则当0>x 时,)(x f ( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值3.已知定义在),0(+∞的可导函数)(x f ,满足)()1()(x f x x f x -<',下列结论正确的是( ) A.)2(2)1(f ef > B .)2(2)1(f ef < C .)2()1(f f < D . )2()1(f f >4.已知函数)(x f 是定义在R 上的可导函数,对于任意的实数x ,都有x e x f x f 2)()-(=,当x <0时0)(')(>+x f x f ,若)1()12(+≥+a f a f e a ,则实数a 的取值范围是( )A .]32,0[ B .]0,32[-C .],0[+∞D .]0,[-∞5.若ln ln ln 1a a b b c c >>=,则A .e ln e ln e ln b c c a a b a b c +++>>B .e ln e ln e ln c a b c a b b a c +++>>C .e ln e ln e ln a b c a b c c b a +++>>D .e ln e ln e ln a b b c c a c a b +++>>6.设实数0 t ,若不等式0ln 2ln 2≥+-txetx对x>0恒成立,则t 的取值范围为 A.[ 12e ,+∞) B.[ 1e ,+∞) C.(0, 1e ] D.(0, 12e]多选题7.已知函数()y f x =在R 上可导,且(0)1f =,其导函数()f x '满足(1)[()()]0x f x f x '+->,对于函数()()x f x g x e=,下列结论正确的是( ) A .函数()g x 在(,1)-∞-上为增函数 B .1x =-是函数()g x 的极小值点 C .函数()g x 必有两个零点 D .2()e (2)e e f e f >8.若函数32, 1()1ln , 1x x m x f x x x x ⎧--++<=⎨+-≥⎩的值域为[2,+∞),则A .(3)(2)f f >B .m ≥2C .ln 21()()2ef f > D .(1)log (1)log (2)m m m m ++>+ 解答题9.已知函数1()4ln ,.f x x a x a R x=++∈ (1)求f(x)的单调区间; (2)当-3<a<0时,证明f(x)>4.10.(1)试比较2lnx 与1x x-的大小 (2)若函数f(x)=x-lnx-m 的两个零点分别为x 1,x 2.①求m 的取值范围. ②证明:x 1+x 2<2m.11.已知函数f(x)=2alnx+x (,0)x R a ∈≠且.(1)若函数f(x)的图象在点(1,f(1))处的切线在x 轴上的截距为2,求实数a 的值.(2)若2alnx+x-e+1<0对任意的2[,]x e e ∈成立,求实数a 的取值范围.12.已知函数()2ln ()af x ax x a R x=--∈.(1)讨论函数f(x)的极值. (2)设0<a<1,若曲线y=f(x)在两个不同点M (m,f(m)), N (n,f(n))处的切线互相平行,求证:()()0.f m f n +≥通过构造函数解决导数与不等式问题一:前测训练:1.(2020年全国卷Ⅱ--12题).若2233x y x y ---<-,则A.ln(y-x+1)>0B. ln(y-x+1)<0C. ln|x-y|>0D. ln|x-y|<0解析:原不等式可化为2323x x y y ---<-,令()23x x f x -=-,利用指数函数的单调性,显然)(x f 在R 上是增函数,所以由)()(y f x f 可得y x ,因此y-x+1>1,ln(y-x+1)>0,选A.2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0>x 时,0)()(<-'x f x f x ,若e ef a )(=,2ln )2(ln f b =,3)3(--=f c ,则a ,b ,c 的大小关系正确的是( ) B. b c a B. a c b C. c b a D. b a c 解析:设x x f x g )()(=,2)()()(x x f x f x x g -'=', 因为当0>x 时0)()(<-'x f x f x ,所以函数xx f x g )()(=在),0(+∞上单调递减, 因为)(x f y =是R 上的奇函数,所以3)3(3)3(f f a =--=。

相关文档
最新文档