(新)高一数学函数概念及其表示练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念及表示 (国庆作业)
一、选择题:
1、函数y =
)
A .{}
1x x ≤
B .{}
0x x ≥
C .{}10x x x ≥≤或
D .{}
01x x ≤≤
2、函数1
1
x y x +=-的值域为( ) A .()
()11-∞+∞,, B .()1,1- C .()()11-∞+∞,-,
D .()()11-∞-+∞,-,
3、下列函数()()f x g x 与表示同一函数的是(
)
A .()()4
2
f x x
g x ==
与
B .()()2
x f x x g x x
==与
C .()()f x g x ==
D .()()2
f x x
g x ==
与4.给出下列四个对应,其中构成映射的是…( )
A .(1)(2)
B .(1)(4)
C .(1)(3)(4)
D .(3)(4)
5.已知函数f(x)=⎩
⎪⎨⎪⎧
x -3,x>0,
x 2,x ≤0.若f(a)=f(4),则实数a 等于……( )
A .4
B .1或-1
C .-1或4
D .1,-1或4
6、函数()1
3
f x x =-的定义域是( )
A .(),3-∞
B .()3+∞,
C .()()33-∞+∞,,
D .()()33-∞+∞,,
7.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).
8.下列图形是函数y =-|x|(x ∈[-2,2])的图象的是( )
9.下列四个图象中,不是函数图象的是( ).
10.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ).
A .[1,2)-
B .[0,2)-
C .[0,3)-
D .[2,1)- 11、已知函数()1f x +的定义域为[]2,3-,则()2f x -的定义域为(
)
A .[]2,3-
B .[]1,4-
C .[]16,
D .[]4,1-
12.在函数y =|x|(x ∈[-1,1])的图象上有一点P(t ,|t|),此函数与x 轴、直线x =-1及x =t
围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为(
)
A. B. C. D.
二、填空题
13.已知()f x =2x +x +1
,则f =______;f [(2)f ]=______. 14.已知2(21)2f x x x +=-,则()f x = .
15.设
f(x)=⎩⎪⎨⎪⎧
2x +2, -1≤x<0,-1
2x , 0 3, x ≥2, 则f{f[f(-3 4 )]}的值为________,f(x)的定义域是 ________. 16、函数()[]22,2,1f x x x x =+∈-的值域是_______________________。 17、函数()()21 1 f x x R x = ∈+的值域是______________________。 18.已知函数f(x)的图象如下图所示,则f(x)的解析式是________. 三、解答题: 19.求下列函数的定义域:(1)1 21 y x = +-; (2 )y = .( 3 )y 20.求下列函数的定义域与值域: (1)32 54x y x +=-; (2)22y x x =-++. (3)x x y 21-+=; 21.在不同的坐标系中绘制出函数 ||22 x x y +=的图象. 22.已知函数x x f x x f x =+-+-)()1 1 ()1(,其中1≠x ,求函数()f x 的解析式. 23.设)(x f 是抛物线,并且当点),(y x 在抛物线图象上时,点)1,(2 +y x 在函数 )]([)(x f f x g =的图象上,求)(x g 的解析式. 24.动点P 从边长为1的正方形ABCD 的顶点出发顺次经过B 、C 、D 再回到A ;设x 表示 P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式.