矩阵理论试题(2007级)参考答案
矩阵理论习题答案
习 题 一1. 设λ为的任一特征值,则因 λλ22- 为A =-A 22O 的特征值, 故022=-λλ. 即 λ=0或2.2. A ~B , C ~D 时, 分别存在可逆矩阵P 和Q , 使得 P 1-AP =B , Q 1-CQ =D .令T =⎪⎪⎭⎫⎝⎛Q O O P 则 T 是可逆矩阵,且T 1-⎪⎪⎭⎫⎝⎛C O O A T =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--Q O O P C O O A Q O O P 11=⎪⎪⎭⎫ ⎝⎛D O O B 3. 设i x 是对应于特征值i λ的特征向量, 则 A i x =i λi x , 用1-A 左乘得i i i x A x 1-λ=.即i i i x x A 11--λ= 故 1-i λ是A 的特征值, i =1,2,, n .4. (1) 可以. A E -λ=)2)(1)(1(-+-λλλ,=P ⎪⎪⎪⎭⎫ ⎝⎛--104003214, ⎪⎪⎪⎭⎫ ⎝⎛-=-2111AP P .(2) 不可以.(3) ⎪⎪⎪⎭⎫ ⎝⎛=110101010P , ⎪⎪⎪⎭⎫⎝⎛=-1221AP P .5. (1) A 的特征值是0, 1, 2. 故A =-(b -a )2=0. 从而 b =a .又11111-λ----λ----λ=-λaa aa A I =)223(22+---a λλλ将λ=1, 2 代入上式求得 a=0.(2) P =⎪⎪⎪⎭⎫ ⎝⎛-101010101.6. A I -λ=)1()2(2+-λλ, A 有特征值 2, 2, -1.λ=2所对应的方程组 (2I -A )x =0 有解向量p 1=⎪⎪⎪⎭⎫ ⎝⎛041, p 2=⎪⎪⎪⎭⎫ ⎝⎛401λ=-1所对应的方程组 (I +A )x =0 有解向量p 3=⎪⎪⎪⎭⎫⎝⎛101令 P =(p ,1p ,2p 3)=⎪⎪⎪⎭⎫ ⎝⎛140004111, 则 P 1-=⎪⎪⎪⎭⎫ ⎝⎛---4416414030121. 于是有A 100=P ⎪⎪⎪⎭⎫ ⎝⎛122100100P 1-=⎪⎪⎪⎭⎫⎝⎛-⋅-⋅-⋅---12412244023012122431100100100100100100100. 7. (1)A I -λ=)1(2+λλ=D 3(λ), λI -A 有2阶子式172111----λ=λ-4λ-4不是D 3(λ)的因子, 所以D 2(λ)=D 1(λ)=1, A 的初等因子为λ-1, 2λ. A 的Jordan 标准形为J =⎪⎪⎪⎭⎫ ⎝⎛-000100001设A 的相似变换矩阵为P =(p 1,p 2,p 3), 则由AP =PJ 得 ⎪⎩⎪⎨⎧==-=23211pAp Ap p Ap 0 解出P =⎪⎪⎪⎭⎫ ⎝⎛-----241231111; (2) 因为),2()1()(23--=λλλD 1)()(12==λλD D ,故A ~J =⎪⎪⎪⎭⎫ ⎝⎛200010011设变换矩阵为 P =(321,,p p p ), 则⎪⎩⎪⎨⎧=+==33212112p Ap p p Ap p Ap ⇒P =⎪⎪⎪⎭⎫ ⎝⎛---502513803 (3) ),2()1()(23-+=-=λλλλA I D ,1)(2+=λλD 1)(1=λD .A 的不变因子是,11=d ,12+=λd )2)(1(3-+=λλdA ~J =⎪⎪⎪⎭⎫ ⎝⎛--211 因为A 可对角化,可分别求出特征值-1,2所对应的三个线性无关的特征向量:当λ=-1时,解方程组 ,0)(=+x A I 求得两个线性无关的特征向量,1011⎪⎪⎪⎭⎫ ⎝⎛-=p ⎪⎪⎪⎭⎫ ⎝⎛-=0122p当λ=2时,解方程组 ,0)2(=-x A I 得⎪⎪⎪⎭⎫ ⎝⎛-=1123p , P =⎪⎪⎪⎭⎫ ⎝⎛---101110221(4) 因⎪⎪⎪⎭⎫ ⎝⎛---+=-41131621λλλλA I ~⎪⎪⎪⎭⎫ ⎝⎛--2)1(11λλ, 故A ~J =⎪⎪⎪⎭⎫ ⎝⎛10111设变换矩阵为P =),,(321p p p , 则⎪⎩⎪⎨⎧+===3232211pp Ap p Ap p Ap 21,p p 是线性方程组 0=-x A I )(的解向量,此方程仴的一般解形为p =⎪⎪⎪⎭⎫ ⎝⎛+-t s t s 3 取⎪⎪⎪⎭⎫ ⎝⎛-=0111p , ⎪⎪⎪⎭⎫ ⎝⎛=1032p为求滿足方程 23)(p p A I -=-的解向量3p , 再取 ,2p p = 根据 ⎪⎪⎪⎭⎫ ⎝⎛------t s t s 3113113622~⎪⎪⎪⎭⎫⎝⎛----t s t s s 00033000311 由此可得 s =t , 从而向量 T 3213),,(x x x =p 的坐标应満足方程s x x x -=-+3213取 T 3)0,0,1(-=p , 最后得P =⎪⎪⎪⎭⎫ ⎝⎛--010001131 8. 设 f (λ)=4322458-++-λλλλ. A 的最小多项式为 12)(3+-=λλλA m ,作带余除法得 f (λ)=(149542235-+-+λλλλ))(λA m +1037242+-λλ, 于是f (A )=I A A 1037242+-=⎪⎪⎪⎭⎫ ⎝⎛----346106195026483.9. A 的最小多项式为 76)(2+-=λλλA m , 设 f(λ)=372919122234+-+-λλλλ,则f (λ)=)()52(2λλA m ++2+λ. 于是 [f (A )]1-=1)2(-+I A .由此求出[f (A )]1-=⎪⎪⎭⎫ ⎝⎛-3217231 10. (1) λI -A =⎪⎪⎪⎭⎫ ⎝⎛---+41131621λλλ标准形⎪⎪⎪⎭⎫ ⎝⎛--2)1(00010001λλ, A 的最小多项式为 2)1(-λ;2) )1)(1(+-λλ; (3) 2λ.11. 将方程组写成矩阵形式:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛321321188034011d d d d d d x x x t x t x t x , ⎪⎪⎪⎭⎫ ⎝⎛=321x x x x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x t d d d d d d d d 321x , A =⎪⎪⎪⎭⎫ ⎝⎛----188034011则有J =PAP 1-=⎪⎪⎪⎭⎫ ⎝⎛-100010011, .其中 P =⎪⎪⎪⎭⎫⎝⎛124012001.令 x =Py , 将原方程组改写成 : ,d d Jy y=t 则⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==3321211d d d d d d yty y y ty y t y 解此方程组得: y 1=C 1e t +C 2T e t , y 2=C 2e t , y 3=C 3e t -. 于是x =Py =⎪⎪⎪⎭⎫ ⎝⎛++++++-t t t tt t t c )t (c c )t (c c t c c e e 24e 4e 12e 2e e 3212121.12. (1) A 是实对称矩阵. A I -λ=2)1)(10(--λλ,A 有特征值 10, 2, 2.当λ=10时. 对应的齐次线性方程组 (10I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--542452228~⎪⎪⎪⎭⎫ ⎝⎛000110102由此求出特征向量p 1=(-1, -2, 2)T , 单位化后得 e 1= (32,32,31--)T . 当λ=1时, 对应的齐次线性方程组 (I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛-----442442221~⎪⎪⎪⎭⎫ ⎝⎛-000000221 由此求出特征向量 p 2=(-2, 1, 0)T , p 3=(2, 0, 1)T . 单位化后得e 2=(0,51,52-)T , e 3=(535,534,532)T. 令 U =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---53503253451325325231, 则 U 1-AU =⎪⎪⎪⎭⎫⎝⎛1110.(2) A 是Hermit 矩阵. 同理可求出相似变换矩阵U =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---2121212i 2i 2i 21210, U 1-AU =⎪⎪⎪⎭⎫⎝⎛-22. 13. 若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得U H AU =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21, i λ﹥0, I =1, 2, , n . 于是A =U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21U H = U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21U H U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 令B =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 则 A =B 2.反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. (1)⇒(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得U H AU =diag(n λλλ,,,21 )令x =Uy , 其中 y =e k . 则 x ≠0. 于是x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, , n ).(2)⇒(3).A =U diag(n λλλ,,,21 )U H =U diag(n λλλ,,,21 )diag(n λλλ,,,21 )U H令 P =diag(n λλλ,,,21 )U H , 则 A =P H P . (3)⇒(1). 任取x ≠0, 有x H Ax =x H P H Px =22Px ≧0.习 题 二1. 1x =01i 42i 1+++-++=7+2,2x =1i)4i(4)2(i)1i)(1(2+-+-+-+=23, ∞x =max {}1i 42i 1,,,-+=4.2. 当 x ≠0时, 有 x ﹥0; 当 x ﹦0时, 显然有 x =0. 对任意∈λC , 有x λ=x nk kk nk kk λξωλλξω==∑∑==1212.为证明三角不等式成立,先证明Minkowski 不等式: 设 1≦p ﹤∞, 则对任意实数 x k ,y k (k =1, 2, , n )有pnk pk k y x 11)(∑=+≦∑∑==+nk ppk nk ppk y x 1111)()(证 当 p =1时,此不等式显然成立. 下设 p ﹥1, 则有∑=+nk pkk y x 1≦∑∑=-=-+++nk p kk k nk p kk k y x y y x x 1111对上式右边的每一个加式分别使用H ölder 不等式, 并由 (p -1)q =p , 得∑=+nk pkky x1≦qnk q p kk pnk pk qnk q p kk pnk pk y x y y x x 11)1(1111)1(11)()()()(∑∑∑∑=-==-=+++=qnk p k k pnk pk pnk p k y x y x 111111)]()()[(∑∑∑===++再用 qnk p k k y x 11)(∑=+ 除上式两边,即得 Minkowski 不等式.现设任意 y =(n ηηη,,,21 )T ∈C n , 则有∑=+=+nk kk k y x 12ηξω=∑=+nk k k k 12)(ηξω≦∑=+nk k k k k 12)(ηωξω≦∑∑==+nk j k nk k k 1212()(ηωξω=y x +.3. (1) 函数的非负性与齐次性是显然的,我们只证三角不等式.利用最大函数的等价定义:max(A , B )=)(21b a b a -++max(),b a y x y x ++≦max(b b a a y x y x ++,)=)(21b b a a b a b a y x y x y y x x --+++++≦)(21b a b a b a b a y y x x y y x x -+-++++ =)(21)(21b a b a b a b a y y y y x x x x -+++-++ =max( b a x x ,)+max( b a y y ,)(2) 只证三角不等式.k 1a y x ++k 2b y x +≦k 1a x +k 1a y +k 2b x +k 2b y =( k 1a x +k 2b x )+( k 1a y +k 2b y ) .4. 218132i 453i 11m +=+++++++=A ;66132i 453i 1222222F =+++++++=A ; 15m =∞A ;=1A 列和范数(最大列模和)=27+;∞A =行和范数(最大行模和)=9 ;5. 非负性: A ≠O 时S 1-AS ≠O , 于是 m 1AS S A -=>0. A =O 时, 显然A =0;齐次性: 设λ∈C , 则 λλλ==-m1)(S A S A m1ASS -=λA ;三角不等式: m11m1)(BSS AS S S B A S B A ---+=+=+≦B A BSS AS S +=+--m 1m 1;相容性: m11m1)(BS ASS S SAB S AB ---==≦m1m1BSS AS S --=A B .6. 因为I n ≠O , 所以n I >0.从而利用矩阵范数的相容性得:n n n I I I =≦n I n I ,即n I ≧1.7. 设 A =(A ij )∈C n n ⨯, x =∈ξξξT 21),,,(n C n , 且 A =ij ji a ,max , 则∑∑=ikk ik Ax ξa 1≦∑∑ikk ik a ξ=∑∑kiik k a ][ξ≦n A ∑kk ξ=∞m A 1x ;∑∑=ikk ikAx 22ξa≦∑∑ikk ika2][ξ=∑∑ikka 22][ξ=n A 2x ≦n A =∞m A 2x .8. 非负性与齐次性是显然的, 我们先证三角不等式和相容性成立. A =(a ij ), B =(b ij )∈C n m ⨯, C =(c st )∈C l n ⨯且 A =ij ji a ,max , B =ij ji a ,max , C =st ts c ,max . 则MBA +=max{m ,n }ij ij ji b a +,max ≦max{m ,n })(m ax ,ij ij ji b a +≦max{m ,n }(A +B )=max{m ,n }A +max{m ,n }B =M M B A +;MAC=max{m ,l }∑kkt ik ti c a ,max ≦max{m ,n }}{max ,∑kkt ik ti c a ≦max{m ,n }}{max 22,∑∑⋅kkt kikti c a (Minkowski 不等式)=max{m ,n }n AC ≦max{m ,n }max{n ,l }AC =M M C A .下证与相应的向量范数的相容性.设 x =∈ξξξT 21),,,(n C n , d =kmax {k ξ}, 则有∑∑=ikk ik a Ax ξ1≦∑∑ikk ik a ξ=∑∑ki ikka)(ξ≦∑kk na ξ=n A ∑kk ξ≦max{m ,n }A ∑kk ξ=1M x A ;2Ax =∑∑ikkik a2ξ≦∑∑ik k ik a 2)(ξ≦∑∑∑ikkkika )(22ξ(H ölder 不等式)=∑∑∑⋅kk ikik a 22ξ≦mn A 2x≦max{m ,n }A 2x =2M x A ;}{max 1∑=∞=n k k ik iAxξa ≦∑=nk k ik ia 1}{max ξ≦}{max 22∑∑⋅kk kik ia ξ≦}max{22nd na i⋅=n AD ≦max{m ,n }AD =∞x A M .9. 只证范数的相容性公理及与向量2–范数的相容性. 设 A =(a ij )∈C n m ⨯, B =(b st )∈C l n ⨯,x =∈ξξξT 21),,,(n C n 且 A =ij ji a ,max , B =st ts b ,max , 则∑=≤≤≤≤=nk ktik lt m i AB11,1Gmaxb aml ≦}{max ,kt kik t i b a ml ∑≦}{max 22,∑∑⋅kkt kikti b a ml (Minkowski 不等式)≦ml n ab =))((b nl a mn =G G B A .∑∑===m i nk k ikAx1212ξa≦∑∑ik k ika2)(ξ≦∑∑∑⋅ikkk ik a )(22ξ (H ölder 不等式)≦∑∑⋅ikkna )(22ξ=mn A 2x=2G x A .10. 利用定理2.12得122H 2===nI UU U.11.A 1-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0110211214321cond 1(A )=225255111=⋅=-A A ; cond ∞(A )=10251=⋅=∞-∞A A .12.设x 是对应于λ的特征向量, 则A x x m m λ=.又设 v ⋅是C n 上与矩阵范数⋅相容的向量范数,那么vm vm v mx A x x ==λλ≦v m x A因 v x >0, 故由上式可得 mλ≦m A ⇒λ≦m m A .习 题 三1. 2c λc λλ))(2(+-=-A I , 当c λρ=)(﹤1时, 根据定理3.3, A 为收敛矩阵.2. 令S )N (=∑=N0)(k k A , )(lim N N S +∞→=S , 则 0)(lim lim )()()(=-=+∞→+∞→k k k k k S S A .反例: 设 A )(k =k⎪⎪⎭⎫ ⎝⎛0001k, 则因 ∑+∞=01k k发散, 故 ∑+∞=0)(k k A发散, 但)(lim k k A +∞→=O .3. 设 A =⎪⎪⎭⎫⎝⎛6.03.07.01.0, 则 )(A ρ≦=∞A 行和范数=0.9<1, 根据定理3.7,∑∞+=⎪⎪⎭⎫ ⎝⎛06.03.07.01.0k k=(I -A )1-=⎪⎪⎭⎫ ⎝⎛937432.4. 我们用用两种方法求矩阵函数e A : 相似对角化法. 22a λλ+=-A I , a -a i ,i =λ当 =λi a 时, 解方程组 (i a -A )x =0, 得解向量 p 1=(i, 1)T .当 λ=-i a 时, 解方程组 (i a +A )x =0, 得解向量 p 2=(-i, 1)T .令 P =⎪⎪⎭⎫⎝⎛-11i i , 则P 1-=⎪⎪⎭⎫ ⎝⎛-i 1i 1i 21, 于是 e A =P ⎪⎪⎭⎫⎝⎛-a ai 00i P 1-=⎪⎪⎭⎫ ⎝⎛a a a -a cos sin sin cos . 利用待定系数法. 设e λ=(2λ+a 2)q (λ)+r (λ), 且 r (λ)=b 0+b 1λ, 则由⎩⎨⎧=-=+-aaa b b a b b i 10i 10ei e i ⇒b 0=cos a , b 1=a1sin a .于是e A =b 0I +b 1A =cos a ⎪⎪⎭⎫ ⎝⎛11+a 1sin a ⎪⎪⎭⎫ ⎝⎛-a a =⎪⎪⎭⎫ ⎝⎛-a a a a cos sin sin cos . 后一求法显然比前一种方法更简便, 以后我们多用待定系数法. 设f (λ)=cos λ, 或 sin λ则有⎩⎨⎧=-=+a-a b b aa b b sini i sini i 1010 与 ⎩⎨⎧=-=+aa b b aa b b i cos i i cos i 1010 由此可得⎪⎩⎪⎨⎧-==a a b b sini i 010 与 ⎩⎨⎧==0i cos 10b ab 故 (a 2isini a )A =⎪⎪⎭⎫ ⎝⎛-0isini isini 0a a =sin A 与(cosi a )I =⎪⎪⎭⎫⎝⎛a acosi 00cosi =cos A .5. 对A 求得P = ⎪⎪⎪⎭⎫ ⎝⎛--013013111, P 1-=⎪⎪⎪⎭⎫ ⎝⎛-24633011061, P 1-AP =⎪⎪⎪⎭⎫ ⎝⎛-211根据p69方法二,e At =P diag(e t -,e t ,e t 2)P 1-=⎪⎪⎪⎭⎫⎝⎛+--++---------t t t t tt tt t t t t t t e 3e 3e 3e 30e 3e 3e 3e 30e e 3e 2e e 3e 4e 661222tsin A =P diag(sin(-1),sin1,sin2)P 1-=⎪⎪⎪⎭⎫⎝⎛--01sin 601sin 6001sin 42sin 21sin 22sin 42sin 616. D 3(λ)=101011----λλλ=2)1(-λλ, D 2(λ)=D 1(λ)=1, A ~J =⎪⎪⎪⎭⎫⎝⎛000010011.现设r (λ,t )=b 0+b 1λ+b 2λ2, 则有⎪⎩⎪⎨⎧==+=++1e 2e 021210b t b b b b b t t ⇒b 0=1, b 1=2e t -t e t -2, b 2=t e t -e t +1. 于是e t A =r (A , t )=b 0I +b 1A +b 2A 2=I +(2e `t -t e t -2)⎪⎪⎪⎭⎫⎝⎛100100011+(t e t -e t +1)⎪⎪⎪⎭⎫ ⎝⎛100100111=⎪⎪⎪⎭⎫ ⎝⎛-+--tt e 001e 101e e 1e e tt t t t同理,由⎪⎩⎪⎨⎧=-=+=++1sin 2cos 021210b t t b b t b b b ⇒b 0=1, b 1=t sin t +2cos t -2, b 2=1-t sin t -cos t . 将其代入cos A t =b 0I +b 1A +b 2A 2, 求出cos A t =⎪⎪⎪⎭⎫ ⎝⎛----t t t t t t t cos 001cos 10cos sin 11cos cos7. 设 f (A )=∑+∞=0k k A ka ,S N=∑=Nk k A 0k a .则 f (A )=N N S +∞→lim 并且由于(S N)T=T)(∑=N k k k A a =∑=Nk k k A 0T )(a所以, f (A T )=T )(lim N N S +∞→=f (A )T .8, (1) 对A 求得P =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111, P 1-=P , J =⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111 则有e t A =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛t t tt t tt ttt t t t t t t e e e e 2e e e 6e 2e 232eP 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛t ttt t t tt t e e e 2e 60e e e 200e e 000e 232t t t t t t tsin A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin sin 2cos sin cos 6sin 2cos sin 232P 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin 2cos 6sin cos sin 2sin cos sin 232cos A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t tt t t t tt t t t t t t cos sin cos cos 2sin cos sin 6cos 2sin cos 232P=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t t t t t t t t t t t t t t cos sin cos 2sin 60cos sin cos 200cos sin 000cos 232(2) 对A 求出P =P 1-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100100000100001, J =⎪⎪⎪⎪⎪⎭⎫⎝⎛--010212 则有e At =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛---11e e e 222t t tt t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---100010000e 000e e 222t t tt tsin A t =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛--002sin 2cos 2sin t t tt tP 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000002sin 0002cos 2sin t t tt tcos A t =P ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1012cos 2sin 2cos t t t t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛10000100002cos 0002sin 2cos t t t t 9. (1) sin 2A +cos `2A =[)e (e i 21i i A A --]2=[)(e 21i i A A e -+]2=)e e e (e 41)e e e (e 41i 2i 2i 2i 2O O A A O O A A ++++--+---=e O =I(2) sin(A +2πI )=sin A cos(2πI )+cos A sin(2πI )=sin A [I -!21(2πI )2+!41(2πI )4-…]+cos A [2πI -!31(2πI )3+!51(2πI )5-…]= sin A [1-!21(2π)2+!41(2π)4-…]I +cos A [2π-!31(2π)3+!51(2π)5-…]I=sin A cos2π+cos A sin2π (3)的证明同上.(4) 因为 A (2πi I )=(2πi I )A ,所以根据定理3.10可得 e I A i π2+=e A e I πi 2=e A [I +(2πI )+!21(2πi I )2+!31(2πi I )3+…]=e A {[1-!21(2π)2+!41(2π)4-…]+i[2π-!31(2π)3+!51(2π)5-…]}I=e A {cos2π+isin2π}I =e A此题还可用下列方法证明:e I A πi 2+=e ⋅A e I i π2=e ⋅A P ⎪⎪⎪⎪⎪⎭⎫⎝⎛i π2iπ2πi 2e e e P 1-=e ⋅A PIP 1-=e A用同样的方法可证: e I A πi 2-=e A e I πi 2-.10. A T =-A , 根据第7题的结果得 (e A )T =e TA =e A -, 于是有e A (e A )T =e A e TA =e A A -=e O =I11. 因A 是Herm(i A )H =-i A H =-i A , 于是有e A i (e A i )H =e A i e A i -=e O =I12. 根据定理3.13, A 1-tt A e d d =e At , 利用定理3.14得 ⎰tA 0d e ττ=⎰-t A A 01d e d d τττ=A 1-τττd e d d 0A t ⎰=A 1-(e -At I ). 13. t d d A (t )=⎪⎪⎭⎫ ⎝⎛---t t t t sin cos cos sin , t d d (det A (t ))=t d d (1)=0, det(t d dA (t ))=1, A 1-(t )=⎪⎪⎭⎫ ⎝⎛-t t t t cos sin sin cos , t d d A 1-(t )=⎪⎪⎭⎫⎝⎛---t t t t sin cos cos sin14. ⎰t A 0d )(ττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎰⎰⎰⎰⎰⎰-00d 30d e 2d e d d e d e 002002002t t t t t t τττττττττττττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---002301e e1311e e )1(e 212232t t t t t t t t 15. 取 m =2, A (t )=⎪⎪⎭⎫⎝⎛t t t 02, 则 A 2(t )=⎪⎪⎭⎫ ⎝⎛+22340t t t t , t d d (A (t ))2=⎪⎪⎭⎫ ⎝⎛+t t t t 2023423≠2A (t )t d dA (t )=⎪⎪⎭⎫⎝⎛+t t t t 2022423. 困为++==--21)]()[(d d)()]()[(d d )]()()([d d )]([d d m m A A A A A A A A A t t tt t t t t t t t t t m +)(d d)]([1t tt A A m -所以当(t d d A (t ))A (t )=A (t )t d dA (t )时, 有)(d d)]([)(d d )]([)(d d )]([)]([d d 111t tt t t t t t t t t A A A A A A A m m m m ---++= =m [A (t )])(d d1t tA m -16. (1) 设 B =(ij b )n m ⨯, X =(ij ξ)m n ⨯, 则 BX =(∑=nk kj ik 1ξb )m m ⨯,于是有tr(BX )=∑∑∑===++++nk km mk n k kj jk n k k k 11111ξξξb b bijBX ξ∂∂)tr(=ji b (i =1,2,…,n ;j =1,2,…,m ) ⎪⎪⎪⎭⎫ ⎝⎛=mn n m BX X b b b b 1111)(tr(d d=T B 由于 BX 与 T T T )(B X BX =的迹相同,所以T T T ))(tr(d d ))(tr(d d B BX XB X X == (2) 设A =(ij a )n n ⨯,f=tr(AX X T ), 则有⎪⎪⎪⎭⎫ ⎝⎛=nm mn X ξξξξ1111T ,AX =⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑∑k km nk k k nk km k k k k ξξξξa a a a 1111f =∑∑∑∑∑∑++++l kkm lk lm l k kj lk lj l kk lk l ξξξξξξa a a 11)]()([][∑∑∑∑∑∂∂⋅+⋅∂∂=∂∂=∂∂k kj lk l k ijlj kj lk ij lj l k kj lk lj ij ij ξξξξξξξξξξa a a f =∑∑+klj li kkj ik ξξa amn ij X ⨯⎪⎪⎭⎫⎝⎛∂∂=ξff d d =X A A X A AX )(T T +=+ 17. 设A =(ij a )m n ⨯, 则 F (x )=(∑∑∑===nk kn k nk k nk k k 1211,,,a a a 1k ξξξ ),且A d F F F x F nn n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a aa a a a a a 21222211121121d d d d d d d ξξξ 18. ()⎪⎪⎪⎭⎫⎝⎛---------=='t t tt t t tt t t t t t t t t tt AtAt A 222222222e 4e 3e 3e 6e 3e 6e 2e e e 4e e 2e 2e e e 2e e 4e e在上式中令t =0, 则有A =⎪⎪⎪⎭⎫ ⎝⎛---=133131113e OA19. A =⎪⎪⎪⎭⎫ ⎝⎛---502613803, x (0)=⎪⎪⎪⎭⎫⎝⎛111, A 的最小多项式为 2)1()(+=λλϕ. 记f (λ)=t λe ,并设f (λ)=g(λ))(λϕ+)(10λb b +, 则⎩⎨⎧==---tte e 110t b b b ⇒ tt --=+=e ,)1(10t b e t b 于是⎪⎪⎪⎭⎫ ⎝⎛--+=++=---t t t t t t t t 41026138041e e e )1(e t t t At A I , x (t )=Ate x (0)=⎪⎪⎪⎭⎫ ⎝⎛-++-t t t 6191121e t20. A =⎪⎪⎪⎭⎫ ⎝⎛--101024012, f (t )=⎪⎪⎪⎭⎫ ⎝⎛-1e 21t , x (0)=⎪⎪⎪⎭⎫ ⎝⎛-111, =)(λϕdet(λI -A)=23λλ-. 根据O A =)(ϕ,可得; 252423,,A A A A A A ===,….于是23232)!31!21()(!31)(!21)(e A A I A A A I At ++++=++++=t t t t t t=2)1(e A A I t t t --++=⎪⎪⎪⎭⎫⎝⎛---++--t t t e 1e e 210124021t t t t ttx (t )=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+=+⎰⎰-t t t t f e )1(11]02111[e ]d 021)0([]d )(e )0([e 00At t At tA At x e x ττττ习 题 四1. Doolite 分解的说明,以3阶矩阵为例: 11r 12r 13r 第1框 21l 22r 23r 第2框 31l 32l 33r 第3框 计算方法如下: (ⅰ) 先i 框,后i +1框,先r 后l .第1框中行元素为A 的第1行元素; (ⅱ)第2框中的j r 2为A 中的对应元素j a 2减去第1框中同行的21l 与同列的j r 1之积.第3框中的33r 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13r 之积,再减去第2框中同行的32l 与同列的23r 之积; (ⅲ)第2框中的32l 为A 中的对应元素32a 先减去第1框中同行的31l 与同列的12r 之积,再除以22r . 计算如下:1 3 02 -3 0 2 2 -6A =⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛600030031122012001 2.Crout 分解的说明,以3阶矩阵为例:11l 12u 13u 第1框 21l 22l 23u 第2框 31l 32l 33l 第3框(ⅰ) 先i 框,后i +1框.每框中先l 后r .第1框中的列元素为A 的第1列的对应元素;(ⅱ)第2框中的2i l 为A 中对应元素2i a 减去第1框中同行的1i l 与同列的12u 之积;(ⅲ)第2框中的23u 为A 中的对应元素23a 减去第1框中同行的21l 与同列的13u 之积,再除以22l .第3框中的33l 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13u 之积,再减去第2框中同行的32l 与同列的23u 之积.计算如下:1 3 02 -3 02 -6 -6A =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---100010031662032001 2. 先看下三角矩阵的一种写法:⎪⎪⎪⎭⎫⎝⎛333231222111000a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛332211223211311121000000101001a a a a a a a a a , ii a ≠0 对本题中的矩阵A 求得Crout 分解为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--1002105452115240512005 利用下三角矩阵的写法对上面的分解变形可得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100051000512540152001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100510005100051000512540152001=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10052510545251525405152005 3.对A 的第1列向量)1(β, 构造Householder 矩阵1H 使得 =)1(1βH 12)1(e β, 31C e ∈⎪⎪⎪⎭⎫ ⎝⎛=010)1(β, ⎪⎪⎪⎭⎫ ⎝⎛-=-01112)1()1(e ββ, u =⎪⎪⎪⎭⎫ ⎝⎛-=--01121212)1()1(12)1()1(e e ββββ⎪⎪⎪⎭⎫ ⎝⎛=-=1000010102T 1uu I H , ⎪⎪⎪⎭⎫⎝⎛=2301401111A H , ⎪⎪⎭⎫⎝⎛=23141A对1A 的第1列向量⎪⎪⎭⎫ ⎝⎛=34)2(β, 类似构造Householder 矩阵2H :⎪⎪⎭⎫ ⎝⎛-=--=3110122)2)2(12)2()2ββββe u , 21C e ∈, ⎪⎪⎭⎫ ⎝⎛-=-=4334512T 22uu I H ⎪⎪⎭⎫⎝⎛-=102512A H令12001H H H ⎪⎪⎭⎫⎝⎛=, 则有 ⎪⎪⎪⎭⎫ ⎝⎛-=100250111HA =R 并且⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==---1002501115453000153540001001T2T 112111R H H R H H R H A =QR4. 对A 的第1列向量⎪⎪⎪⎭⎫⎝⎛=202)1(β, 构造Givens 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210210102102113T , ⎪⎪⎪⎪⎭⎫⎝⎛=0022)1(13βT , ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1132221210220232322A O A T 对1A 的第1列向量⎪⎪⎪⎭⎫⎝⎛-=212)2(β, 构造 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=3223131322~12T , ⎪⎪⎪⎭⎫ ⎝⎛=023~)2(12βT , ⎪⎪⎪⎪⎭⎫⎝⎛=34023723~112A T 令 ⎪⎪⎭⎫ ⎝⎛=12T12~1T O O T , 则有 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==34002372302323221312R A T T . 于是 QR R T T A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==340023723023232232231213123403223121H13H 125. 设A =),,(i i 0i 0i 0i 1321ααα=⎪⎪⎪⎭⎫ ⎝⎛----, 对向量组321,,ααα施行正交化, 令⎪⎪⎪⎭⎫ ⎝⎛--==0i 111αβ, ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛=-=i 212i 0i 12i i 0i ],[],[1111222ββββααβ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--=--=323i232i 212i 3i 0i 1211i 0],[],[],[],[222231111333ββββαββββααβ于是⎪⎪⎪⎩⎪⎪⎪⎨⎧++=+-==3213212113i 212iβββαββαβα 写成矩阵行式K ),,(1003i 10212i 1),,(),,(321321321ββββββααα=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-= ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32632316i 203i 612i 316i 21),,(321βββ 最后得A =K ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32632316i 203i 612i 316i 21=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32006i 630212i 2316i 203i 612i 316i 21=QR 6. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==10005152********T T 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=011000520550114022011000515*******A T 再令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==305061010610305132T T , ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3010305000061061612A T T 最后令⎪⎪⎪⎭⎫⎝⎛=0101000013T , R A T T T =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=00030103050610616123 A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0003010305061061603056151302625230161H 3H 2H 3R T T T =QR 7. =)1(β(0, 1)T , 12)1(=β, u =2121)1(1)1(=--e e ββ(-1, 1)T ,H 1=⎪⎪⎭⎫⎝⎛=-01102T2uu I , H =⎪⎪⎭⎫⎝⎛1001H 则有HAH T =⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛010100001111210121010100001=⎪⎪⎪⎭⎫ ⎝⎛--120111211, H 是Householder 矩阵.同理, 对)1(β, 取 c =0, s =1, T 12=⎪⎪⎭⎫⎝⎛-0110, T =⎪⎪⎭⎫ ⎝⎛12001T , 则 ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=='-0101000011112101210101000011TAT T TA=⎪⎪⎪⎭⎫ ⎝⎛---120111211, T 是Givens 矩阵.8. 对 ⎪⎪⎭⎫⎝⎛=1612)1(β, 计算u =⎪⎪⎭⎫ ⎝⎛-=--2151202021)1(1)1(e e ββ, H =I -2uu T=⎪⎪⎭⎫ ⎝⎛-344351 令 Q =⎪⎪⎭⎫⎝⎛H 001, 则⎪⎪⎪⎭⎫⎝⎛=075075600200200TQAQ同理,对)1(β,为构造Givens 矩阵,令c =53, s =54, ⎪⎪⎪⎪⎭⎫ ⎝⎛-=5354545312T ,则当⎪⎪⎭⎫⎝⎛=12001T T 时,='T TA ⎪⎪⎪⎭⎫ ⎝⎛--075075600200200.1. (1) 对A 施行初等行变换⎪⎪⎪⎭⎫ ⎝⎛----100424201011200010321~⎪⎪⎪⎪⎭⎫ ⎝⎛---142000002102121100111201 S=,1420210011⎪⎪⎪⎪⎭⎫ ⎝⎛-- A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2121101201422021(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10001111010011110010111100011111~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000000001100000210211110021021001 S=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11000011021021021021, A =⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛----1110000111111111(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000126420100632100101264200016321~⎪⎪⎪⎪⎪⎭⎫⎝⎛---10100000010100000011000000016321 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1010010100110001S, ()63212121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 10. (1) ⎪⎪⎪⎭⎫⎝⎛=000000005T A A 的特征值是5,0,0. 分别对应特征向量321,,e e e ,从而V=I,),(11p V =∑=(5), 11AV U =∑1-=⎪⎪⎭⎫ ⎝⎛2151. 令,12512⎪⎪⎭⎫⎝⎛-=U ()21U U U =, 则I U A ⎪⎪⎭⎫⎝⎛=000005(2)⎪⎪⎭⎫⎝⎛=2112T A A 的特征值是,,1321==λλ对应的特征向量分别为TT11,11⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛.于是 ∑=⎪⎪⎭⎫⎝⎛1003, ⎪⎪⎪⎪⎭⎫⎝⎛-=21212121V =1V , 11AV U =∑1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-06221612161取 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3131312U , 构造正交矩阵()21U U U ==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---31062312161312161‘所以,A 的奇异值分解为T 001003V U A ⎪⎪⎪⎪⎭⎫ ⎝⎛=11. 根据第一章定理1.5, A A H 的特征值之和为其迹,而由第二章2.7 F-范数的定义A A A A A HH2F )tr(==的特征值之和=∑=ri i 12σ习 题 五1.设x =T 21),,,(n ηηη 为对应于特征值λ的单位特征向量,即(QD )x =λx两边取转置共轭:H H H H x Q D x λ=与上式左乘得2H H λ=Dx D x 即 22222221212n n ηηηd d d λ+++= ,由此立即有 2min iid ≤2λ≤2max i id从而i d imin ≤λ≤i d imax .后一不等式的另一证明:根据定理2.13,λ≤)(QD ρ≤2QD i d imax 最大特征值的H 22.11定理==D D D2. A 的四个盖尔园是 1G : 9-z ≤6, 2G : 8-z ≤2, 3G : 4-z ≤1, 4G : 1-z ≤1.由于4G 是一个单独的连通区域,故其中必有一个实特征值.321G G G ⋃⋃是连通区域,其中恰有三个特征值,因而含有一个实特征值 .3. A 的四个盖尔园:1G 1-z ≤2713, :2G 2-z ≤2713, :3G 3-z ≤2713, :4G 4-z ≤2713 是互相隔离的,并且都在右半平面,从而每个盖尔园中恰有一个特征值且为正实数.4.设 =λβαi +为A 的待征值,则有盖尔园k G ,使得k G ∈λ.若α≤0, 则kk a -α≤βαi )(+-kk a ≤k R 故 kk a +-)(α≤k R ,即 kk a ≤α+kk R ≤kk R , 这与A 是严格对角占优的条件矛盾.5. (1)当两个盖尔园的交集中含有两个特征值时; (2) 当两个盖尔园相切且切点是A 的单特征值时.6. A 的盖尔园 2:1-z G ≤3, 10:2-z G ≤2, 20:3-z G ≤10. 因1G 是与32G G ⋃分离的,故1G 中恰有一个实特征值∈1λ[-1, 5].A 的列盖尔园 :'1G 2-z ≤9, 10:'2-z G ≤4, 20:'3-z G ≤2. 因'3G 是与'2'1G G ⋃分离的,故 '3G 中恰有一个实特征值 ∈3λ[18, 22]. 选取 D =diag(1, 1,21), 则 1-DAD 的盖尔园 ''G 1 : 2-z ≤4, :''2G 10-z ≤3, :''3G20-z ≤5. 这三个盖尔园是相互独立的,故必然有∈1λ[-2, 6], ∈2λ[7, 13], ∈3λ[15, 25]与上面所得的结果对照可知利用Gerschgorin 定理,特征值的最隹估计区间为∈1λ[-1, 5], ∈2λ[7, 13], ∈3λ[18, 22]7. 因为det(λB -A )=)23)(2(422+-=----λλλλλλ所以广义特征值为1λ=2, 2λ=-32.分别求解齐次线性方程组0=-x A B )(1λ , 0=-x A B )(2λ可得对应于1λ与2λ的特征向量分别为⎪⎪⎭⎫⎝⎛121k (01≠k ), ⎪⎪⎭⎫ ⎝⎛-122k (02≠k ) 8. 先证明一个结果:若A 是Hermit 矩阵,n λλ,1分别是A 的最大、最小特征值,则)(m ax )(m ax 112x R x R x x =≠==λ, )(m ax )(m ax 12x R x R =≠==x x n λ事实上,Ax x x x x Axx x x x Axx x x x x H 1H 22H 220H H 002max 11max max )(max =≠≠≠===x R下证1λ>1μ, n λ>n μ. 令 Q =A -B , 则)(m ax m ax H H 1H 1122Qx x Bx x Ax x x x +====λ>Bx x x H 12max ==1μ( Q 正定,Qx x H >0 )同理可证 n λ>n μ.现在设 1<s <n , 则根据定理5.10及上面的结果,有)m ax (m in m ax m in H H H 1021Qx x Bx x Ax x x x P s +====λ>s x x P Bx x μ===H 1021max min 9. 显然,A B 1-的特征值就是A 相对于B 的广义特征值. 设为n λλλ,,,21 且j j j Bq Aq λ=, 0≠j q , j =1, 2, …,n 其中 n q q q ,,,21 是按B 标准正交的广义特征向量. 当 )(1A B -ρ<1时,对任意 x =0≠+++n n q q q c c c 2211)()(2211HH 22H 11H n n n n q q q A q q q Ax x c c c c c c ++++++==))((222111HH 22H 11n n n n n Bq Bq Bq q q q λλλc c c c c c ++++++ =2222211n n c c c λλλ+++ ≤i iλmax )(22221n c c c ++⋅=Bx x A B H 1)(-ρ<Bx x H反之,若对任意 x ≠0, Ax x H <Bx x H 成立,并且 )(1A B -=ρλ,Bq Aq λ=,0≠q ,则取 x=q , 于是有λ=Aq q H <1H =Bq q10. 若λ是BA 的特征值,q 是对应于λ的特征向量,即(BA )q =λq =λIq由此可知,λ是BA 的相对于单位矩阵I 的广义特征值 ,因此BAx x Ix x BAxx x R BA x x I x H 1H H 111222max max )(max )(======λ=)(maxH H 12Ax Bxx x x =≤)(max )(max H 1H 122Ax x Bx x x x == =)()(11A B λλ同理)(m in )(m in )(H H 1122Ax Bxx x x R BA x I x n ====λ≥)(m in )(m in H 1H 122Ax x Bx x x x == =)()(A B n n λλ11. 由于x ≠0时,12)()(==x x R x R ,从而5.24式等价于}0,1)(m in{m ax H 22)(2===-⨯∈x P x x R r n n P r C λ我们约定,下面的最小值都是对12=x 来取的. 令x =Qy , 则y y Ax x x R Qy P x P x P ΛH H H 2H 2H 2m in m in )(m in 0=====由于 n r n Q P ⨯-∈)(H 2C , 则在齐次线性方程组 0=Qy P H 2中,方程的个数小于未知量的个数,根据 Cramer 法则,它必有非零解. 设),,,,0,,0(~1n r r y ηηη +=,(1~2=y )为满足方程的解(容易证明这种形式的解必存在),则)(min ~min 22112~H ~H 2H 2n n r r r r y Q P y Q P y y ηληληλ ++=++==0Λ≤r λ 注意到 ⊆==}1~,~~{2H 2y y Q P y 0}1,{2H 2==y Qy P y 0,从而)(min H 2x R x P 0==)(min H 2y R Qy P 0=≤y y y R y Q P y Q P ΛH ~~~m in )~(m in H 2H 20===≤r λ 特别地,取),,(12n r q q P +=时,根据定理5.9)(min H 2x R x P r 0==λ故(5.24)式成立. 12. 我们约定:以下的最小值是对单位向量来取的,即证},1)(min{max H 22)(20C ===-⨯∈Bx P x x R r n n P r λ成立. 令 x =Qy , 则有y y x R BQy P B Bx P ΛHH2H 2m in )(m in === 设齐次线性方程组 0=BQy P H 2有形如 1~),,,,,0,,0(~21==+y y n r r ηηη 的解(不难证明这样的解一定存在),则因})({}~)(~{H 2H 200=⊆=y BQ P y y BQ P y所以)(min H 2x R B BxP ≤22112H ~~~min H 2n n r r r r y BQ P y y ηληληλ+++=++= Λ0≤r λ 特别地,取 ),,,(21H 2n r r q q q P ++=时,根据定理5.12可得r B Bx P x R λ==)(min H 20由此即知(5.44)成立.习 题 六求广义逆矩阵{1}的一般方法: 1)行变换、列置换法利用行变换矩阵S 和列置换矩阵P , 将矩阵A 化成SAP =⎪⎪⎭⎫⎝⎛O O K I r则。
矩阵论习题课答案
习题课答案 一1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。
(a) 1||n A λ- (b) 1||A λ- (c) ||A λ (d) ||n A λ2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立.()a A 的所有顺序主子式为非负数 ()b A 的所有特征值为非负数()c A 的所有顺序主子式大于零()d A 的所有特征值互不相同3).设矩阵11111A ααββ⎛⎫⎪= ⎪ ⎪⎝⎭与000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似,则,αβ的值分别为( a )。
(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1二 填空题4)若四阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则1B E --= 24 。
5)设532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则100A =10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231⎛⎫+---- ⎪+---⋅-⎪ ⎪--⋅-⎝⎭三 计算题3.求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■4.设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得T Q BQ A =依题意有011003121003111003A -⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1T X =-,()21,1,0TX =-.特征向量为1122l X l X +.⑵23λ=,解特征方程(3)0E A X -=得()31,1,1TX =.特征向量为33l X . 以上123,,l l l R∈.把向量12,X X 正交并单位化得1(η=,2η⎛⎫= ⎝.把向量3X单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ ⎪ ⎪== ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 5解:A 的行列式因子为33()(2)D λλ=+, 21()()1D D λλ==.所以,不变因子为33()(2)d λλ=+, 21()()1d d λλ==,初等因子为3(2)λ+,因而A 的Jordan 标准形为21212J -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦8.设A 是n 阶特征值为零的若当块。
大连理工大学《矩阵与数值分析》2007年真题答案
大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++-改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ⎰-102求得的近似值为()15.02141--++ee, 用Simpson 公式求得的近似值为()15.04161--++ee。
1.设函数()1,0,1)(3-∈S x s ,若当1-<x 时,满足0)(=x s ,则其可表示为()()33323111)(+++-+++=x c x c x c x s 。
4.已知12)2(,6)1(,0)0(===f f f ,则=]1,0[f 6 ,=]2,1,0[f 0 ,逼近)(x f 的Newton 插值多项式为x 6。
5.用于求()01=--=x e x f x 的根0=x 的具有平方收敛的Newton 迭代公式为:1121---⨯-=+kkx kx k k e x ex x 。
6.已知⎪⎪⎪⎭⎫ ⎝⎛=000101000-A ,则A 的Jordan 标准型是⎪⎪⎪⎭⎫⎝⎛000100000或⎪⎪⎪⎭⎫⎝⎛000000010;装订线7.设A 是n 阶正规矩阵,则=2A()A ρ;8.求解一阶常微分方程初值问题t u t t u +-=')1()(2,0)(u t u =的向后(隐式)Euler 法的显式化的格式为:()211111+++-++=n n n n t h ht u u 。
9.设001.211=a 12为x 的近似值,且2105.0-⨯≤-a x ,则a 至少有 5 位有效数字;10.将()T 4,3=x ,化为()T0,5=y 的Householder 矩阵为:⎪⎪⎪⎪⎭⎫⎝⎛-53545453; 11.=⎪⎪⎭⎫ ⎝⎛∑∞=kk 0105.00⎪⎪⎭⎫⎝⎛1302; 12.用二分法求方程3()2510f x x x =--=在区间[1,3]内的根,进行一步后根所在区间为()2,1,进行二步后根所在区间为()2,5.1。
矩阵理论 (A-B卷)及答案
矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。
矩阵论试题及答案
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
2007级线性代数试题和答案 A卷
2007级线性代数试题和答案 A 卷2007级线性代数期末试题答案一、填空题(每小题4分、本题共28分)1.设A *是n 阶方阵A 的伴随矩阵,行列式2A =,则*2A = .2n n n 12 2|=22222n -=⨯=n-1**n-1n-1解应填因为行列式|2A |A |=|A|2.设4阶方阵A 和B 的伴随矩阵为A *和B *,且它们的秩分别为3)(=A r ,4)(=B r ,则秩=)(**B A r .()()()()****** 1.14 1.r A r B B r A B r A ====解应填由题设可知,,的可逆矩阵,故 3.设n 维向量(,0,,0,)T x x α=,其中0x <;又设矩阵T A E αα=-,且11T A E xαα-=+,则x = .()()()()()2-1-12 -12111- --111----21 -1-201111-22-12-11012T T T T T T TT T T T T T TT T x AA E E E x x x E E x x x x E x x AA E x x x x x x x x x x αααααααααααααααααααααααααααααααα=⎛⎫=+=+ ⎪⎝⎭=+=+⎛⎫=+ ⎪⎝⎭=≠+=+=+==解应填 因为,而 由及可知 故或-10-1x x =<=,又由可得4.已知n 阶方阵()ij n nA a ⨯=,12,,n ααα⋅⋅⋅,是A 的列向量组,行列式0A =,伴随矩阵*O A ≠,则齐次线性方程组*0A x =的通解为 .解 应填α =111221...n i i n i k k k ααα--+++ ,其中 121n i i i ααα⋅⋅⋅- 是向量组 12n ααα⋅⋅⋅的极大线性无关组, 121n k k k ⋅⋅⋅- 是任意常数。
因为|A|=0,A *≠0 所以秩r(A)=n-1,因此,向量组12n ααα⋅⋅⋅的秩r(12n ααα⋅⋅⋅)=n-1,由此又可知线性方程组A *x=0的基础解系含n-1个解,12n ααα⋅⋅⋅的极大线性无关组含n-1个向量,而A *A= A *(12n ααα⋅⋅⋅)=|A|E=0即A *=0(j=1 n) ,亦即12n ααα 都是A *x=0 的解,故12n ααα的极大线性无关组可作为A *x=0 的基础解系。
矩阵理论试题答案最终版
阵
G
为
(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1
∫
1
−1
2*(t 2 − 1)dt
矩阵理论试题参考答案
矩阵理论2007年考试参考答案一、判断题(40分)(对者打∨,错者打⨯)1、设,n nA B C⨯∈的奇异值分别为120n σσσ≥≥≥>,'''120n σσσ≥≥≥>,如果'(1,2,,)i i i n σσ>=,则22||||||||A B ++>. ( ⨯ )2、设n nA C ⨯∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ )3、设nn CA ⨯∈可逆,nn C B ⨯∈,若对算子范数有1||||||||1A B -⋅<,则B A +可逆.( ∨ )4、设323121000a a A a a a a -⎛⎫⎪=- ⎪ ⎪-⎝⎭为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵 ( ∨ )5、设A 为m n ⨯矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ∨ )6、设n nA C⨯∈,且A 的所有列和都相等,则()r A A ∞=. ( ⨯ )7、如果12(,,,)T n n x x x x C =∈,则1||||min i i nx x ≤≤=是向量范数. ( ⨯ )8、0010140110620118A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦至少有2个实特征值. ( ∨ ) 9、设,n nA C⨯∈则矩阵范数m A∞与向量的1-范数相容. ( ∨ )10、设n nA C⨯∈是不可逆矩阵,则对任一自相容矩阵范数有1I A -≥, 其中I 为单位矩阵. ( ∨ )二、计算与证明(60分)1. (10分)设矩阵n nA C ⨯∈可逆, 矩阵范数||||⋅是nC 上的向量范数||||v ⋅诱导出的算子范数,令()L x Ax =, 证明:||||11||||1max ||()||||||||||min ||()||v v vx vy L x A A L y =-==⋅.证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==,11100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,结论成立.2.(10分) 已知矩阵110130110,112114A b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,(1) 求矩阵A 的最大秩分解; (2) 求A +;(3) 用广义逆矩阵方法判断方程组Ax b =是否有解?(4) 求方程组Ax b =的最小范数解或最佳逼近解?(要求指出所求的是哪种解)解: (1)10110101011011A BD ⎛⎫⎛⎫⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭,(2)12111()1213T TB B B B +--⎛⎫== ⎪-⎝⎭, 121121()13521T T D D DD +--⎛⎫⎪ ⎪== ⎪- ⎪ ⎪-⎝⎭,541033157215541A D B +++-⎛⎫ ⎪ ⎪==⎪- ⎪ ⎪-⎝⎭, (3) 314AA b b +⎛⎫⎪== ⎪ ⎪⎝⎭, 方程组Ax b =有解;(5) 最小范数解:()01101Tx A b +==.3. (10分) 设矩阵n nA C ⨯∈为单纯矩阵, 证明: A 的特征值都是实数的充分必要条件是存在正定矩阵n nH C⨯∈, 使得HA 为Hermite 矩阵.证明: (充分性) (0)Ax x x λ=≠, ,(0,)HHHHx HAx x Hx R x Hx x HAx R λ=∈>∈,R λ∈.(必要性) A 为单纯矩阵, 所以11, (,,),n i A P DP D diag R λλλ-==∈,令H H P P =, 则1H HHA P PP DP P DP -==为Hermite 矩阵. 4. (10分) 设矩阵n nA C⨯∈为行严格对角占优矩阵, 用Gerschgorin 圆盘定理证明:(1) 矩阵A 为可逆矩阵;(2) 如果矩阵A 的所有主对角元均为负数, 证明A 的所有特征值都有负实部. 证明:(1)A 行严格对角占优||||i ij ii j iR a a ≠⇒=<∑1({:||||})ni i i ii ii i S S z C z a a λ=⇒∈=∈-<100ni ii S S =⇒∉⇒∉(2)0,||||ii ii ii a a a λ<-<⇒A 的特征值都有负实部5. (10分) (1) 设矩阵()m nA Cm n ⨯∈<, 且H m AA I =, 其中m I 为单位矩阵, 证明H A A 酉相似于对角矩阵, 并求此对角矩阵.证明: 由于矩阵H A A 和H m AA I =的非零特征值相同, 所以矩阵HA A 的特征值为1(m个)和 0(n m -个), 同时由于矩阵H A A 为Hermite 矩阵, 所以矩阵HA A 酉相似于对角矩阵000m n nI D ⨯⎛⎫=⎪⎝⎭ (2) 设矩阵m nnA C ⨯∈, 证明: 2||||1AA +=.证明: 令2B AA B B +=⇒=. 设B 的特征值为λ, 则2λλ=, 即0,1λ=.设,00n x C x Ax ∈≠⇒≠, 所以有()1()B Ax AA Ax Ax +==⋅, 即1是矩阵B 的特征值, 故()1r B =, 1/22||||[()]()1H B r B B r B ⇒===.6. (10分) (1) 设矩阵()ij n n A a ⨯=, 则,||||max ||a ij i jA n a =⋅是矩阵范数.(2) 设,,,n x y p q C ∈为非零列向量, 矩阵H H A xp yq ,x y,p q =+⊥⊥其中,求2||m A .解:(1) 0A ≠⇒ij a ⇒不全为零,||||max ||0;a ij i jA n a =⋅>,,||||max ||||max ||||||||a ij ij a i ji jkA n ka k n a k A =⋅=⋅=;,,,||||max ||max ||max ||||||||||a ij ij ij ij a a i ji ji jA B n a b n a n b A B +=⋅+≤⋅+⋅=+(2)H H A xp yq ,x y,p q =+⊥⊥⇒其中2222()()||||||||H H H H H H H HA A xp yq xp yq x pp y qq=++=+⇒22222222||||||||||||||||x p x q +p,q 为矩阵HA A 对应于2222||||||||,x p 2222||||||||x q 的特征向量.又因为()()2H rank A A rank A =≤⇒()()2H rank A A rank A ==⇒2222||||||||,x p 2222||||||||x q 为H A A 全部非零特征值所以22222222221||||()||||||||||||||||nHm i i A AA x p x q λ===+⇒∑2||||m A =。
矩阵理论第4章习题解答 (2)
矩阵理论第四章习题解答1. 习题1问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [9, 8, 7][6, 5, 4][3, 2, 1]求矩阵C = A + B。
解答我们可以直接对A和B对应位置的元素进行相加,得到矩阵C。
A +B = [1+9, 2+8, 3+7][4+6, 5+5, 6+4][7+3, 8+2, 9+1]计算结果为:[10, 10, 10][10, 10, 10]2. 习题2问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [9, 8, 7][6, 5, 4][3, 2, 1]求矩阵D = A - B。
解答我们可以直接对A和B对应位置的元素进行相减,得到矩阵D。
A -B = [1-9, 2-8, 3-7][4-6, 5-5, 6-4][7-3, 8-2, 9-1]计算结果为:[-2, 0, 2][4, 6, 8]3. 习题3问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [2, 0, 1][1, 2, 1][0, 1, 2]求矩阵E = A * B。
解答我们可以通过矩阵乘法的定义来计算E。
矩阵乘法的定义为:矩阵C的第i行第j列的元素等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
对于矩阵A和B,可以计算得到矩阵E。
E = [1*2+2*1+3*0, 1*0+2*2+3*1, 1*1+2*1+3*2][4*2+5*1+6*0, 4*0+5*2+6*1, 4*1+5*1+6*2][7*2+8*1+9*0, 7*0+8*2+9*1, 7*1+8*1+9*2]计算结果为:E = [4, 7, 8][10, 13, 16][16, 19, 22]4. 习题4问题描述已知矩阵A定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]求矩阵F = A^T,其中A^T表示A的转置矩阵。
南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题
2 3 4 A 4 6 8 6 7 8 。 一(20 分) (1)设
2010 ~ 2011 学年《矩阵论》 课程考试 A 卷
(i)求 A 的特征多项式和 A 的全部特征值; (ii)求 A 的行列式因子,不变因子和初等因子; (iii)写出 A 的 Jordan 标准形;
1 A* A2 A* (3)证明: n 。
1 1 1 1 A 0 0 0 0 四、 (20 分)已知矩阵
(1)求矩阵 A 的 QR 分解;
1 2 0 1 b 1 1 2 1 ,向量 ,
(2)计算 A ;
17 6 14 60 A , B 45 16 3 13 ,试问 A 和 B 是否相似?并说明 (2)设
原因。
2 1 A 1 2 3 1 ,求 A 1 , A 2 , A , A F ; 二(20 分) (1)设
(3)用广义逆判断方程组 Ax b 是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、 (20 分)
(1)设矩阵
问当 t 满足什么条件时, A B 成立?
5 3 2 0 1 A 3 2 t , B 1 1 2 t 2 2 0 .5 t
五(20 分)设
A ( a ij )
为 n 阶 Hermite 矩阵,证明:
3
存在唯一 Hermite 矩阵 B 使得 A B ;
2
(2)
(3) 如果 A 0 ,则 tr ( A)tr ( A ) n 。
1
如果 A 0 ,则 tr ( A ) (tr ( A)) ;
2
2007年-2012年线性代数(经管类)总试题+答案
全国2007年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .-4 B .-1 C .1D .44218||2|2|131=⨯==--A A. 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABC C .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(TTTTTTTA A A AA AA A --=-=-=-,所以A -A T为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a ,则A *=( A ) A .⎪⎪⎭⎫⎝⎛--a cb dB .⎪⎪⎭⎫⎝⎛--a b c dC .⎪⎪⎭⎫⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C ) A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--50043200101,则A 中( D ) A .所有2阶子式都不为零 B .所有2阶子式都为零 C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T+k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T+k (0,1,-1)TD .(1,0,2)T+k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T)1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,-1)T .9.矩阵A =⎪⎪⎪⎭⎫⎝⎛111111111的非零特征值为( B ) A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E)3(000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4B .3C .2D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000011100001000000000011110001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零. 12.设矩阵A =⎪⎪⎭⎫⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A AA A TT .13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__. E A B -==⎪⎪⎪⎭⎫⎝⎛000010100,r(B )=2. 15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__. 18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__. 0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+.秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+. 20.设矩阵A =⎪⎪⎪⎭⎫⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a . 011>=∆,0121112>-=-=∆a a,0)1(33021113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123. 解:0760300940200320100767367949249323123==. 22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A . 解: ⎪⎪⎪⎭⎫⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫ ⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫ ⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---12701200220210202→ ⎪⎪⎪⎭⎫⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/510010001, =-1A⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫⎝⎛---000330044400321→⎪⎪⎪⎪⎪⎭⎫⎝⎛000110011100321→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103001. (1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫⎝⎛-=11100011110011A →⎪⎪⎪⎭⎫ ⎝⎛--11101010010011→⎪⎪⎪⎭⎫⎝⎛--0101010010011→⎪⎪⎪⎭⎫ ⎝⎛0101010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为TTk k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵. 解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ.对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,单位化为 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=112α,单位化为 ⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ.令⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,0002213=-=a A ,00121123=-=a a A ,所以⎪⎪⎪⎭⎫⎝⎛=-333222312111100||1A A A A A A A A 是上三角矩阵. 全国2007年7月高等教育自学考试线性代数(经管类)试题答案 课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A )A .-2B .21-C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T,则必有( A ) A .B T =B B .B =2A C .B B T -=D .B =0B AA A AA AA A BTTTT TTT T=+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C ) A .⎪⎪⎭⎫⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(1021011222=-+=++=++t tt ttt ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1. 9.设A 为n 阶正交矩阵,则行列式=||2A ( C ) A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T .10.二次型2.2),,(y x z y x f -=的正惯性指数p 为( B ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎭⎫⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A AA AATT.12.行列式1694432111中)2,3(元素的代数余子式=32A __-2__.2421132-=-=A .13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__.521)2,1(=⎪⎪⎭⎫ ⎝⎛=B A T.14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1. ⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__. ⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫⎝⎛x 01010101的一个特征值为0,则x =__1__. 0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=2112112的值. 解:4)26(2123211212302112112=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛=252610022501101220016101210013512),(E A ⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X .23.设矩阵A =⎪⎪⎪⎭⎫⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2. 解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--90000003121a →⎪⎪⎪⎭⎫⎝⎛--00090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--00014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛00032203421→⎪⎪⎪⎭⎫⎝⎛00032200201→⎪⎪⎪⎭⎫ ⎝⎛0002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(163310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α. 令⎪⎪⎪⎭⎫⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D ) A .2⎪⎪⎭⎫ ⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A .5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++D .)()(212121121ββC αC ββ+++-)(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系.8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A ) A .121B .71C .7D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,1230020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B ) A .23-B .32-C .32D .230|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-.10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C )A .⎪⎪⎪⎭⎫ ⎝⎛104012421B .⎪⎪⎪⎭⎫ ⎝⎛100010421C .⎪⎪⎪⎭⎫ ⎝⎛102011211D .⎪⎪⎪⎭⎫ ⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023. 12.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250. →),(E A T⎪⎪⎪⎭⎫ ⎝⎛10010*********200→⎪⎪⎪⎭⎫ ⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--00113001020010021→⎪⎪⎪⎭⎫ ⎝⎛---00113025020010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫ ⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006. ==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E . 14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等. 15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31. 16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k , ⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41.2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫⎝⎛a aa 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆aaa ,0)3(00010323>-==∆a a aaa ⇒30<<a .20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2. 三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:630102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫⎝⎛=10211P ,⎪⎪⎭⎫⎝⎛=01102P ,令21AP P B =,求1-B.解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫⎝⎛=-011012P , 111121----=P AP B=⎪⎪⎭⎫ ⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------070070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫⎝⎛---=2112113111aa a A →⎪⎪⎪⎭⎫⎝⎛-----a a a a a 11010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫⎝⎛-00000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫⎝⎛------011101110的全部特征值及对应的全部特征向量. 解:10010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=-000330211330330211112121211211121112A E λ ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.全国2008年1月自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
矩阵理论课后习题答案习题二
3 0 1 λ⎤ 0 0 ⎡ 2λ ⎡ 0 ⎢ 4λ ⎥ ⎢ 3λ + 6 0 λ + 2 2λ ⎥ c − 2c ⎢ 0 0 0 ⎢ c −3 c ⎢ 0 6λ λ 2λ 0 ⎥ ⎯⎯⎯ →⎢ 0 0 λ ⎢ ⎥ ⎢ 0 λ −1 0 0⎥ 0 λ −1 ⎢ λ −1 ⎢ λ −1 ⎢ ⎢ 0 0⎥ ⎣3λ − 3 1 − λ 2 λ − 2 ⎦ ⎣3 λ −3 1 − λ 2 λ −2
于是不变因子为
d1 (λ ) = d 2 (λ ) = d 3 (λ ) = 1,d 4 (λ ) =
Smith 标准形为
D4 (λ ) D (λ ) = λ (λ − 1),d 5 ( λ )= 5 = λ2 ( λ − 1) 故 该 矩 阵 的 D3 ( λ ) D4 ( λ )
0 1 0 0 0 0 0 0 ⎤ ⎥ 0 0 0 ⎥ 1 0 0 ⎥. ⎥ 0 λ (λ − 1) 0 ⎥ 0 0 λ 2 (λ − 1) ⎥ ⎦
0 0 0 ⎡1 ⎤ ⎢0 λ (λ − 1) ⎥ 0 0 ⎢ ⎥; ⎢0 0 λ( λ − 1) 0 ⎥ ⎢ 2 2⎥ 0 0 λ (λ − 1) ⎦ ⎣0
(3)对矩阵作初等变换
⎡3λ 2 + 2 λ − 3 2 λ −1 λ 2 + 2 λ − 3 ⎤ c − c ⎡3 λ 2 − 2 3 ⎢ 2 ⎥ c1 ⎢ 2 3 − c2 → ⎢4 λ 2 −3 ⎢4λ + 3λ − 5 3λ − 2 λ + 3 λ − 4 ⎥ ⎯⎯⎯ ⎢ λ2 + λ − 4 ⎢ λ2 − 2 λ −2 λ −1 ⎥ ⎣ ⎦ ⎣ 4 2 3 2 ⎡ −λ + 7 λ − 6 −λ + 2λ + 4λ − 5 0 ⎤ ⎢ ⎥ r2 − r1 ⎯⎯⎯⎯→ λ 2 −1 λ −1 0⎥ r1 −( λ 2 −2) r3 ⎢ ⎢ λ2 −2 λ −2 1⎥ ⎣ ⎦ 4 2 3 2 ⎡ −λ + 7λ − 6 −λ + 2λ + 4λ − 5 0 ⎤ 2 ⎢ ⎥ c1 −( λ −2) c 3 ⎯⎯⎯⎯⎯ →⎢ λ 2 −1 λ −1 0⎥ c2 −( λ − 2) c3 ⎢ 0 0 1⎥ ⎣ ⎦ ⎡ −λ 3 + λ 2 − λ −1 −λ3 + 2λ 2 + 4λ − 5 0 ⎤ ⎢ ⎥ c1 −( λ +1) c 2 ⎯⎯⎯⎯ →⎢ 0 λ −1 0⎥ ⎢ 0 0 1⎥ ⎣ ⎦ ⎡λ 3 − λ 2 − λ +1 0 0⎤ ⎡1 2 ⎢ ⎥ r1 ↔ r3 ⎢ r1 + (λ −λ − 5)r2 ⎯⎯⎯⎯⎯ →⎢ 0 λ −1 0 ⎥ ⎯⎯⎯ → ⎢0 r1× (− 1) c1 ↔ c3 ⎢ ⎢ 0 0 1⎥ ⎣0 ⎣ ⎦
矩阵论期末试题及答案
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
南开大学2007级线性代数试题和答案 B卷
2007级线性代数期末试题(B 卷)答案及评分标准一、填空题(每小题4分,本题共28分)1.., =-===ij ij na D a a D则若答:a n )1(-2. .1541det ,31det ,,1=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=*-*A A A A n A 则为其伴随矩阵阶方阵为设 答: 3)1(n -3..1,1中每行元素之和为则,中每行元素之和都是如果阶可逆矩阵为设-A A n A答: 14. .),,,,,(,1),,,,(,),,,(),,,,(21212121=+===γβαααγααααααβαααs s s s r k r k r r 则若答:k +1 5. .32.21,123的特征值为则和的特征值为三阶方阵A A B A -=-答:4,5,1 --6. 设21,λλ是3阶实对称矩阵A 的两个不同的特征值,TTa ),3,3(,)3,2,2(21==αα依次是A 的属于21,λλ的 特征向量,则a = 。
答:-47.若使二次型31212322213212242),,(x tx x x x x x x x x f ++++=为正定的,则t 的取值范围是答:2<t二、选择题(每小题4分,本题共28分)1. )2(,,21>m m ααα 线性相关的充分必要条件是( )(A )m ααα ,,21中至少有一零向量 (B )m ααα ,,21中有两个向量成比例(C )m ααα ,,21中至少有一向量可由其余向量线性表示 (D )m ααα ,,21的任一部分组都线性相关 答:C答:C3.答:C4. 设行列式3040222207005322D =-- 则第四行各元素余子式之和的值为 ( )(A ) -28 (B ) 28 (C ) 0 (D ) 336 答:A5. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44332211211321021001a a a a ββββ,,,其中4321a a a a ,,,是任意数,则( ) (A ) 321βββ,,总线性相关 (C ) 4321ββββ,,,总线性相关(B )321βββ,,总线性无关 (D ) 4321ββββ,,,总线性无关答:B6.若矩阵A 与B 相似,则( ).(A )E A E B λλ-=- (B ) |A | = |B |(C )A,B 有相同的特征向量 (D ) A 与B 均与一个对角矩阵相似 答: B7.当A 是( )时,A 必合同与单位阵.(A ) 对角矩阵 (B ) 对称矩阵 (C ) 正定矩阵 (D ) 正交矩阵 答: C三、计算题(每小题8分,本题共24分) 1. 计算n 阶行列式αααααααT T T E D E C E B O A AB E B E A +-+=-==)( )( )( )( ).(,2 ,),210,,0,21( 2.等于则矩阵设 .0,2221112121≠+++=n nn x x x x n nnx x D其中n m D m n C n m B n m A n m --+-++==)( )( )()( )() (|)(,,,|,|,,,|,|,,,| ,,,,,211233221132121321等于则四阶行列式且四阶行列式都是四维列向量若ββααααβααβαααββααα解: (每个等号 2 分)11100023002.04500067A B E A E A E B --⎡⎤⎢⎥-⎢⎥==+-+⎢⎥-⎢⎥-⎣⎦已知,()(),求() 解:1()(),(),B E A E A E A B E A -=+-+=-由于所以,B AB E A +=-即 2,AB A B E E +++=即 ()2,A B E B E E +++=于是有1()()2A EB E E ++=即 1()(),B E A E A -=+-另解:由于 1()()B E E A E A E -+=+-+所以 11()()()()E A E A E A E A --=+-+++ 1()(2)E A E -=+ 12()E A -=+11)()2B E E A -+=+所以( (5分) nn x n nnx x D +++=22201110111121nx nx x002001111121---=).1(121∑=+=ni in x i x x x nni i xx x x i0000001111211∑=+=()1-+B E 故=⎪⎪⎪⎪⎪⎭⎫⎝⎛---=+4300032000210001)(21E A (3分) 3. 线性方程组取何值时问,,b a⎪⎩⎪⎨⎧=++=++=++4423321321321bx x x x ax x x ax x 有唯一解、无解或有无穷多解?在有无穷多解时,求其通解.解: ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛1110211031111101003114114121311b a b a b a aab a a ⎪⎪⎪⎭⎫ ⎝⎛-+--+--→)1(21)1)(1()1(002110311a b a b b a ⎪⎪⎪⎭⎫ ⎝⎛---→12)1(002110311a a b b a (4分) ;,121.21,10 ;,10 方程组有无穷多解时且当时无解或当方程组有唯一解时且当==≠==≠≠b a a b a b a (2分).,101022R k k x ∈⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=通解为 (2分).)2()1(,)1,1,0(,1,13.42T 11321A A 实对称矩阵的特征向量;对应于求的特征向量为对应于的特征值阶实对称矩阵设λαλλλλ===-=(4分)23231,A λ=λ=ααα1解:(1)因为为实对称矩阵,所以对应于有两个线性无关特征向量,且它们都与正交.2100,T Tαα1故可取=(,,)=(0,1,-1)231223121,c c c c λ=λ=α+α所以对应于的全部特征向量为(不全为零)四、证明题(每小题6分,本题共12分).)]/(2[ , , .1为正交矩阵证明阶单位矩阵为维列向量是设T T E A n E n ααααα-=证明:()().:,,,.21n AB E AB E B ABA n B A =++-=-秩秩证明且阶方阵为两个10100T T T T T -⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-⎪⎝⎭(2)取,则为正交矩阵,且=.从而100010,001T T AT -⎛⎫⎪==Λ ⎪ ⎪⎝⎭1100001010TA T T T T -⎛⎫ ⎪=Λ=Λ=- ⎪ ⎪-⎝⎭因此..E A A T =证根据正交矩阵的定义验])/2([a a a a E A T T TT ⋅-= a a a a E T T )/2(-=,A =A A T ∴])/2([])/2([a a a a E a a a a E T T T T ⋅-⋅-=AA=.)(])(/4[)](/2[)](/2[2a a a a a a a a a a a a a a E T T T TTT T +⋅-⋅-=,,0为一非零数a a a T ∴≠ ),)(()(a a a a a a a a T T T T =故,)]/(4[)]/(4[E a a a a a a a a E A A T T T T T =+-=∴.是正交矩阵故AnAB E r AB E r n E r AB E r AB E r B r A r B A r EAB E AB E n AB E r AB E r AB E AB E EABAB B ABA =++-=≥++-+≤+=++-≤++-=+-==-)()()2()()()()()(2)()()()(0))((,:1所以有可得根据矩阵秩的不等式又因为所以于是可得由解(3分)。
关于矩阵考试题及答案
关于矩阵考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵的行列式为0,说明该矩阵是:A. 可逆的B. 不可逆的C. 正交的D. 对称的答案:B2. 矩阵A与矩阵B相乘的结果为零矩阵,那么矩阵A和矩阵B:A. 至少有一个是零矩阵B. 都是零矩阵C. 都是单位矩阵D. 至少有一个不可逆答案:D3. 矩阵的秩是指:A. 矩阵中非零元素的数量B. 矩阵中线性无关的行或列的最大数量C. 矩阵的行数D. 矩阵的列数答案:B4. 矩阵的特征值是:A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 满足特征方程的λ值D. 矩阵的转置答案:C5. 矩阵的迹是指:A. 矩阵的行列式B. 矩阵的秩C. 矩阵对角线元素的和D. 矩阵的逆矩阵答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为-5,则矩阵A的逆矩阵的行列式为______。
答案:-1/52. 矩阵A和矩阵B相乘得到单位矩阵,那么矩阵A和矩阵B互为______。
答案:逆矩阵3. 对于一个3x3的矩阵,其秩最大为______。
答案:34. 如果一个矩阵的所有行(或列)都线性相关,则该矩阵的秩为______。
答案:05. 矩阵的特征值可以通过求解特征方程______得到。
答案:det(A-λI)=0三、计算题(每题10分,共20分)1. 给定矩阵A=[1 2; 3 4],求矩阵A的行列式。
答案:det(A) = 1*4 - 2*3 = -22. 给定矩阵B=[2 0; 0 3],求矩阵B的逆矩阵。
答案:B^(-1) = [1/2 0; 0 1/3]四、证明题(每题15分,共30分)1. 证明:如果矩阵A和矩阵B可交换,即AB=BA,那么它们的特征值可以同时对角化。
答案:略2. 证明:对于任意的方阵A,有tr(A) = tr(A^T)。
答案:略。
终极资料整理版-山东科技大学矩阵理论往年试卷
山东科技大学2006—2007学年第一学期《矩阵理论》考试试卷班级 姓名 学号一、单项选择题(每题2分,共8分)1、设1()kk A f A k∞==∑收敛,则A 可以取为 A. 0091⎡⎤⎢⎥--⎣⎦B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦2、设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 3、设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A. 214020031⎛⎫⎪ ⎪ ⎪⎝⎭ B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪⎪ ⎪⎝⎭D. 204020061⎛⎫ ⎪ ⎪ ⎪⎝⎭4、设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C.201202M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦二、填空题(每题5分,共20分)1、设 220A A -=,则cos2A = 。
2.已知n nA C⨯∈,并且()1A ρ<,则矩阵幂级数kk kA∞=∑= 。
3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ= 。
4、设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= .三、(12分)设152010001A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,试求矩阵B 使得5B A =。
四、(10分)设221111122A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭,求At e 。
矩阵理论历年试题汇总及答案
矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。
历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。
以下是对矩阵理论历年试题的汇总及答案解析。
矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。
答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。
接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。
特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。
答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。
计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。
矩阵论试题(整理)(完整版)实用资料
矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。
3.是否可将B看作欧式空间V2中某个基的度量矩阵。
()4.(),其中。
5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。
6.AB的全体特征值是()。
7.()。
8.B的两个不同秩的{1}-逆为。
二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。
三.(15分已知。
1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。
四.(10分用Householder变换求矩阵的QR分解。
五.(10分)用Gerschgorin定理隔离矩阵的特征值。
(要求画图表示)六.(15分已知。
1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。
(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。
6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。
2007-12线性代数(A卷考题及答案)_
课程考试(考查)试题卷 (A卷)试卷编号( 2007 至 2009 学年 第一学期 )课程名称: 线性代数 考试时间: 110 分钟 课程代码: 7100500 试卷总分: 100 分 考试形式: 闭卷 学生自带普通计算器: 不允许一、填空题(每小题3分,共15分)1、 设A 是三阶方阵,且det(A )=-1,则det(-2A )=_______.2、设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100120001,则A -1=_______ 3、等价的线性无关向量组所含向量的个数_______4、设实对称矩阵11211203132A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是二次型123(,,)f x x x 的矩阵,则二次型123(,,)f x x x 的一般表示式为_______.5、设A 为实对称矩阵,()11,1,3T α=与()23,2,Ta α=分别是属于A 的相异特征值1λ与2λ的特征向量,则a =_______.二、单项选择题(每小题3分,共15分)1.下列等式中正确的是( )A .()222A B A AB BA B +=+++B .()TT TAB A B =C .()()A B A B A B -+=-22D .()33A A A A -=-22.设12,ββ是非齐次线性方程组AX b =的两个解,则下列向量中仍为方程组解的是( )A .ββ12+B .12ββ- C .1222ββ+ D .12325ββ+A .210λ B .21λ C .20λ D .2λ 4.二次型22221234123412(,,,)542f x x x x x x x x x x =++-+的秩为( )A .1B .2C .3D .45.设1ξ,2ξ是矩阵A 的属于特征值λ的特征向量,则以下结论正确的是( ) A .1ξ+2ξ是λ对应的特征向量 B .21ξ是λ对应的特征向量 C .1ξ,2ξ一定线性相关 D .1ξ,2ξ一定线性无关三、(8分)(本大题共两小题各4分) 计算行列式:(1)2100121001210012=D (2)1200012000122001D =.四、(6分)101210325A ⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦,求1()E A --五、(12分)(本大题共两小题各6分)(1)设矩阵121231041a A a b ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩为2,求,a b(2)已知矩阵20000101x ⎛⎫ ⎪ ⎪ ⎪⎝⎭与矩阵20000001y⎛⎫⎪⎪ ⎪-⎝⎭相似,求 ,.x y六、(10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵理论2007年考试参考答案
一、判断题(40分)(对者打∨,错者打⨯)
1、设,n n A B C ⨯∈的奇异值分别为120n σσσ≥≥
≥>,''
'
12
0n σσσ≥≥≥>,
如果'(1,2,,)i i i n σσ>=,则22||||||||A B ++>. ( ⨯ )
2、设n n
A C ⨯∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ ) 3、设n
n C
A ⨯∈可逆,n
n C
B ⨯∈,若对算子范数有1||||||||1A B -⋅<,则B A +可逆.
( ∨ )
4、设323
12
1
00a a A a a a a -⎛⎫
⎪=- ⎪ ⎪-⎝⎭
为一非零实矩阵,则2221
1
23()a a a A --++为A 的一个广义逆矩阵 ( ∨ )
5、设A 为m n ⨯矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ∨ )
6、设n n
A C
⨯∈,且A 的所有列和都相等,则()r A A ∞=. ( ⨯ )
7、如果12(,,
,)T n n x x x x C =∈,则1||||min i i n
x x ≤≤=是向量范数. ( ⨯ )
8、00101
40110620
11
8A ⎡⎤⎢⎥⎢
⎥=⎢⎥⎢⎥⎣⎦
至少有2个实特征值. ( ∨ ) 9、设,n n A C ⨯∈则矩阵范数m A ∞
与向量的1-范数相容. ( ∨ )
10、设n n
A C
⨯∈是不可逆矩阵,则对任一自相容矩阵范数
有1I A -≥, 其中I 为单位矩
阵. ( ∨ )
二、计算与证明(60分)
1. (10分)设矩阵n n
A C ⨯∈可逆, 矩阵范数||||⋅是n
C 上的向量范数||||v ⋅诱导出的算子范数,
令()L x Ax =, 证明:
||||11||||1
max ||()||||||||||min ||()||v v v
x v
y L x A A L y =-==⋅.
证明: 根据算子范数的定义, 有||||1
max ||()||||||x L x A ==,
1
11
00||||1||||1
0||||||||111||||max max ||||||||||||min ||||min ||()||min ||||
y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====
,
结论成立.
2.(10分) 已知矩阵110130110,112114A b ⎛⎫⎛⎫ ⎪ ⎪
== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
,
(1) 求矩阵A 的最大秩分解; (2) 求A +;
(3) 用广义逆矩阵方法判断方程组Ax b =是否有解?
(4) 求方程组Ax b =的最小范数解或最佳逼近解?(要求指出所求的是哪种解)
解: (1)10110101011011A BD ⎛⎫⎛⎫
⎪== ⎪ ⎪⎝
⎭ ⎪⎝⎭
,
(2)12111()1213T T
B B B B +--⎛⎫== ⎪-⎝⎭
, 121121()13521T T D D DD +--⎛⎫
⎪ ⎪== ⎪- ⎪ ⎪-⎝⎭
, 5
4103315721554
1A D B +++-⎛⎫ ⎪ ⎪==
⎪- ⎪ ⎪-⎝
⎭
, (3) 314AA b b +
⎛⎫
⎪== ⎪ ⎪⎝⎭
, 方程组Ax b =有解;
(5) 最小范数解:()01101T
x A b +==. 3. (10分) 设矩阵n n
A C ⨯∈为单纯矩阵, 证明: A 的特征值都是实数的充分必要条件是存在
正定矩阵n n
H C
⨯∈, 使得HA 为Hermite 矩阵.
证明: (充分性) (0)Ax x x λ=≠, ,(0,)H H H H x HAx x Hx R x Hx x HAx R λ=∈>∈,
R λ∈.
(必要性) A 为单纯矩阵, 所以1
1, (,
,),n i A P DP D diag R λλλ-==∈,
令H H P P =, 则1H H HA P PP DP P DP -==为Hermite 矩阵. 4. (10分) 设矩阵n n
A C
⨯∈为行严格对角占优矩阵, 用Gerschgorin 圆盘定理证明:
(1) 矩阵A 为可逆矩阵;
(2) 如果矩阵A 的所有主对角元均为负数, 证明A 的所有特征值都有负实部. 证明:(1)A 行严格对角占优||||i ij ii j i
R a a ≠⇒=
<∑
1
({:||||})n
i i i ii ii i S S z C z a a λ=⇒∈
=∈-<1
00n
i i
i S S =⇒∉⇒∉
(2)0,||||ii ii ii a a a λ<-<⇒A 的特征值都有负实部
5. (10分)
(1) 设矩阵()m n A C m n ⨯∈<, 且H m AA I =, 其中m I 为单位矩阵, 证明H A A 酉相似于对角矩阵, 并求此对角矩阵.
证明: 由于矩阵H A A 和H m AA I =的非零特征值相同, 所以矩阵H A A 的特征值为1(m 个)和 0(n m -个), 同时由于矩阵H A A 为Hermite 矩阵, 所以矩阵H A A 酉相似于对角矩阵
000m n n
I D ⨯⎛⎫=
⎪⎝⎭ (2) 设矩阵m n
n A C ⨯∈, 证明: 2||||1AA +=.
证明: 令2
B AA B B +=⇒=. 设B 的特征值为λ, 则
2λλ=, 即0,1λ=.设
,00n x C x Ax ∈≠⇒≠, 所以有()1()B Ax AA Ax Ax +==⋅, 即1是矩阵B 的特征值, 故
()1r B =, 1/22||||[()]()1H B r B B r B ⇒===.
6. (10分) (1) 设矩阵()ij n n A a ⨯=, 则
,||||max ||a ij i j
A n a =⋅
是矩阵范数.
(2) 设,,,n
x y p q C ∈为非零列向量, 矩阵H H A xp yq ,x y,p q =+⊥⊥其中,求2||||m A .
解:(1) 0A ≠⇒ij a ⇒不全为零,||||max ||0;a ij i j
A n a =⋅>
,,||||max ||||max ||||||||a ij ij a i j
i j
kA n ka k n a k A =⋅=⋅=;
,,,||||max ||max ||max ||||||||||a ij ij ij ij a a i j
i j
i j
A B n a b n a n b A B +=⋅+≤⋅+⋅=+
(2)H H A xp yq ,x y,p q =+⊥⊥⇒其中
2222()()||||||||H H H H H H H H
A A xp yq xp yq x pp y qq =++=+⇒
22222222||||||||||||||||x p x q +p,q 为矩阵H A A 对应于22
22||||||||,x p 22
22
||||||||x q 的特征向量. 又因为()()2H rank A A rank A =≤⇒()()2H rank A A rank A ==⇒
22
22||||||||,x p 2222
||||||||x q 为H A A 全部非零特征值
所以2
2
2222
22221
||||()||||||||||||||||n
H
m i i A A
A x p x q λ===+⇒
∑2||||m A。