逻辑代数及逻辑函数化简.doc

合集下载

5逻辑函数化简题.docx

5逻辑函数化简题.docx
解:Y=B D+AD'+B Cf+^ClD
4、y(AB, C, D)二工加(1,5,6,7,11,12,13,15)
5、K(A,B,C, D)=工加(1,7,910,11,12,13,15)
6、Y( A, B,C)二工加(0,1,2,3,6,7)
解:Y = Af+B
形式二
1、利用卡诺图化简法将所给函数Y化为最简的与或表达形式。
用卡诺图法化简
形式_
1、利用卡诺图化简法Biblioteka 所给函数Y化为最简的与或表达形式。
y(AB,C,£>)=工加(0,1,2,3,4,5,&10,11,12)
解:
r=A5+CO+AC+BC
2、y(A,B,C, D)=工加(0,1,2,3,4,6,&9,10,11,14)
解:Y = Bf+AD +CD
3、Y(A,3,CQ)=为加(0,1,2,5,8,910,12,14)
6、y = (AB + A C +B D)(AB C'D + A CD + BCD + B C)
解:Y = CD + ABC^ABD
7、F = A-^-ABCDABC + BC + BC
解:
8、F(A,B,C,D) = ABC + AB + AD + C + BD
解:F(A,B,C,D) = A + C^BD
三、用代数法化简Y = ABC+ABC+ABC+ABC,写出最简与非表达式。 解:/ =AM
公式法化简
二变量
1、Y\=EP + E F + EF' +EF

逻辑代数基本原理及公式化简

逻辑代数基本原理及公式化简

2.1.3 逻辑代数的基本规则
4、附加公式
附加公式二: 一个包含有变量x、x 的函数f,可展开为 x·f和
x·f的逻辑或。 一个包含有变量x、x 的函数f,可展开为(x+f)和
(x+f)的逻辑与。
利用附加公式一,可以改写为:
2.1.3 逻辑代数的基本规则
4、附加公式
例题:化简函数 AB BD (A B)(A B)(B E)
2.1.2 逻辑代数的基本公式
基本公式验证方法: 真值表 利用基本定理化简公式 例:真值表验证摩根定律
A B A B A+B A+B A B 00 1 1 1 1 01 1 1 0 0 10 1 1 0 0 11 0 0 0 0
A______•____B______
__ __
A B
__ __
A B A • B
2.1.2 逻辑代数的基本公式
真值表 利用基本定理化简公式 例:证明包含律
AB AC BC AB AC
证明:
AB(C C) AC(B B ) BC(A A) 1律、互补律 ABC ABC ABC ABC ABC ABC 分配律 ABC ABC ABC ABC 重叠律 AB AC 分配律、互补律
比较两种方法,应用反演规则比较方便。
2.1.3 逻辑代数的基本规则
2、反演规则
例题:求下列函数的反函数 1、F AB CD 2、F A B BCD
2.1.3 逻辑代数的基本规则
3、对偶规则
如果将逻辑函数F 中所有的“”变成“+”,“+”变
成“”,“0”变成“1”,“1”变成“0”, 则所得到的新
A
F
A1 F
非门 (A是输入,F是输出)

数字电路 第二章 逻辑代数与逻辑函数化简

数字电路 第二章  逻辑代数与逻辑函数化简
= (A + B)(A + C)
= A+ B+ A+ C
或与式转换为与或非式
F = (A + B)(A + C)
= A+ B+ A+ C
= AB + AC
§2.4.3 逻辑函数的代数法化简
化简的意义:将逻辑函数化成尽可能简单的形式,以减少逻辑门 化简的意义:将逻辑函数化成尽可能简单的形式,
电路的个数,简化电路并提高电路的稳定性。 电路的个数,简化电路并提高电路的稳定性。
A + AB = A + B
E = A+ B+ C+ BCD+ BC = A + B + C+ C(BD+ BE) = AB + C+ BE+ BD
§2.5.1 逻辑函数的最小项表达式 公式化简法评价:
优点:变量个数不受限制。 缺点:目前尚无一套完整的方法,结果是否最简有时不 易判断。
卡诺图是按一定规则画出来的方框图,是逻辑 函数的图解化简法,同时它也是表示逻辑函数 的一种方法。 利用卡诺图可以直观而方便地化简逻辑函数。 它克服了公式化简法对最终化简结果难以确定 等缺点。
__
__________ __________ _
A + B + C+⋯ = ABC⋯
逻辑代数的基本定律: 逻辑代数的基本定律: P21,熟记 ,
§2.3.2 逻辑代数的基本规则
代入规则
AB = A + B
____
A ↔F = AC
反演规则
____
⇒ ACB = AC + B
F = AC+ BCD+ 0

第2章 逻辑代数与逻辑化简

第2章 逻辑代数与逻辑化简

L ABC ABC ABC ABC
反之,由函数表达式也可以转换成真值表。 例2 写出函数 L A B
A B
真值表。
解:该函数有两个变量,有4种取值的可能 组合,将他们按顺序排列起来即得真值表。
逻辑函数及其表示方法(4)
3.逻辑图——逻辑图是由逻辑符号及它们之间的连线而构成的图形。 由函数表达式可以画出其相应的逻辑图。 例3 画出下列函数的逻辑图: 解:可用两个非门、两个与门 和一个或门组成。
∴等式成立 同理可得
AB A C BCD AB A C
逻辑代数的运算规则(4)
基本逻辑定理 (1)对偶定理 若已知等式
F G
1 0
F
1 0
0 1
" " " " " " " "
F
D
G
0 1
F的对偶式
" " " G的对偶式 " " " " "
L A B A B
由逻辑图也可以写出其相应 的函数表达式。 例4 写出如图所示逻辑图的函数表达式。 解:可由输入至输出逐步 写出逻辑表达式:
L AB BC AC
逻辑函数及其表示方法(5)
逻辑函数的标准形式 考查逻辑函数: F f ( A, B) AB AB AB 化简,有: 最小项 A AB 0 AB 0 AB 1 AB 1 B 0 1 0 1 标准“与或” 式
0 1 0 1
A 0 1
Y 1 0
0 1 0 1
&
≥1
A A
1
Y Y
逻辑 符号

2 逻辑函数及其化简

2 逻辑函数及其化简

1 1 1 1 1 1
AD
B
11
A 冗余项
AC
10
∴ F2 ( A, B, C, D) = AB + BC + AD
C
AB
例:用公式化简法得到下式,问是否最简, 若不是请化简之。
F3 ( A , B, C) = A B + AC + AB + BC
填项:
A
0 1
BC00
C
01 1 11 1 10
1
第二章 逻辑代数基础
§2.1 逻辑代数运算法则 §2.2 逻辑函数的化简 §2.3 卡诺图法
§2.1 逻辑代数运算法则
依据: 1.逻辑变量只取:0 、1两种状态。 2.与、或、非是三种最基本的逻辑运算。 与普通代数运算法则类似的:分配 律、结合律、交换律等。 与普通代数运算法则不同的: A•A=A A+A=A A = A (还原律)
= B + BD + ABD + ABCD
吸收消去
= B + BD
(长中含短,留下短)
吸收消去 (长中含反,去掉反) ∴F1 = B + D(最简与或式)
F2 = AD + AD + AB + AC + BD + ACEF+ BEF + DEFG
A
吸收消去 (长中含短,留下短)
(合并项)
= A + AC + BD + BEF + DEFG
ABD
D
01
( + C) C
直接填入
11
10
01 11
1
1
B A

5逻辑函数化简题.docx

5逻辑函数化简题.docx
Y=ABCD+ABC+ABD+BCD+BCD
解:
Y = ABCD + ABC + ABD + BCD+BCD =为加(1,4,5,6,9,11,12,14)
Y = BD + ABC + AC D + ABD
2、Y = ABC1AB+ADf+AB1CD+AB1C
解:
Y = AB + AC+AD
一、利用逻辑代数的基本公式和常用公式化简下列齐式:
(2)AB+AC+BC = (^AB+X+K=(QA0C+(A4-^a =^X+MC+K+ABC =
(^AC+ABC+BC+ABC =GO) AC+ABC+ACD+CD =
二、证明等式:AB + AB = A B + AB
证明:
^ii=A^BAB =(A + B)(A + B)= AA + AB + AB + BB = AB + AB = /Eii
3、乙=a'bC+a + b + c +(AbG
解:乙=1
4、Y}=ABf^AC^BfC
解:r, = A B + AC
5、Y}=A(BCy-}-ABC,
解:Y}=AB ^-ACf
6、Y = A BC + ABC'+ABC!+BC
解:Y = AB + BC
7、F =(AB + BC)+(BC + AB)

2第二章逻辑函数及其简化.docx

2第二章逻辑函数及其简化.docx

笫二章逻辑函数及其简化一、选择题1.以下表达式屮符合逻辑运算法则的是—0A・C・Og B. 1+1=10 C. 0<1 D. A+l=l2.逻辑变量的取值1和0町以表示:_________ 。

A.开关的闭合、断开B.电位的高、低C.真与假D.电流的有、无3.当逻辑函数有n个变量时,共有 ______ 个变量取值组合?A. nB. 2n C・ r? D. 2n4.逻辑函数的表示方法屮具有唯一性的是 _______ 。

A •真值表 B.表达式 C.逻辑图D.卡诺图5.F二A B +BD+CDE+ A D= _______ 。

A. AB + DB. (A + B)DC. (A + D)(B + D)D. (4 + D)(B +万)6.逻辑函数1:二A㊉(A㊉8) = ___ oA.BB. AC. A㊉BD.勿㊉B7.求一个逻辑函数F的对偶式,可将F中的 _______ oA •“ •” 换成“ + ”,“ + ”换成“ •”B.原变量换成反变量,反变量换成原变量C.变量不变D.常数中“0”换成“1”,“1”换成“0”E.常数不变& A+BC 二____ oA . A+B B. A+C C. (A+B) (A+C) D. B+C9.在何种输入情况下,“与非”运算的结果是逻辑0。

—A.全部输入是0B.任一输入是0C.仅一输入是0D.全部输入是110.在何种输入情况下,“或非”运算的结果是逻辑0。

—A.全部输入是0B.全部输入是1C.任一输入为0,其他输入为1D.任一输入为1二、判断题(正确打J,错误的打X)1.逻辑变量的取值,1比0大。

()。

2.异或函数与同或函数在逻辑上互为反函数。

()。

3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。

()o4.因为逻辑表达式A+B+AB二A+B成立,所以AB=O成立。

()5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。

()6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。

第04讲-逻辑函数代数法化简

第04讲-逻辑函数代数法化简
第四讲 代数法化简
4
逻辑代数的三条规则

规则三:对偶规则 如果将函数F作如下变换得到一个新函数,则 新函数就是原来函数F的对偶函数,记为 F’ 。

+
+

0
1
变量保持不变 第四讲 代数法化简
1
0
5
逻辑代数的三条规则
例: 求函数 F=A ( B+C)的对偶函数 解: F’ =A + B C 注意: (1)保持原运算顺序不变 (2)表达式中“大非号”不变
(3) (F’)’= F
(4)变量 A’=A
(5)若F1=F2, 则F1’=F2’
第四讲 代数法化简
6
逻辑代数的三条规则
例: 已知 F=A B+A B +B C D+A B C D 求F’, F 解: F’ =A+B (A+B) (B+C+D) A+B+C+D F =A+B (A+B) (B+C+D) A+B+C+D
A+B+C,A+B+C,A+B+C 任一最小项都有n个邻项。
第四讲 代数法化简
13
逻辑函数的标准式

分解定理 F(x1,x2,…,xn) =xi · 1,x2,…,0,…,xn)+xi· 1,x2,…,1,…,xn) F(x F(x = xi · 1,x2,…,xn)|xi=0+ xi·F(x1,x2,…,xn)|xi=1 F(x F(x1,x2,…,xn)
10
第四讲 代数法化简
逻辑函数的标准式

2.3逻辑代数及其化简

2.3逻辑代数及其化简

常用逻辑函数表示方法有:1、逻辑真值表2、逻辑表达式3、逻辑图各种表示方法间的相互转换4、工作波形图常用逻辑函数表示形式:1、逻辑函数的八种表示形式2、逻辑函数的标准表示形式标准表示形式间的相互转换= A利用代入规则:五、综合法 合并项法、吸收法、消去法、配项法。

F = AD + A D + AB + AC + BD + ACEF + BEF + DEFG= A(D + D ) + AB + AC + BD + ACEF + BEF = A(1 + B + CEF ) + AC + BD + BEF = A + AC + BD + BEF 加对乘分配率:A + AC = ( A + A)( A + C ) = A + C + BD + BEFF = A( A + B )( A + C )( B + D )( A + C + E + F )(B + F )( D + E + F ) 解:首先将或-与表达式通过求对偶变为与-或表达式,利用 公式法在与-或表达式中进行化简。

(分配率) ' F = A + AB + AC + BD + ACEF + BF + DEF (合并项) = A + AC (1 + EF ) + BD + BF (包含率)= A + AC + BD + BF (分配率) = A + C + BD + BF第二步:将对偶式再次求对偶,得到原函数的最简或-与式。

F = F = AC ( B + D )(B + F )''代数化简法优点 : 不受变量限制。

缺点:化简方向不明确,一般采用试凑法,要有一定技巧。

对于任何一个逻辑函数的功能描述都可以作出真值表,根 据真值表可以写出该函数的最小项之和及最大项之积的形式。

例:F = A ⊕ B真值表A 0 0 1 1 B 0 1 0 1 F F = 1 的输入变量组合有 AB = 01、10 两组。

= m1 + m 2 = ∑ (1.2 ) 最小项之和: F = A B + A B 0 1 F = 0 的输入变量组合有 AB = 00、11 两组。

代数法化简逻辑函数

代数法化简逻辑函数
另外,也可运用第三项公式 AB AC AB AC BC
2.1 逻辑代数
例1:证明 AB AB A AB B AB
证明: AB AB AB AA AB BB A A B B A B
A AB B AB A AB B AB
A AB B AB
(2)用与非门实现L。
应将表达式转换成与非—与非表达式:
L AB BC AC
L AB BC AC
AB BC AC
AB BC AC
(3)用非门、或非门实现L。
L AB BC AC
ABBC AC
ABBC AC
2.1 逻辑代数
例7化简: L AB BC BC AB
2.1 逻辑代数
例3化简: L AB AC BC CB BD DB ADE(F G) L ABC BC CB BD DB ADE(F G) (利用摩根律 )
A BC CB BD DB ADE(F G)(利用 AAB AB )
A BC CB BD DB (利用A+AB=A)
第二章 逻辑代数
2.1 逻辑代数 2.2 逻辑函数的卡诺图化简法
2.1 逻辑代数
二.基本定律和恒等式
1.பைடு நூலகம்基本公式 (公理)
与运算: 0۰0=0 或运算: 0+0=0
0۰1=0 0+1=1
1۰0=0 1+0=1
非运算: 0 1 1 0
2. 定律
常量与变量 运算律:
互补律:
重叠律: A+A=A
A۰ A=A
双重否定律: A A
1۰1=1 1+1=1
2.1 逻辑代数
结合律 (A+B)+C=A+(B+C) ; (AB)·C=A·(BC)

第三章 逻辑函数化简

第三章 逻辑函数化简

一:布尔代数的基本公式公式名称公式1、0-1律A*0=0 A+1=12、自等律A*1=A A+0=A3、等幂律A*A=A A+A=A4、互补律A*A=0 A+A=15、交换律A*B=B*A A+B=B+A6、结合律A*(B*C)=(A*B)*C A+(B+C)=(A+B)+C7、分配律A(B+C)=AB+AC A+BC=(A+B)(A+C)8、吸收律1(A+B)(A+B)=A AB+AB=A9、吸收律2A(A+B)=A A+AB=A10、吸收律3A(A+B)=AB A+AB=A+B11、多余项定律(A+B)(A+C)(B+C)=(A+B)(A+C)AB+AC+BC=AB+AC12、否否律()=A13、求反律AB=A+B A+B=A*B下面我们来证明其中的两条定律:(1)证明:吸收律1第二式AB+AB=A左式=AB+AB=A(B+B)=A=右式(因为B+B=1)(2)证明:多余项定律AB+AC+BC=AB+AC左式=AB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C)+AC(1+B)=AB+AC=右式证毕注意:求反律又称为摩根定律,它在逻辑代数中十分重要的。

二:布尔代数的基本规则代入法则它可描述为逻辑代数式中的任何变量A,都可用另一个函数Z 代替,等式仍然成立。

对偶法则它可描述为对任何一个逻辑表达式F,如果将其中的“+”换成“*”,“*”换成“+”“1”换成“0”,“0”换成“1”,仍保持原来的逻辑优先级,则可得到原函数F的对偶式G,而且F与G互为对偶式。

我们可以看出基本公式是成对出现的,二都互为对偶式。

反演法则有原函数求反函数就称为反演(利用摩根定律),我们可以把反演法则这样描述:将原函数F中的“*”换成“+”,“+”换成“*”,“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成原变量,长非号即两个或两个以上变量的非号不变,就得到原函数的反函数。

逻辑函数及其简化

逻辑函数及其简化

A + BC= A + B) A + C) ( ( ⋅
证明: 证明:右式 = A +AC +AB +BC = A(1+C+B)+BC ( ) = A+BC = 左式
A⋅ B + A⋅ B = A
证明: 证明: 左式 = A(B+B) ( ) = A = 右式
A + A⋅ B = A + B
右式=(A+B)(A+A) 右式 = A+AB+AA+AB =A+AB = 左式
A + A⋅B = A
A(1+B) 左式 = A(1+B)=A = 右式
A⋅B+A⋅C+B⋅C= A⋅B+A⋅C
左式= 左式 AB+AC+BC(A+A) = AB+AC+ABC+ABC = AB+AC = 右式
A⋅ B+ A⋅ C = A⋅ B+ A⋅ C
左式= 左式 AB AC =(A+B)(A+C) = AB+ A C + B C(A+A) = AB+ A C =右式 右式
+B
§10-1 逻辑函数的公式化简法 一、基本逻辑关系 3 非 逻辑运算 R us A F 与 或 非
条件 结果
日常事物中往往会有这种情况, 日常事物中往往会有这种情况,条件和
结果是一种相反的关系,这种条件 和 结果 的关系就是 非 逻辑关系 合上为“ 断开为“ 开关 A 合上为“1” 断开为“0” 逻辑变量 亮为“ 不亮为 不亮为“ 灯 F 亮为“1”不亮为“0” 逻辑函数 逻辑关系表达式: 逻辑关系表达式:F=

逻辑代数及其化简

逻辑代数及其化简
*
2.3.3逻辑函数的建立及其描述方法 一般来说,首先应根据提出的实际逻辑命题,确定输入逻辑变量、输出逻辑变量。 研究它们之间的因果关系,列出其真值表。 再根据真值表写逻辑函数表达式。 根据表达式画出电路图。 为了解决某个实际问题,必须研究其因变量及其相互之间的逻辑关系,从而得出相应的逻辑函数。
E
A
B
F
?? 怎么表示与运算呢
1. 与运算
*
1)真值表: 将逻辑变量所有可能取值的组合与其一一对应的逻辑函数值之间的关系以表格的形式表示出来,叫做逻辑函数的真值表。
与逻辑运算真值表
A
B
F
0
0
1
0
1
0
0
0
0
输入
输出
1.与运算
*
逻辑表达式:表示逻辑与运算的逻辑函数表达式为F=A·B,式中“·”为与运算符号,有时也可以省略。 与运算的规则为: 0·0=0,0·1=0,1·0=0,1·1=1。 与运算可以推广到多个逻辑变量,即 F=A·B·C···。
0 1 1 1 1 1 1 0
如果表达式不为与或式一般需要将其转换为与或式。
F
A B C
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
*
01
对任意逻辑等式,如果将式中的某一变量用其他变量或逻辑函数替换,则此等式仍然成立。
02
例如,等式 ,若函数F=BC去置换等式中地变量B,则等式左边,而等式右边,显然,等式仍然成立。
规则
*
对于一个逻辑函数式F,若将其中所有的
01
则得到的结果就是F的反函数。
例2-13:有一水塔,用一大一小的两台电动机MS和ML分别驱动两个水泵向水塔注水,当水塔的水位降到C点时,小电动机MS单独驱动小水泵注水,当水位降到B点时,大电动机ML单独驱动大水泵注水,当水位降到A点时由两台电动机同时驱动水泵注水。试设计一个控制电动机工作的逻辑电路。

电子技术基础-6.6 逻辑代数的公式法化简

电子技术基础-6.6 逻辑代数的公式法化简

二、逻辑函数化简的意义与标准
F1 ABC ABC ABC ABC
A B C A B C A B C A B C
&
&
≥1
F1
&
&
二、逻辑函数化简的意义与标准
F2 AB AC BC
A B A C B C
F3 AB AC
A B
&
&
≥1
&
&
≥1
F3
F2
A
C
&
二、逻辑函数化简的意义与标准
三、逻辑函数的公式法化简方法
2、吸收法 (1)利用公式A+AB=A,消去多余的项。 余这 一 的另 个 Y1 AB ABCD (E F) AB 如 。 外 乘 运用摩根定律 一积果 个项乘 Y2 A B C D ADB A BC D AD B 乘的积 ( A AD) (B BC D ) AB 积因项 项子是 是,另 多则外
F AB AC 与——或表达式 ( A C)(A B) 或——与表达式
AB AC
与非——与非表达式
A C A B 或非——或非表达式
AB AC
与——或——非表达式
其中,与—或表达式是逻辑函数的最基本表达形式。
一、逻辑函数不同表达形式之间的转换
1. 与非-与非表达式
Y AB AC
一、逻辑函数不同表达形式之间的转换
3、或与表达式
Y AB AC
Y ( A B)(A C)
将与或非式用摩根定律展开,即得或与表达式。
一、逻辑函数不同表达形式之间的转换 4、或非-或非表达式

逻辑函数代数法化简

逻辑函数代数法化简

小结
代数法化简函数,就是借助于公式、定理、 规则实现函数化简。适用于变量较多的函数。 但是没有一定的规律可循,要熟记公式,凭 借经验。
数字电子技术
逻辑函数代数法化简
代数法化简:
例1: 化简逻辑函数 F AB AC ABC
F AB AC ABC
A(B C BC) …提取公因子A A(B C B C) …应用摩根定律
AB AB A
A
…消去互非变量,并项。
逻辑函数代数法化简
例2: 利用公式A+A=A配项
F ABC ABC ABC ABC (ABC ABC ) (ABC ABC ABC ABC) AB AC BC
(A B)(A B) A AB AC BC AB AC
A B AB AB A B
逻辑函数代数法化简
代数法化简方法:
• 消项法: 利用A+AB=A消去多余的项AB
• 消元法: 利用
消去多余变量A
• 并项法: 利用A(A+B)=AB AB+AB=A并项
• 配项法: 利用
和互
补律、重叠律, 先增添项,再消去多余项BC
数字电子技术
逻辑函数代数法化简
1、逻辑函数化简意义
1)所用的元器件少 2)器件间相互连线少
成本低,速度高
3)工作速度高
Hale Waihona Puke 这是中小规模逻辑电路设计的基本要求。
逻辑函数代数法化简
2、逻辑函数化简方法
方法
代数法化简
最简标准:1)乘积项最少 2)每一项因子最少
卡诺图法化简
逻辑函数代数法化简
基本公式
A AB A A(A B) A A (AB) A B

逻辑代数规律与公式法化简

逻辑代数规律与公式法化简

9
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式 0 1 • 第二级 1 0 • 第三级 • 第四级 已知 Y ,求 Y 规律 • 第五级
二、反演规则
逻辑代数规律与公式法化简
A A A A
10
单击此处编辑母版标题样式
例 Y A B C D E • 单击此处编辑母版文本样式
5
单击此处编辑母版标题样式
• • • • • 单击此处编辑母版文本样式 第4式的推广: 第二级 第三级 AB AC BCDE 第四级 第五级
逻辑代数规律与公式法化简
AB AC
6
单击此处编辑母版标题样式
三、摩根定律
逻辑代数规律与公式法化简
• • • • •
单击此处编辑母版文本样式 第二级 摩根定律又称为反演律,它有下面两种形式 第三级 第四级 AB A B 第五级
1· 1=1 1+1=1
0=1
2
二、逻辑变量、常量运算公式
单击此处编辑母版标题样式
逻辑代数规律与公式法化简
• • • • •
单击此处编辑母版文本样式 与运算 或运算 非运算 第二级 A· 0=0 A+0=A 第三级 A· 1=A A+1=1 第四级 A=A A· A=A A+A=A 第五级
A· A=0 A+A=1
AC AC
C( A A)
C
15
单击此处编辑母版标题样式
二、吸收法
逻辑代数规律与公式法化简
• • • • •
单击此处编辑母版文本样式 运用吸收律 A AB A 和 AB AC BC AB AC 及 A AB A B 消去多余的与项。如: 第二级 第三级 Y A ABC ( A BC D) BC 第四级 A BC ( A BC)( A BC D) 第五级

逻辑代数及逻辑函数的化简

逻辑代数及逻辑函数的化简
第27页
数字电路与数字逻辑
第二章 逻辑代数及逻辑函数的化简
2.逻辑函数的表示方法
逻辑真值表;逻辑表达式;逻辑图;卡诺图 (1) 逻辑真值表
以上面的举重裁判电路为例
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1
F 0 0 0 0 0 1 1 1
第15页
数字电路与数字逻辑
第二章 逻辑代数及逻辑函数的化简
四、逻辑代数的基本定理
1. 代入定理
在任何一个包含变量A的逻辑等式中,若 以另外一个逻辑式代入式中所有A的位置,则 等式仍然成立。 例: 代入定理证明德•摩根定理也适用于多变 量的情况。 解:
A ( B C) A ( B C) A B C A ( B C) A ( B C) A B C
第二章 逻辑代数及逻辑函数的化简
2.“或”门
输入、输出端能实现或运算的电路叫做“或 门”。或门的符号也就是或运算的符号。 逻辑式: F=A+B+C 逻辑符号: A B C
1
F
注1.常见的有二输入或门,三输入或门、四输入或 门等。 注2.常把或门的一个输入端作门的控制端,当控制 端为“0”时,或门打开,为“1”时,或门功能禁 止。
第 1页
数字电路与数字逻辑
第二章 逻辑代数及逻辑函数的化简
第二章 逻辑代数及逻辑函数的化简
§2.1 逻辑代数的基本原理
数字电路要研究的是电路的输入输出之间的 逻辑关系,所以数字电路又称逻辑电路,相应的 研究工具是逻辑代数(布尔代数)。 逻辑代数中的变量称为逻辑变量,一般用大 写字母A、B、 C、…表示,逻辑变量的取值只有两 种,即逻辑0和逻辑1。 0和1称为逻辑常量。但必 须指出,这里的逻辑0和1本身并没有数值意义, 它们并不代表数量的大小,而仅仅是作为一种符 号,代表事物矛盾双方的两种对立的状态。

第3章 布尔代数与逻辑函数化简

第3章 布尔代数与逻辑函数化简

由上面可以看出反复用摩根定律即可,当函数较 复杂时,求反过程就相当麻烦。
逻辑代数与逻辑函数
练习二
反演和对偶法则
1、求下面函数F的反函数F
F = AB+C+AD
2、求下面函数F的对偶式F’
F = A(BC+BC)+AC
3、说明对偶法则和反演法则的区别
逻辑代数与逻辑函数
3.1.3 逻辑函数的表达式的形式与转换方法
_ _ _ _ _ _
_
逻辑代数与逻辑函数
例2(2)法2
F A B C D E
F A B C D E A B C D E A B C D E A B C D E
_ _ _ _ _ _ _ _ _ _
_
_
解:用摩根定律
________
( e) F A B A C 或非表达式
逻辑代数与逻辑函数
3.2
逻辑函数的代数法化简
3.2.1 逻辑函数与逻辑图 从实际问题总结出的逻辑函数可以用门电路组合 成逻辑图。
A B
&
≥1
1
1
F
&
图 2 – 14 AB A B 函数的逻辑图
_ _
逻辑代数与逻辑函数
从逻辑问题概括出来的逻辑函数式, 不一定是最 简式。化简电路,就是为了降低系统的成本,提高电 路的可靠性,以便用最少的门实现它们。例如函数:
_
_ ___Fra bibliotek_例4 求 F AB A C 的反函数 解: F AB AC ( A B) ( A C )
AA AB BC AC AB AC
_
逻辑代数与逻辑函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 2 章逻辑代数和逻辑函数化简基本概念:逻辑代数是有美国数学家 George Boole 在十九世纪提出 , 因此也称布尔代数 , 是分析和设计数字逻辑电路的数学工具。

也叫开关代数, 是研究只用 0 和1 构成的数字系统的数学。

基本逻辑运算和复合逻辑运算基本逻辑运算:“与”、“或”、“非”。

复合逻辑运算:“与非”、“或非”、“与或非”、“异 或”、“同或”等。

AB基本逻辑运算~ 220VF1. “与”运算①逻辑含义:当决定事件成立的所有条件全部具备时,事件才会发生。

②运算电路:开关 A 、B 都闭合,灯 F 才亮。

③表示逻辑功能的方法:真值表A B F 灯 F 的状态代表 开关 A 、B 的状态代0 0表输入:0 1 0 输出:1 0 0 “ 0”表示亮;“0”表示断开;111表达式: F A B= ? 逻辑符号:A &FA FA FBBB国家标准 以前的符号欧美符号功能说明: 有 0 出 0,全 1 出 1。

在大规模集成电路可编程逻辑器件中的表示符号:A BA BA B&FFF通过“ ?”接入到此线上的输入信号都是该与门的一个输入端。

推广:当有 n 个变量时: F=A 1A 2 A 3 ? ? ? A n “与”运算的几个等式:0?0=0,0?1=0, 1?1=1A?0=0(0-1 律), A?1=A (自等律),A?A=A (同一律), A?A?A=A (同一律)。

2. “或”运算①逻辑含义:在决定事件成立的所有条件中,只要具备一个,事件就会发生。

A②运算电路: 开关 A 、B 只要闭合一个,灯 F 就亮。

B~220VF③表示逻辑功能的方法:逻辑功能: 有 1 出 1,全 0 出 0。

真值表:(略)表达式: F=A+B逻辑符号:A≥ 1FA FAFB+BB国家标准以前的符号欧美符号推广:当有 n 个变量时: F=A 1+A 2+ A 3+? ? ? +A n“或”运算的几个等式:0+0=0,0+1=1, 1+1=1A+0=A (自等律) A+1=1( 0-1 律),A+A=A (同一律)。

上次课小结:与、或的功能、表达式等,几个等式。

3.“非”运算①逻辑含义:当决定事件的条件具备时, 事件不发生;当条件不具备时,事件反而发生了。

R②运算电路:开关 A 闭合,灯 F 不亮。

~ 220VAF③表示逻辑功能的方法:逻辑功能: 入 0 出 1,入 1 出 0。

真值表:(略)表达式: F= A逻辑符号:A1F AF AF国家标准以前的符号欧美符号“非”运算的几个等式:A =A (还原律);A+ A =1、AA =0(互补律)。

2.1.2复合逻辑运算1.“与非”运算“与”和“非”的组合。

有专门实现这种运算的实际器件(如TTL 与非门等)。

逻辑符号:A &FA FA FBBB国家标准以前的符号欧美符号表达式: F= AB ;真值表:(略),逻辑功能为: 有 0 出 1,全 1 出 0。

2.“或非”运算“或”和“非”的组合。

也有专门实现这种运算的实际器件(如TTL 、 CMOS 与非门等)。

逻辑符号:A≥1FA FAFB+BB国家标准 以前的符号欧美符号表达式: F= A B ;真值表:(略),逻辑功能为: 有 1 出 0,全 0 出 1。

3.“与或非”运算逻辑符号:A & ≥ 1AAB FB FB FCC +CDDD国家标准 以前的符号 欧美符号表达式: F= AB CD ;真值表:(略)。

4.“异或”运算逻辑功能:两变量状态 相异出 1,相同出 0。

真值表:(略)。

表达式: F=A B= A B + A B逻辑符号:A =1A A BFFFBB国家标准以前的符号欧美符号“异或”运算的几个等式:A0 = A ;A 1 = A ;A;AAA =1 = 05.“同或”运算逻辑功能:两变量状态 相异出 0,相同出 1。

逻辑符号:A =1A FA BF⊙FBB国家标准 以前的符号欧美符号与“异或” 运算正好相反, 也称“异或非” 运算。

“异或” 运算的几个等式 (略)。

逻辑代数的基本定律及规则2.2.1 逻辑代数的基本定律或者称为基本公式:0-1 律: 1· A=A ; 0+A=A 。

0· A=0; 1+A=1。

交换律: AB=BA ; A+B=B+A 。

结合律: A ( BC )=(AB ) C ; A+(B+C ) =( A+B )+C 。

分配律: A ( B+C )=AB+AC ;A+BC=( A+B )( A+C )。

互补律: A A =0;A+ A =1。

重叠律: AA=A ; A+A=A 。

还原律: A =A ; 反演律: AB = AB ; AB = A B吸收律 1: A+AB= A ; A (A+B ) = A 。

吸收律 2: A+ A B= A+B ; A ( A +B ) = AB 。

吸收律 3: AB+ A B = A ;(A+B )(A+ B )= A 。

冗余定理: AB+ A C+BC= AB+ A C ;(A+B )( A +C )(B+C )=(A+B )( A +C )。

证明:左边 =AB+ A C+BC (A+ A )= AB+ A C+ABC+ A BC= AB ( C ) + A C ( B ) = AB + A C=右边(证毕)1+ 1+冗余定理指出:当某变量以互补形式出现在两个与项中时,这两个与项的其余因子组成的第三项为多余项。

推论:ABC+BCf( a ,b ,,⋯ = ABC+ Ac )+ A多余项2.2.2 逻辑代数的基本规则1.代入规则将逻辑等式中的某一变量都代之以另一个逻辑函数,此等式仍成立。

例: AB = A B 。

用 BC 代替等式中的 B 得A( BC ) = A BC = A B C反复运用代入规则可得:ABCD= A B C D。

扩大了等式的应用范围。

2.对偶规则如果将任一逻辑函数式 F=f ( A ,B ,C ,⋯ ) 中所有的·换成 +所得到的新函数 F ˊ就是 F 的对偶式。

此即对偶规+ 换成 ·则。

运用时 注意:0 换成 11 换成 0①原运算顺序不变(可运用扩号保证) 。

例:求 FCD (C D) B 的对偶式。

= AB B解: F =[( A B) B(C D)] (C D B)F 与F 互为对偶, ( F ) F 。

=还要注意到: 对偶关系不是相等的关系,即 F ≠F 。

运用对偶规则可以使要记忆的公式减少一半。

观察 P27 中的基本公式可以发现,只要记住左半部分,运用对偶规则就能得到右半部分。

3.反演规则如果将任一逻辑函数式F=f( A,B,C,⋯ ) 中所有的·换成 ++换成·0换成 11换成 0原变量换成反变量反变量换成原变量所得到的新函数 F 就是 F 的反函数。

此即反演规则。

运用时注意:①原运算顺序不变(可运用扩号保证)。

②原式的公共非号保持不变。

例:求 F=( A B C D ) E 的反函数。

解: F = A (B C D) E公共非号也可以改变,但在消去公共非号的同时,公共非号下面的子函数保持原状。

如上例:F A (B C? D) E ,与F A ( B C D) E 相等。

(应用摩根定律)从原函数求反函数的过程叫做反演。

摩根定律是进行反演重要工具。

例如,将 F=( A B C D ) E 两边同时取反并反复运用摩根定律的:F = ( A B C D ) E = (A B C D ) E = A B C D E = A ( B C D ) E当函数较简单时,可以用摩根定律求反,当函数比较复杂时,用反演规则求反比较方便。

逻辑函数的表示方法及其转换除用文字描述以外,还有四种描述形式:真值表、表达式、卡诺图、逻辑图2.3.1逻辑表达式完备函数的概念:我们已经学习过三种最基本的逻辑运算:逻辑与;逻辑或;逻辑非,用他们,可以解决所有的逻辑运算问题,因此可以称之为一个“完备逻辑集”。

一. 逻辑表达式的类型每种函数对应一种逻辑电路。

同一个函数逻辑有多种表达形式:F AC AB = AC BC AAC (A B) A ( A B) (冗余定理 、互补律) = + + + A B = = ( A B)( A C )= AC AC← AC A B (还原律、摩根定律) = A B AC← ( A B)(AC ) (还原律、摩根定律)= AC AB = AB AC← (A B)( A C ) (反演规则再求反)= ABCABC A BC A BC← AC A B = AC ( B B ) AB(C C )用互补律配项二.逻辑函数的标准形式1.最小项( 1)定义:对于 N 个变量,如果 P 是一个含有 N 个因子的乘积项,而且在 P 中每个变量都以原变量或反变量的形式作为一个因子出现,且仅出现一次,则称P 是N 个变量的一个最小项。

简单地说:最小项就是包含全部变量的与项。

例如:AB C 、 AB C 、 ABC 、 A BC 、 AB C 、 AB C 、 ABC 、 ABC 都是三个变量的最小项。

而 A B 、 AB 、 AB 、AB 都是两个变量的最小项,而对于三个或者三个以上的变量来说,它们就是一般乘积项。

所以:提及最小项一定要说明变量的数目。

N 个变量共有 2n 个最小项。

(2) 性质取三个变量的全体最小项观察:A BC 、 ABC 、 ABC 、 ABC 、 AB C 、 AB C 、 ABC 、 ABC对应的取值组合: 000 001 010 011 100 101 110 111①每个最小项都对应了一组变量取值。

对任一最小项,只有与之对应的那一组变量取值才是它的值为“1”;②任意两个不同最小项之积恒为 0;③全体最小项的逻辑和恒为 1;④两个逻辑相邻的最小项可以合并为一项,从而消去一个因子。

(3) 最小项标准表达式任何一个逻辑函数都能表示成最小项之和的形式, 而且这种表示形式是唯一的,这就是标准与或式, 也叫最小项标准表达式。

由一般式→标准与或式 的变换步骤: ①用公式把一般式化为一般与或式;②若式中的某一项缺少某个变量,就用该变量的原变量和反变量之和去乘这一项,然后拆成两项,直到补齐所缺变量为止。

例:写出 F= ABB C 的标准与或式。

(F= AB B C = ABACB C )解: ①化为一般与或式F A B B C 冗余=②补齐所缺变量 F = A B(C C ) BC ( A A ) = A BC AB C A BC ABC也可以由 F ABBC 列出真值表,直接写出最小项标准表达式。

=最小项标准表达式的另一种表示形式:A BC 、 ABC 、 ABC 、 ABC 、 AB C 、 AB C 、 ABC 、 ABC对应的取值组合: 000 001 010 011 100 101 110 111 二进制换十进制123 4 5 6 7记为m 0m 1m 2m 3m 4m 5m 6 m 7F A BCAB CA BCABC 还可以表示成:=m 4 m 3 m 2 F ∑m ( , , , ) F m 0+ + + 或者写成= = 0 2 3 4根据逻辑函数的特点, 这种表示方法 ①便于转换成卡诺图; ②便于写出反函数。

相关文档
最新文档