高频电路分析讲解教程

合集下载

高频电子线路 非线性电路基本分析方法

高频电子线路 非线性电路基本分析方法

iC1
i0
1 ez
,
iC 2
i0
1 ez
如图所示为归一化电流iC1/ i0 、iC2/ i0与z值的
关系曲线。在 z 1 的范围内,可近似看成线
性关系,即:
iC1 gm0v1, iC2 gm0v1
其中
gm0
iC1 v1
iC 2 v1
称为放大器的跨导。
由电路的对称性可得差
分放大器的输出电压为:
的电导值随时间变化,所以该电路也称为时变 电导(时变电阻)电路。
由于v2(t)具有周期性,而根据S(t)的表达式, 可得它具有与v2(t)相同的周期性,S(t)与v2(t)的
周期皆为T0=2/2。
因此,可将S(t)展开成傅里叶级数:
S (t )
1 2

n1
4 (1)n1
(2n 1)
cos(2n
(2) 折线分析法
前面介绍的幂级数分析法一般要取至少三项 以上,会增加计算复杂度。为此引入折线分 析法以简化分析。
以晶体管的转移特性为 例,其工作曲线AOC 可用两条直线段AB和 BC来近似,即:
ic
ic 0 gc (vB VBZ
)
(vB VBZ ) (vB VBZ )
VBZ为特性曲线折线化后 的截止电压,gc为跨导。
即不满足迭加性原理,这也是非线性元件和 非线性电路的一个重要特点。
二、非线性电路分析方法 ➢ 用解析法来分析非线性电路时,需要知道非
线性曲线的数学表达式。在没有或无法获得 准确的数学表达式时,必须选取某些函数来 近似表示或替代这些非线性关系。下面介绍 几种常见的非线性电路分析方法:
(1) 幂级数分析法 对于非线性元件的特性函数i=f(v),如果f(v) 的各阶导数存在,可将非线性函数f(v)展开 成幂级数的形式:i a0 a1v a2v2 a3v3

高频电路原理和分析课件第7章_频率调制和解调

高频电路原理和分析课件第7章_频率调制和解调
第7章 角度调制与解调
第7章 角度调制与解调
7.1 角度调制信号分析 7.2 调频器与调频方法 7.3 调频电路 7.4 鉴频器与鉴频方法 7.5 鉴频电路 7.6 调频收发信机及附属电路 7.7 调频多重广播
第7章 角度调制与解调
概述
在无线通信中,频率调制和相位调制是又一类重要的 调制方式。
1、频率调制又称调频(FM)——模拟信号调制,它是使 高频振荡信号的频率按调制信号的规律变化(瞬时频率变化 的大小与调制信号成线性关系),而振幅保持恒定的一种调 制方式。调频信号的解调称为鉴频或频率检波。
些边频对称地分布在载频两边,其幅度取决于调制指数mf ;
(2) 由于mf=Δ ωm/Ω=Δ fm/F,且Δ ωm=kfUΩ,因此调制指 数mf既取决于最大频偏,又取决于调制信号频率F。 (3) 由于相邻两根谱线的间隔为调制信号频率,因此调制信 号频率越大,谱线间隔越大,在相同的调制指数mf时,最 大频偏也越大。
(7-3)
第7章 角度调制与解调
式中, m


m f 为调频指数。FM波的表示式为
u F M ( t ) U C c o s (c t m fs i n t ) R e [ U C e j e t e j m fs i n t ]
(7-4)
图7-1画出了频率调制过程中调制信号、调频信号及 相应的瞬时频率和瞬时相位波形。
J
2 n
(mf
)

1
n
PFM

1 2RL
Uc2
Pc
(7-14) (7-15)
第7章 角度调制与解调
(7-15)式说明,调频波的平均功率与未调载波的平均 功率相等。当调制指数mf由零增加时,已调制的载波功 率下降,而分散给其他边频分量。这就是说,调频的过 程就是进行功率的重新分配,而总功率不变,即调频器 可以看作是一个功率分配器。

《高频电路教案》课件

《高频电路教案》课件

《高频电路教案》课件一、教学目标1. 让学生了解高频电路的基本概念和特点。

2. 使学生掌握高频电路的分析和设计方法。

3. 培养学生对高频电路实验的操作能力和故障排除技巧。

4. 提高学生对高频电路在实际应用中的认识和理解。

二、教学内容1. 高频电路的基本概念和特点高频电路的定义高频电路的频率范围高频电路的特点2. 高频电路的分析和设计方法高频电路的分析方法高频电路的设计原则高频电路的仿真与实验3. 高频电路实验操作和故障排除高频电路实验设备及工具高频电路实验操作步骤高频电路故障排除方法4. 高频电路在实际应用中的案例分析高频电路在无线通信中的应用高频电路在雷达系统中的应用高频电路在其他领域的应用5. 高频电路发展趋势和展望高频电路技术的发展历程高频电路技术的现状高频电路技术的发展趋势三、教学方法1. 采用多媒体课件进行教学,结合图文并茂的方式讲解高频电路的相关概念和原理。

2. 通过实际案例分析,使学生了解高频电路在实际应用中的作用和价值。

3. 组织学生进行高频电路实验,培养学生的动手能力和实际操作技能。

4. 设置课堂讨论和课后作业,巩固学生对高频电路知识的理解和掌握。

四、教学评价1. 课堂互动:学生参与课堂讨论、提问和回答问题的积极性。

2. 实验报告:评估学生在高频电路实验中的操作规范性和结果准确性。

3. 课后作业:检查学生对高频电路知识的掌握程度和应用能力。

4. 期末考试:全面测试学生对高频电路知识的掌握和运用能力。

五、教学资源1. 多媒体课件:用于讲解高频电路的相关概念、原理和案例。

2. 高频电路实验设备:为学生提供实际操作高频电路的机会。

3. 参考书籍和论文:为学生提供深入研究高频电路的资料。

4. 网络资源:为学生提供了解高频电路最新发展的渠道。

六、教学安排1. 第1-2周:讲解高频电路的基本概念和特点,使学生了解高频电路的定义、频率范围以及特点。

2. 第3-4周:介绍高频电路的分析和设计方法,包括分析方法、设计原则以及仿真与实验。

高频电路原理与分析PPT课件

高频电路原理与分析PPT课件
•15
第1章 绪论
1.3 本课程的特点
高频电子线路是在科学技术和生产实践中发展起 来的, 也只有通过实践才能得到深入的了解。 因此, 在 学习本课程时必须要高度重视实验环节, 坚持理论联系 实际, 在实践中积累丰富的经验。 随着计算机技术和电 子设计自动化(EDA技术)的发展, 越来越多的高频电 子线路可以采用EDA软件进行设计、 仿真分析和电路 板制作, 甚至可以做电磁兼容的分析和实际环境下的仿 真。因此, 掌握先进的高频电路EDA技术, 也是学习高 频电子线路的一个重要内容。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
•3
第1章 绪论
1.1.2 无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下 一些类型: (1) 按照工作频段或传输手段分类, 有中波通信、 短波通信、 超短波通信、 微波通信和卫星通信等。 所 谓工作频率, 主要指发射与接收的射频(RF)频率。 射频实际上就是“高频”的广义语, 它是指适合无线电 发射和传播的频率。 无线通信的一个发展方向就是开 辟更高的频段。
•13
第1章 绪论
射线
(a) 电离层
(b) 对流层
(c)
(d)
图1— 5
(a) 直射传播; (b) 地波传播; (c) 天波传播; (d) 散射传播
•14
第1章 绪论
5. 调制特性 无线电传播一般都要采用高频(射频)的另一个原 因就是高频适于天线辐射和无线传播。 只有当天线的尺 寸到可以与信号波长相比拟时, 天线的辐射效率才会较高, 从而以较小的信号功率传播较远的距离, 接收天线也才能 有效地接收信号。

高频电路原理与分析(全套课件865P)

高频电路原理与分析(全套课件865P)

– 掌握通信电子线路的基本组成和分析、计算方法;
– 培养通信电子线路的识图、作图和简单设计能力; – 培养分析和解决通信电子线路中实际问题的能力,培养创 新实践精神; – 了解通信电子线路的最新发展动态,为后续电子课程及 电子专业打下基础。
《高频电路原理与分析》
第1章绪论
要求:
1)了解通信电子线路的特点,通信电子信息产生、发射、接收的原理与 方法; 2)熟悉基本通信电子器件的功能特点和用途; 3)掌握基本通信电子线路的电路结构、分析方法和基本设计方法; 4)掌握基本通信电子线路实验技能和安装调试方法。 通过本课程的学习,应达到下列基本要求: (一)掌握以下定义、基本概念和基本原理:串联谐振、关联谐振、接入系 数、频率特性、通频带、选择性、品质因数、松耦合双调谐、参差调谐、 Y参数、截止频率、特征频率、谐振放大倍数、自给偏压、过压状态、欠 压状态、临界状态、阻抗区配、槽路效率、正弦波振荡器、压电效应、晶 体振荡、调幅、检波、抑制载波调幅、同步检波、调频、鉴频、限幅、频 谱图、变容二极管、电抗管、锁相、捕获、锁定、跟踪、变频、混频、干 扰、噪声、输出功率和效率。
第1章绪论
课程名称: 通信电子线路
英文名称:Communication electronic circuit
教材名称及作者:西安电子科技大学出版社 曾兴雯主编《高频电路原理与分析》(第四版) 21世纪高等学校通信类规划教材
《高频电路原理与分析》
第1章绪论
本课程的特点
课程的目的、要求 目的: – 了解通信电子信息产生、发射、接收的原理与方法; – 分析通信电子器件和通信电路的工作原理;
§1-1无线通信系统概述
一、概念 通信:不失真地将信息(消息)从一方传送到另一方。

高频西电教学课件2-高频电路基础.ppt

高频西电教学课件2-高频电路基础.ppt
IL IC QI
. IC
. I
0
.
U
17
(2-12) (2-14)
. IL
图2-5 表示了并联振荡回路中谐振时的电流、 电压关系。
第2章 高频电路基础
18
Zp
1
R jQ 2
R0 1 j
0
6)通频带(半功率点频带)
当保持外加信号的幅值不变而改变其频率时, 将回路电流值下降 为谐振值的 1 2 时对应的频率范围称为回路的通频带, 也称回路带宽, 通常用B来表示。 令上式等于 R0 2 , 则可推得ξ=±1, 从而可得带宽为:
矩形系数是大于1的(理想时为1),矩形系数越小,回路的
选择性越好。
对于单级简单并联谐振回路,可以计算出其矩形系数为:
Kr0.1 102 1 9.96
第2章 高频电路基础
20
需要说明的几点:通过前面分析可知
(1) 回路的品质因素越高,谐振曲线越尖锐,回路的通 频带越狭窄,但矩形系数不变。因此,对于简单(单级) 并联谐振回路,通频带与选择性是不能兼顾的。
11
|zp|/R0
.
I
1
. .+
L
.
C
IC C
IR IL . U
R0 L
1/ 2
Q1>Q2 Q1 Q2
Z /2
感性 Q2 0
Q1 Q1>Q2 容性
r

感性区
容性区 -/2
0
0
B
(a)
(b)
(c)
(d)
图2-4 并联谐振回路及其等效电路、 阻抗特性和辐角特性
(a) 并联谐振回路; (b)等效电路; (c)阻抗特性; (d)辐角特性
第2章 高频电路基础

《高频电路基础》PPT课件

《高频电路基础》PPT课件


f<SRF时,电容器呈正常的电容特性。(f升-z降)
频 电
f>SRF时,电容器等效为一个电感。 (f升-z升)

与电容器类似,高频电感器也具有自身谐振频率SRF。
原 是并联谐振。 SRF=

与►
相角


阻抗
阻抗
阻抗与相角
O
频率 f
理想电容器的阻抗特性
o
频率f
高频电感器也具有自身谐振频 3
第二章 高频电路基础
分 振荡回路的谐振特性: 析 简单振荡回路的阻抗在某一特定频率上具有最大或
最小值的特性称为谐振特性,这个特定频率称为谐
振频率。
7
第二章 高频电路基础
第二节 高频电路中的组件
电感、电容所组成的电路中,电抗为0时,电路达到谐
振。

频 电
(1)并联谐振回路(P16)

简单并联谐振回路电路
原 理
所示,L为电感线圈,r是其
6
第二章 高频电路基础
第二节 高频电路中的组件
无源组件:高频振荡回路、变压器、谐振器与滤波等, 完成信号的传输、频率选择和阻抗变换等功能。
高 其它组件:平衡调制器、正交调制器、移相器、匹配
频 电 路
器、衰减器、分配器与合路器、定向耦合器、隔离 器、双工器等。
原 1、高频振荡回路
理 与
高频振荡回路包括并联谐振回路和串联谐振回路。
L
C

原 理 与 分
L
L
1
Cr Q0 0
j
jQ0 0
1
Cr
jQ
0
0
(Q0
1
0C

《高频电路原理与分析(曾兴雯_第四版)》课件3-4

《高频电路原理与分析(曾兴雯_第四版)》课件3-4

VT
VT
LB LB
UBB
LB U BB
+
Re -
CE
RB
CB
ube
Eb' Eb
Ub
t
ib
t
ic
icmax
t
ub=Ub cosω t ube=Eb+Ub cosω t
ic=Ic0+Ic1cosωt+Ic2cos2ωt+… +Icn cosnωt+… uo=uc=Ic1RL cosωt=Uc cosωt uce=Ec-uo=Ec-Uc cosωt
3.4.1
直流馈电线路
根据直流电源连接方式的不同,可分为: 串联馈电线路:直流电源、匹配网络和晶体管三者形成串 联连接的方式。 并联馈电线路:直流电源、匹配网络和晶体管三者形成并 联连接的方式。
串联馈电
并联馈电
1.集电极馈电电路:
(1) 集电极馈电电路的组成原则:
① i c 的直流分量 I CO 除晶体 管的内阻外,应予以短路, 以保证 E C 全部加在集电极 上,避免管外电路消耗电源 功率,即 PD I CO E C
复习


1、集电极电压利用系数的定义。 2、波形系数的定义。 3、什么是高频功放的动特性? 4、高频功放有哪几种工作状态?
5、在哪种工作状态下输出功率最大?为什么?
主要内容
3.1 3.2 3.3 3.4 3.5 3.6 高频小信号放大器 高频功率放大器的原理和特性 高频功率放大器的高频效应 高频功率放大器的实际线路 高效功放与功率合成 高频集成功率放大器简介
0r 0 C
2-5
一个5MHz的基频石英晶体谐振器,C0=6pF,

《高频高频电路基础》PPT课件

《高频高频电路基础》PPT课件
12 第二讲 高频电路中的元件、器件和组件
第2章 高频电路基础
2.1.2 高频电路中的组件
• 振荡(谐振)回路 • 高频变压器 • 谐振器 • 滤波器 • 平衡调制(混频)器 • 正交调制(混频)器 • 移相器 • 匹配器 • 衰减器 • 分配器与合路器等
13 第二讲 高频电路中的元件、器件和组件
dH( f ) 0 df
1.0 0.8
0.6
通频带外的幅频特性应满足
0.4
2Δf0.7
H(f)0
0.2
理想的幅频特性应是矩形, 0
既是一个关于频率的矩形窗函数。
f1 fo f2 2Δf0.1
理想 实际 f
定义矩形系数K0.1表示选择性:
K0.12 2 ff0 0..7 1
P% P/2
2Δf0.7称为通频带 :B f 2 f 1 2 ( f 2 f 0 ) 2 f 0 . 7
单振荡回路
振荡回路(由L、C组成)
并联振荡回路
耦合振荡回路
各种滤波器
LC集中滤波器 石英晶体滤波器 陶瓷滤波器 声表面波滤波器
17 第二讲 高频电路中的元件、器件和组件
第2章 高频电路基础
要求
选频电路的通频带宽度 传输信号有效频谱宽度
相一致
理想的选频电路通频带内的幅频特性
α(f)=H(f ) / H(fo)
C
Solution:
(a)
1. At f = 5.5MHz, = 2*5.5MHz = 34.56M rad/s,
XL = L = 345.6Ω, XC = 1/C = 289.4Ω,
|ZS|
Hence, Z = 10 + j345.6 - j289.4 = 10 + j56.2 =

高频电路分析讲解教程54页PPT

高频电路分析讲解教程54页PPT

f1)
2
所以
BW 0.7
=f2-f1=
f0 Q0
(1.2.13)
可见, 通频带与回路Q值成反比。 也就是说, 通频带与
回路Q值(即选择性)是互相矛盾的两个性能指标。 选择性是指
谐振回路对不需要信号的抑制能力, 即要求在通频带之外,
谐振曲线N(f)应陡峭下降。所以,Q值越高,谐振曲线越
陡峭, 选择性越好,但通频带却越窄。一个理想的谐振回路,
串联谐振回路空载时阻抗的幅频特性和相频特性表达式 分别为:
Z=r+j r2 (wL 1 )2 wc
wL 1
arctan wc
r
并联谐振回路空载时阻抗的幅频特性和相频特性表达式分
别为:
z
1
ge20
(wc
1 )2 wL
wc 1
arctan wL
ge0
图1.2.4(a)、 (b)分别是串联谐振回路与并 联谐振回路空载时的阻抗特性曲线。由图可见,前者在谐振频 率点的阻抗最小,相频特性曲线斜率为正; 后者在谐振频率 点的阻抗最大,相频特性曲线斜率为负。所以,串联回路在谐 振时,通过电流I00最大; 并联回路在谐振时,两端电压U 00最大。 在实际选频应用时,串联回路适合与信号源和负载 串联连接,使有用信号通过回路有效地传送给负载;并联回路 适合与信号源和负载并联连接,使有用信号在负载上的电压振 幅增大。
由上式可知, 一个单谐振回路的矩形系数是一个定值, 与其回路Q值和谐振频率无关,且这个数值较大,接近10, 说明单谐振回路的幅频特性不大理想。
1.2.2
图1.2.3是串联LC谐振回路的基本形式, 其中r是 电感L的损耗电阻,RL是负载电阻。
下面按照与并联LC回路的对偶关系, 直接给出串联LC 回路的主要基本参数。

高频电路详解

高频电路详解

第一章 高频电路基本常识 第一部分为何要学习高频电路的知识电子电路可以分为模拟电路与数字电路,而模拟电路又可以分类为低频率电路与高频电路。

一般的电子技术人员,首先尝试设计或制作的,大多以数位电路或低频率电路为主,此较少从高频电路开始的。

其主要原因是,高频电路较难去理解,往往所制作出的电路无法如预期的设计目标动作。

但是,如果忽略了高频电路的基本常识,也可能使所设计出的数位电路或低频率电路不能成为最适当,甚至於可能会造成动作的不稳定。

相反地,如果能够熟悉高频电路,也可以提高数位电路或低频率电路的设计水准。

近些年,无论是数位电路或以直流为主的测试仪器电路,对於处理系要求高速化,结果也使得高频电路的基本常识相当重要。

低频率电路与高频电路的区别为了了解高频电路的特征,在此,对低频率电路与高频电路作一此较。

如下图1所示的为低频率电路与高频电路的此较。

图(a )为低频率电路,图(b)为高频电路。

首先,说明信号的流通。

由於在低频率电路的信号其波长较长,一般可以忽略时间因素。

因此,振荡器的输出端舆放大器的输入端可视为同一信号。

也即是,在低频率电路中的信号流通如箭头的方向所示,成为闭回路,此也称的为集中常数的考虑方法。

而在高频电路中,由於波长较短,不可以忽略时间的要素。

在同一时间的振荡器输出端,中途的电缆线上,放大器的输入端的信号就非同一信号,也就是说信号像电波一样传输着,这种考虑电路问题的方法称为分布常数。

一般地,在集中常数电路中的低频电路中,对於电缆线的限制较少,可以使用一般的隔离线,重视杂讯兴频率特性。

而在分布常数电路中的高频电路中,为了不使信号发生传送路径上的失真,使用同轴电缆线,重视特性阻抗。

在放大器的输出端所连接的负载如下:图1-(a )低频电路图1-(b )高频电路图(a)低频率电路为定电压驱动……即使负载阻抗有变化,输出电压也一定,放大器的输出阻抗Zo 舆负载的阻抗ZL 的关系为Zo<ZL 。

《高频电路教案》课件

《高频电路教案》课件

《高频电路教案》课件一、教学目标:1. 让学生了解高频电路的基本概念和特点。

2. 使学生掌握高频电路的组成部分及其作用。

3. 培养学生分析和解决高频电路问题的能力。

二、教学内容:1. 高频电路的基本概念解释高频电路的定义,分析高频电路与低频电路的区别。

2. 高频电路的组成部分介绍高频电路的主要组成部分,如振荡器、放大器、调制器、解调器等,并解释它们的作用。

3. 高频电路的特性讲解高频电路的频率特性、阻抗特性、谐波特性等。

4. 高频电路的应用介绍高频电路在通信、广播、雷达等领域的应用。

5. 高频电路的实例分析分析实际的高频电路实例,如无线电发射和接收电路、无线通信电路等,让学生了解高频电路的实际应用。

三、教学方法:1. 采用讲授法,讲解高频电路的基本概念、组成部分和特性。

2. 利用举例法,分析高频电路的应用和实例。

3. 开展小组讨论,让学生探讨高频电路的实际应用和未来发展。

四、教学步骤:1. 引入话题:通过讲解高频电路在现代通信技术中的重要性,引起学生的兴趣。

2. 讲解高频电路的基本概念,引导学生理解高频电路的定义和特点。

3. 介绍高频电路的组成部分,让学生了解各部分的作用。

4. 讲解高频电路的特性,让学生掌握高频电路的频率、阻抗、谐波等方面的知识。

5. 分析高频电路的应用,让学生了解高频电路在实际生活中的应用。

6. 分析高频电路的实例,让学生更直观地了解高频电路的实际工作原理。

7. 开展小组讨论,让学生探讨高频电路的实际应用和未来发展。

8. 总结本节课的主要内容,强调高频电路的关键知识点。

五、课后作业:1. 复习本节课的内容,整理高频电路的基本概念、组成部分和特性。

2. 思考高频电路在实际生活中的应用,举例说明。

3. 预习下一节课的内容,了解无线电发射和接收电路的工作原理。

六、教学评估:1. 课堂讲解过程中,观察学生的听课情况,了解学生对高频电路知识的理解程度。

2. 课后收集学生的作业,评估学生对课堂内容的掌握情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

很小时, ε=
ff(ff0)(ff0)2 (ff0)2 f
f0 f0
f0f
f0
f0
所以 N(f) =
1
1
Q
2 0
(
2
f f0
)2
根据式(1.2.10)可作出单位谐振曲线N(f)。
该曲线如图1.2.2所示。
(7) 通频带、选择性、矩形系数。
由图1.2.2可知,Q0越大,谐振曲线越尖锐,选择
性越好。 为了衡量回路对于不同频率信号的通过能力,定义
谐振时,回路呈现纯电导,且谐振导纳最小(或谐振阻抗 最大)。回路电压U与外加信号源频率之间的幅频特性曲线称 为谐振曲线。谐振时,回路电压U00最大。任意频率下的回路 电压U与谐振时回路电压U00之比称为单位谐振函数,用N(f) 表示。N(f)曲线称为单位谐振曲线。
N(f)=
U
1
U00
1(2fc 1 )2 2fL
回路总阻抗 回路空载Q值
回路有载Q值
Z=RL+r+j (wL 1 )
Q0= w 0 L
wc
r
w0L Qe= R L r
谐振频率f 0=
1 2 LC
单位谐振函数N(f)=
I I00
1
1Q022
通频带BW 0.7
=
f0 Q0
其中I是任意频率时的回路电流,
的回路电流。
00 是谐振时
1.2.3串、
K0.1
BW0.1 BW0.7
由定义可知,K01是一个大于或等于1的数, 其数值越小, 则对应的幅频特性越理想。
例1.1 求并联谐振回路的矩形系数。
解: 取
N(f )
1
1
1Q02(2f0f )2 10
利用图1.2.2,用类似于求通频带BW0.7的方法可求得:
B K0.1W 0. 1B Bf4W W 0 0.. 7 1f3 1201120 1 9.Q 9f005
/ge20
由N(f)定义可知, 它的值总是小于或等于1。
由式(1.2.3)和式(1.2.5)可得:
wc
1 wL
wcw0L
w0L wL
ge0
ge0w0L
Q0(w w0w w0)Q0(ff0ff0)
所以
N(f)=
1
1 Q02 (
f f0
f )2 f0
定义相对失谐ε=
f f0
f f 0 , 当失谐不大时,即f与f0相差
第1章 LC谐振回路
1.1 概述 1.2 LC谐振回路的选频特性 1结
返回主目录
第1章 LC写真
1.1 概 述
LC谐振回路是高频电路里最常用的无源网络, 包括并联 回路和串联回路两种结构类型。
利用LC谐振回路的幅频特性和相频特性,不仅可以进行 选频,即从输入信号中选择出有用频率分量而抑制掉无用频率 分量或噪声(例如在选频放大器和正弦波振荡器中),而且还可 以进行信号的频幅转换和频相转换(例如在斜率鉴频和相位鉴 频电路里)。另外,用L、 C元件还可以组成各种形式的阻抗变 换电路和匹配电路。所以,LC谐振回路虽然结构简单,但是 在高频电路里却是不可缺少的重要组成部分,在本书所介绍的 各种功能的高频电路单元里几乎都离不开它。
1.2 LC
1.2.1并联谐振回路
图1.21(a)是电感L、电容C和外加信号源
IS
组成的并联谐
振回路。r是电感L的损耗电阻,电容的损耗一般可以忽略。 (b)
图是其等效转换电路,ge0和Re0分别称为回路谐振电导和回路 谐振电阻。
根据电路分析基础知识, 可以直接给出LC并联谐振回路 的某些主要参数及其表达式:
由上式可知, 一个单谐振回路的矩形系数是一个定值, 与其回路Q值和谐振频率无关,且这个数值较大,接近10, 说明单谐振回路的幅频特性不大理想。
1.2.2
图1.2.3是串联LC谐振回路的基本形式, 其中r是 电感L的损耗电阻,RL是负载电阻。
下面按照与并联LC回路的对偶关系, 直接给出串联LC 回路的主要基本参数。
单位谐振曲线上N(f)≥
1所包含的频率范围为回路的通频
2
带, 用BW0.7表示。在图上BW0.7=f2-f1,
可得
N(f )
1
1
1Q02(2f0f )2
2
Q0
2f f0
1
Q0
2(
f2 f0
f0)
1
Q0
2(
f1 f0
f0)
1
将式(1.2.11)减去式(1.2.12), 可得到:
Q0
2(
f2 f0
串联谐振回路空载时阻抗的幅频特性和相频特性表达式 分别为:
Z=r+j r2 (wL 1 )2 wc
wL 1
arctan wc
r
并联谐振回路空载时阻抗的幅频特性和相频特性表达式分
别为:
z
1
ge20
(wc
1 )2 wL
wc 1
arctan wL
ge0
图1.2.4(a)、 (b)分别是串联谐振回路与并 联谐振回路空载时的阻抗特性曲线。由图可见,前者在谐振频 率点的阻抗最小,相频特性曲线斜率为正; 后者在谐振频率 点的阻抗最大,相频特性曲线斜率为负。所以,串联回路在谐 振时,通过电流I00最大; 并联回路在谐振时,两端电压U 00最大。 在实际选频应用时,串联回路适合与信号源和负载 串联连接,使有用信号通过回路有效地传送给负载;并联回路 适合与信号源和负载并联连接,使有用信号在负载上的电压振 幅增大。
(1) 回路谐振电导
ge0R 1 e0r2(rw 0L)2(w 0 rL)2
(2) 回路总导纳
Y=
ge0
j(wc 1 ) wL
(3) 谐振频率ω0=
L1C或f0
1
2 LC
(4) 回路两端谐振电压U00= 1
g e0w 0L
(5) 回路空载Q值Q0=
1 ge0w0L
w0c/
ge0
(6) 单位谐振曲线。
f1)
2
所以
BW 0.7
=f2-f1=
f0 Q0
(1.2.13)
可见, 通频带与回路Q值成反比。 也就是说, 通频带与
回路Q值(即选择性)是互相矛盾的两个性能指标。 选择性是指
谐振回路对不需要信号的抑制能力, 即要求在通频带之外,
谐振曲线N(f)应陡峭下降。所以,Q值越高,谐振曲线越
陡峭, 选择性越好,但通频带却越窄。一个理想的谐振回路,
其幅频特性曲线应该是通频带内完全平坦,信号可以无衰减通
过,而在通频带以外则为零,信号完全通不过,如图
1.2.2所示宽度为BW0.7、高度为1的矩形。
为了衡量实际幅频特性曲线接近理想幅频特性曲线的程度, 提出了“矩形系数”这个性能指标。
矩 形 系 数 K 0.1 定 义 为 单 位 谐 振 曲 线 N ( f ) 值 下 降 到 0.1时的频带范围BW0.1与通频带BW0.7之比, 即:
相关文档
最新文档