主成分分析法概念及例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析法

主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法

[编辑]

什么就是主成分分析法

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在统计学中,主成分分析(principal components analysis,PCA)就是一种简化数据集的技术。它就是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这就是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但就是,这也不就是一定的,要视具体应用而定。

[编辑]

主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量与增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正就是适应这一要求产生的,就是解决这类题的理想工具。

同样,在科普效果评估的过程中也存在着这样的问题。科普效果就是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取就是个重点与难点。如上所述,主成分分析法正就是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量就是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量就是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。

例如,在对科普产品开发与利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用与开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。

[编辑]

主成分分析法的基本原理

主成分分析法就是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。

[编辑]

主成分分析的主要作用

概括起来说,主成分分析主要由以下几个方面的作用。

1.主成分分析能降低所研究的数据空间的维数。即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替高维的x空间所损失的信息很少。即:使只有一个主成分Y l(即m=1)时,这个Y l仍就是使用全部X变量(p个)得到的。例如要计算Yl的均值也得使用全部x的均值。在所选的前m个主成分中,如果某个X

i的系数全部近似于零的话,就可以把这个X i删除,这也就是一种删除多余变量的方法。

2.有时可通过因子负荷a

ij的结论,弄清X变量间的某些关系。

3.多维数据的一种图形表示方法。我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。要把研究的问题用图形表示出来就是不可能的。然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在

二维平面上的分布况,由图形可直观地瞧出各样品在主分量中的地位,进而还可以对样本进行分

类处理,可以由图形发现远离大多数样本点的离群点。

4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。

5.用主成分分析筛选回归变量。回归变量的选择有着重的实际意义,为了使模型本身易于做结构分析、控制与预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。用主成分分析筛选变量,可以用较少的计算量来选择量,获得选择最佳变量子集合的效果。

[编辑]

主成分分析法的计算步骤

1、原始指标数据的标准化采集p 维随机向量x = (x

1,X2,、、、,X p)T)n 个样品x i =

(x i1,x i2,、、、,x ip)T,i=1,2,…,n,

n>p,构造样本阵,对样本阵元进行如下标准化变换:

其中,得标准化阵Z。

2、对标准化阵Z 求相关系数矩阵

其中,。

3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分

按确定m 值,使信息的利用率达85%以上,对每个λ

j, j=1,2,、、、,m,

解方程组Rb= λ

j b得单位特征向量。

4、将标准化后的指标变量转换为主成分

U

1称为第一主成分,U2称为第二主成分,…,U p称为第p 主成分。

5 、对m 个主成分进行综合评价

对m 个主成分进行加权求与,即得最终评价值,权数为每个主成分的方差贡献率。

[编辑]

主成分分析法的应用分析

[编辑]

案例一:主成分分析法在啤酒风味评价分析中的应用[1]

啤酒就是个多指标风味食品, 为了全面了解啤酒的风味, 啤酒企业开发了大量的检测方法

用于分析啤酒的指标, 但就是面对大量的指标数据, 大多数企业又感到茫然,不知道如何利用这些大量的数据, 由上面的介绍可知,在这种情况下,主成分分析法能够派上用场。近年来,科研人员为了获得对啤酒风味更好的理解, 多元统计技术的使用越来越多。这主要有以下两方面的原因:①在啤酒领域里, 几乎没有一个问题能够使用单变量(单指标)就能反映事物的属性, 例如啤酒的好坏、一致性, 不能通过双乙酰一个指标说明问题;②另一个重要的原因就就是, 近年来大量数学统计软件的不断出现与个人电脑的普及促进了多元统计分析技术的应用。多元统计技术在啤酒风味研究中的一个重要任务就就是找出啤酒风格与啤酒理化指标(风味成分指标也属于理化指标)

相关文档
最新文档