主成分分析法概念及例题
主成分分析法
问题分析:问题2主要是找出金属污染的主要原因,首先要找出污染最严重的金属,结合问题1的求解,我们通过主成分分析法对各种金属污染的严重性进行了判定主成分分析法:重金属对人体的危害由金属元素的化学性质决定,根据十余项指标和九项参数对重金属的潜在毒性进行分类和排序,考评指标和参数如下:电离势、熔点、沸点、熔化热、汽化热、电化当量、结合能、离子半径、密度、电荷离子半径比、氧化性、离子奇偶性、挥发性。
结论如下:重金属潜在毒性排行榜:毒性大:Hg汞〉Cd镉〉Tl铊〉Pb铅〉Cr铬〉In铟〉Sn锡毒性中等:Ag银〉Sb锑〉Zn锌〉Mn锰〉Au金〉Cu铜〉Pr镨〉Ce 铈〉Co钴〉Pd钯〉Ni镍〉V钒〉Os锇〉Lu镥〉Pt铂〉Bi铋〉Yb镱〉Eu铕〉Ga镓〉Fe铁〉Sc钪〉Al铝〉Ti钛〉Ge锗〉Rh铑〉Zr锆毒性较小:Hf铪〉Ru钌〉Ir铱〉Tc锝〉Mo钼〉Nb铌〉Ta钽〉Re铼〉W钨〉Tm铥〉Dy镝〉Nd钕〉Er铒〉Ho钬〉Gd钆〉Tb铽〉La镧〉Y钇砷:一种三价和五价的非金属元素,旧称“砒”。
通常呈金属的铁灰色,结晶形,性脆。
砷常小量地被掺入合金(如用于制造子弹的砷-铅合金),其化合物主要用于制造毒剂(如杀虫剂)、药物和玻璃 [arsenic]——元素符号As由于砷是一种非金属元素,所以在重金属毒性排行榜中没有这个元素但是它的毒性却很强,仅次于汞,我们将它放到了第二位。
Hg>As>Cd>Pb>Cr>Zn>Cu>Ni我们采用主成分分析法来验证我们的猜测:X1、X2、X3、X4、X5、X6、X7、X8分别表示:Hg、As、Cd、Pb、Cr、Zn、Cu、NiZ:标准化矩阵x:采样值x:均值s:标准差R:相关性矩阵:特征值p:维度2s:方差1、对原始指标数据的标准化采集p 维随机向量x =X1,X2,...,X pp(p=8)个影响因素测量值x i = (x i1,x i2,...,x ip)T,i=1,2,…,n 构造样本阵,对样本阵元进行如下标准化变换:计算样本的均值:1nijijx xn==∑计算方差:2 21()1nij jijx x sn=-=-∑得标准化矩阵Z通过MATLAB计算出标准化矩阵Z=zscore(A)见附录12、对标准化阵Z 求相关系数矩阵其中,通过MATLAB计算出相关系数化矩阵R=corrcoef(A)见附录23、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分按 确定m 值,使信息的利用率达85%以上,对每个λj ,j=1,2,...,m, 解方程组Rb = λj 得单位特征向量1b 、2b 、3b ……8b贡献率i V :1(1,2,,)ii pkk V i p λλ===∑累计贡献率i Q :11(1,2,,)ikk i pkk Q i p λλ====∑∑i Q =1ni i V =∑ n=1、2、3 (8)通过MATLAB 计算出特征向量,主成分贡献率,见附录3 [COEFF,LATENT,EXPLATNED]=pcacov(R) 表1因子分析结果以85%作为界限,从表1中可以看出只要取四个因子就足够了。
主成分分析例题
主成分分析例题主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的数据分析方法,它可以有效分析数据中的多元特征,将多维特征空间映射到低维空间,使得数据的特征可以更加清晰和深入地分析。
主成分分析方法经常用于多元数据的特征提取、因素分析以及因子结构研究,是多元数据分析中常用的统计分析方法之一。
下面介绍一个典型的主成分分析例题,其中涉及因子分析、因子结构分析以及多元统计分析方法等:一个某大学的护士教学实践中心,设有4个实验室,每实验室有自己的实验内容和服务对象,实验室类型主要有医学实验室、护理实验室、外科实验室以及诊断室。
某护士教学实践中心向500名护士学生收集了有关这4类实验室实验内容和服务对象的信息,以下为收集到的具体信息:(1)医学实验室:主要是负责护士学生的临床实习和医学教育,针对的对象为护理学生。
(2)护理实验室:主要的护理实验内容有护理实践、护理研究和护理技能培训,服务对象是护理学生、护理人员和护理专业的其他相关人群。
(3)外科实验室:主要的外科实验内容包括外科实践、外科技能培训及新型外科手术训练,服务对象是护理学生、护理人员和护理专业的其他相关人群。
(4)诊断实验室:主要是负责护士学生的护理诊断和护理诊断教学,服务对象是护理学生。
为了更加清楚地分析护士教学实践中心的护士学生对这4类实验室的实验内容和服务对象的看法,因此将采用主成分分析方法对这500名护士学生收集到的信息进行分析。
首先,通过SPSS对500名护士学生收集到的信息,进行因子分析,提取4个实验室相关的因子,并得出以下结果:表1.子质量统计|子 |差贡献率 |积方差贡献率 ||-----|-----------|--------------|| 1 | 0.717 | 0.717 || 2 | 0.122 | 0.839 || 3 | 0.056 | 0.895 || 4 | 0.004 | 0.899 |从表1中可以看出,前3个因子共计可以解释89.5%的方差,因此可以将前3个因子作为主成分进行处理。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析法案例
主成分分析法案例主成分分析法(Principal Component Analysis, PCA)是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
在本文中,我们将通过一个实际案例来介绍主成分分析法的应用。
案例背景。
假设我们有一个包含多个变量的数据集,我们希望通过主成分分析法来找出其中的主要特征,并将数据进行降维,以便更好地理解和解释数据。
数据准备。
首先,我们需要对数据进行预处理,包括数据清洗、缺失值处理、标准化等操作。
在这个案例中,我们假设数据已经经过了预处理,并且符合主成分分析的基本要求。
主成分分析。
接下来,我们将利用主成分分析法来分析数据。
主成分分析的基本思想是通过线性变换将原始变量转化为一组线性无关的新变量,这些新变量被称为主成分,它们能够最大程度地保留原始数据的信息。
在进行主成分分析之前,我们需要计算数据的协方差矩阵,并对其进行特征值分解。
通过特征值分解,我们可以得到数据的主成分和对应的特征值,从而找出数据中的主要特征。
案例分析。
假设我们得到了数据的前三个主成分,我们可以通过观察主成分的载荷(loadings)来理解数据中的结构。
载荷可以帮助我们理解每个主成分与原始变量之间的关系,从而解释数据的特点和规律。
通过主成分分析,我们可以发现数据中的主要特征和结构,从而更好地理解数据。
同时,我们还可以利用主成分分析的结果进行数据的降维,从而简化数据集并减少信息丢失。
结论。
通过以上案例分析,我们可以看到主成分分析法在多变量数据分析中的重要作用。
通过主成分分析,我们可以发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
同时,主成分分析还可以帮助我们更好地理解和解释数据,为后续的分析和应用提供有力支持。
总结。
在本文中,我们通过一个实际案例介绍了主成分分析法的基本原理和应用。
主成分分析是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。
主成分分析法例子
x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲合计贡献率:
i
k
k 1
p
k
k 1
(i 1,2,, p)
一般取合计贡献率达85—95%旳特征值 1, 2 ,, m
所相应旳第一、第二、…、第m(m≤p)个主成份。
④各主成份旳得分
l11 l12 l1p x1
Z
l21
l22
l2
p
x2
二主成份z2代表了人均资源量。
③第三主成份z3,与x8呈显出旳正有关程度 最高,其次是x6,而与x7呈负有关,所以能 够以为第三主成份在一定程度上代表了农业 经济构造。
显然,用三个主成份z1、z2、z3替代原来9个变量(x1, x2,…,x9),描述农业生态经济系统,能够使问题更进
一步简化、明了。
x4
0.0042
0.868
0.0037
75.346
x5
0.813
0.444
-0.0011
85.811
x6
0.819
0.179
0.125
71.843
x7
0.933
-0.133
-0.251
95.118
x8
0.197
-0.1
0.97
98.971
主成分分析例题详解
主成分分析例题详解主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,用于发现数据中的主要模式和结构。
本文将通过一个例题详细介绍主成分分析的原理和应用。
1. 问题描述假设我们有一个包含10个变量的数据集,每个变量都与某个特定的因素相关。
我们希望通过主成分分析来降低数据的维度,并找出对总体方差贡献最大的主成分。
2. 数据预处理在进行主成分分析之前,我们需要对数据进行预处理。
首先,我们需要对数据进行标准化,使得每个变量具有相同的尺度。
这样可以避免某些变量的值对主成分分析结果造成过大的影响。
其次,我们计算数据的协方差矩阵。
协方差矩阵描述了各个变量之间的线性关系。
通过计算协方差矩阵,我们可以得到数据中的主要结构和模式。
3. 特征值分解在得到协方差矩阵之后,我们对其进行特征值分解。
特征值分解可以将协方差矩阵分解为特征值和特征向量的乘积。
特征值表示了每个特征向量对应的主成分解释的方差。
特征向量则表示了每个主成分的权重。
对于该例题,我们得到了10个特征值和10个特征向量。
我们可以通过排序特征值的大小,找出贡献最大的主成分。
4. 主成分的选择通常情况下,我们选择前k个特征值对应的特征向量作为主成分。
这样可以保留数据中大部分的结构和模式。
在该例题中,假设前3个特征值分别为λ1、λ2和λ3,并对应的特征向量分别为v1、v2和v3。
我们选择前3个特征值对应的特征向量作为主成分。
5. 降维和重构通过选择主成分,我们可以将数据从原先的10维降到3维。
其中,每个样本在新的3维空间中的坐标可以通过与主成分的内积计算得到。
此外,我们还可以通过主成分将数据从降维空间重新投影回原始空间。
这样可以保留主成分中所包含的结构和模式。
6. 结论通过主成分分析,我们成功地降低了数据的维度,并找到了对总体方差贡献最大的主成分。
这样的降维操作可以减少特征空间的维度,并提取出数据中的重要信息。
主成分分析报告PCA(含有详细推导过程以及案例分析报告matlab版)
主成分分析法(PCA)在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。
I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。
通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。
(二)主成分分析的数学模型对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x X212222111211()p x x x ,,21=其中:p j x x x x nj j j j ,2,1,21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=ppp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:p jp j j j x x x F ααα+++= 2211p j ,,2,1 =要求模型满足以下条件:①j i F F ,互不相关(j i ≠,p j i ,,2,1, =)②1F 的方差大于2F 的方差大于3F 的方差,依次类推③.,2,1122221p k a a a kp k k ==+++于是,称1F 为第一主成分,2F 为第二主成分,依此类推,有第p 个主成分。
主成分分析案例
用 y1 得分来表示食品嗜好程度可有七成把握。 在充分注意到人们普遍的嗜好程度基础上,进一 步考虑到青少年和老年人的嗜好程度,对食品业 的开发方针作出决策时,将有85%的把握。
特别喜欢吃的
醋拌生鱼片、冰激棱 男性喜欢 女性喜欢
一般喜欢
孩子 咖喱饭 炸肉饼、火腿面包 成人 鸡蛋烩饭、炸猪排 酸汤、大头鱼 孩子 干咖喱、浓汤 成人 煮牛肉、生蛋 菜粥、清汤
• 样品的分类(图解样品)
1、计算y1、y2的得分。 2、以y1为横坐标、y2为纵坐标,描点。 3、把样品按在图上的集中情况分成若干组(g组)。 * * , y 4、取每一组的中心 ( y1 k 2k ) (k=1,2,…,g) 作为该组的 代表点。 相应原16个指标的尺寸: x ' r y * r y * 1 11 1k 12 2 k ' * * x r y r y 2 21 1k 22 2 k ' * * x16 r y r y 16 ,1 1k 16 , 2 2 k
反映地区社会经济发展的指标体系
X1:国内生产总值(GDP) X3:第三产业产值占GDP比重 X5:工业企业劳动生产率 X7:每万人拥有卫生技术人员数 X9:教育经费投入占GDP比重 X11:人均邮电业务总量 X13:人均固定资产投资 X15:地方财政收入占GDP比重 X17:科研经费占GDP比重 X2:人均GDP X4:人均出口额 X6:人均社会消费品零售额 X8:每万人高等学校在校生数 X10:人均货运总量 X12:每万人电话机装机数 X14:人均实际利用外资 X16:每万人科研机构数
Y2
0.513225 0.203116 -0.182858 0.193618 0.217290 0.113642 -0.164527 -0.114637 -0.509240 -0.025832 0.083471 0.132592 0.105402 0.199407 -0.181330 -0.261367 -0.295756
主成分分析方法PPT课件
X
x21
x22
x2
p
xn1
xn 2
xnp
❖ 当p较大时,在p维空间中考察问题比较麻烦。 为了克服这一困难,就需要进行降维处理. 要求:较少的几个综合指标尽量多地反映原来较 多变量指标所反映的信息,同时它们之间又是彼 此独立的
例,成绩数据
❖ 100个学生的数学、物理、化学、语文、历 史、英语的成绩如下表(部分)。
p
lk2j 1, (k 1,2,, m)
j 1
Rlk lk (R E)lk 0
计算主成分贡献率及累计贡献率
▲贡献率:
k
p
i
(k 1,2,, p)
i 1
▲累计贡献率:
k
p
j1 j / i1 i
一般取累计贡献率达85—95%的特征值 1, 2 ,, m 所对应的第一、第二、…、第m(m≤p)个主成分
6
6
样方
1
物种X1 1
物种X2 5
2 3 4 5 6 总和 2 0 2 -4 -1 0 2 1 0 -4 -4 0
种X2
X2
12
10
8
6
4
2
0
0
1
2
3
4
5
6
7
种X1
6 5 4 3 2 1 0 -5 -4 -3 -2 -1-1 0 1 2 3 4 5 6 -2 -3 -4 -5
X1
中心化后的原始数据矩阵
X
1 5
2 2
0 1
2 0
4 4
1 4
❖ 把坐标轴X1、 X2刚性地旋转 一个角度,得
到图中新坐标
轴Y1和Y2
X2
6
主成分分析法实例
1、主成分法:用主成分法寻找公共因子的方法如下:假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。
将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系:11111221221122221122....................p p p p pp p pp p Y X X X Y X X X Y X X Xγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到X 得转换关系为:11112121212122221122....................p p p p pp p pp p X Y Y Y X Y Y Y X Y Y Yγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为:1111212112121222221122....................m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。
为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根/i i F Y =,12m ,则式子变为:1111122112211222221122....................m m m m p p p pm m p X a F a F a F X a F a F a F X a F a F a F εεε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩这与因子模型完全一致,这样,就得到了载荷A 矩阵和 初始公因子(未旋转)。
主成分分析法
1.759
0.858 2.096 … -0.337 …
2
3 1 … 23 …
Bartlett 值= 313.417, P<0.0001,即相关矩阵 不是一个单位矩阵,故 考虑进行因子分析。
特征值、贡献率及累积贡献率
Total Variance Explained Initial Eigenvalues Extraction Sums of Squared Loadings % of Variance Cumulative % Total % of Variance Cumulative % 61.638 61.638 4.315 61.638 61.638 27.917 89.554 1.954 27.917 89.554 5.138 94.692 2.644 97.335 1.978 99.313 .473 99.786 .214 100.000
r1 p r2 p ... r pp
2、计算特征值和特征向量 解特征方程
|λE-R|=0
求出特征值 λi(i=1,2,…,p) 将这P个特征值按大小顺序排列,即 λ1≥λ2≥…≥λp≥0 然后按公式
| λi E-R|ei=0
分别求出对应于λi的特征向量ei(i=1,2,…,p)
3、计算主成分贡献率及累计贡献率
从上表知:前三个主成分累计贡献率达92.273%,因此,这三个主成 分Z1、Z2、Z3能够充分反映31个区域第三产业发展的综合水平 。
4、计算主成分载荷
主成分载荷lij
原变量xi
x1 x2 x3 x4 x5 x6 x7
第一主成分l1i 0.946 0.971 0.220 0.795 0.930 -0.0763 0.899
5 计算各省区在一二三主成分上的综合得分
主成分分析法概念及例题
主成分分析法概念及例题主成分分析法主成分分析principal components analysisPCA又称主分量分析主成分回归分析法目归归示??1 什归是主成分分析法??2 主成分分析的基本思想??3 主成分分析法的基本原理??4 主成分分析的主要作用??5 主成分分析法的归算步归??6 主成分分析法的归用分析 o 6.1 案例一主成分分析法在酒归味归价分析中的归用啤1 6.1.1 1 材料方法与6.1.2 2 主成分分析法的基本原理6.1.3 3 主成分分析法在酒归量一致性归价中的归用啤6.1.4 4 归归??7 考文参献归归什归是主成分分析法主成分分析也称主分量分析旨在利用降归的思想把多指归归化归少归合指归。
数几个在归归学中主成分分析principal components analysisPCA是一归归化据集的技归。
数它是一归性归归。
归归归把据归归到一新的坐归系归中使得任何据投影的第一大个个数个数方差在第一坐个归归第一主成分称上第二大方差在第二坐归个第二主成分上依次归推。
主成分分析归常用减少据集的归同归保持据集的归数数数方差归最大的特征。
归是通归保留低归主成分忽略高归主成分献做到的。
归归低归成分往往能归保留住据的最重要方面。
但是归也不是一定的要归具归用而定。
数体归归主成分分析的基本思想在归归归归究中归了全面、系归地分析归归我归必归考归多影因素。
归些涉及的因素一般归指研众响称归在多元归归分析中也归称归量。
因归每归量都在不同程度上反映了所究归归的某些信息且指归个研并之归彼此有一定的相归性因而所得的归归据数反映的信息在一定程度上有重。
在用叠归归方法究多研1归量归归归归量太多增加归算量和增加分析归归的归归性人归希望在归行会定量分析的归程中涉及的归量归少得到的信息量归多。
主成分分析正是适归归一要求归生的是解归归归的理想工具。
决同归在科普效果归的归程中也存在着归归的归归。
科普效果是归具量化的。
在归归归工作中估很体估我归常常归用有代表性的归合指归采用打分的方法归行归故归合指归的归取是重点和归会几个来估个点。
主成分分析的基本思想和应用
主成分分析的基本思想和应用主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,通过保留数据集中的主要特征分量,将高维数据映射到低维空间中,从而实现对数据集的简化。
本文将详细介绍主成分分析的基本思想和应用。
一、基本思想主成分分析的基本思想是将数据集中的多个变量通过线性变换转换为几个线性不相关的变量,这几个变量称为主成分。
在转换过程中,主成分能够最大化数据的方差,从而保留数据集中的主要信息。
通过这种方式,我们可以将高维数据降到较低维度,实现对数据集的简化。
二、数学原理主成分分析的数学原理可以概括为以下几个步骤:1.数据标准化:对数据集进行标准化处理,使得每个变量的均值为0,标准差为1。
2.计算协方差矩阵:根据标准化后的数据计算协方差矩阵,表示数据集中各个变量之间的相关性。
3.计算特征值和特征向量:对协方差矩阵进行特征分解,得到一组特征值和对应的特征向量。
4.选择主成分:根据特征值的大小,降序排列特征值,并选择前k个最大的特征值对应的特征向量作为主成分。
5.形成新的数据集:将原始数据集投影到新的空间中,使得新空间中的数据线性无关,从而实现数据降维。
三、应用主成分分析在许多领域都有广泛的应用,下面列举几个典型的例子:1. 图像处理在图像处理领域,主成分分析可以用于图像降维和图像压缩。
通过保留图像中的主要特征分量,可以将高维的图像数据降到较低维度,从而减少数据量,提高计算效率。
此外,主成分分析还可以用于图像去噪和图像增强等任务。
2. 机器学习在机器学习领域,主成分分析常用于特征提取和特征选择。
通过降维,可以减少模型训练过程中的计算复杂度,提高模型的预测性能。
此外,主成分分析还可以用于数据可视化,将高维数据映射到二维或三维空间中,便于观察数据之间的关系。
3. 金融领域在金融领域,主成分分析可以用于风险管理和资产定价。
通过分析金融市场中的多个变量,提取主要的风险因素,可以帮助投资者更好地理解和预测市场走势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法[编辑]什么就是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)就是一种简化数据集的技术。
它就是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这就是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但就是,这也不就是一定的,要视具体应用而定。
[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量与增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正就是适应这一要求产生的,就是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果就是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取就是个重点与难点。
如上所述,主成分分析法正就是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。
上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。
对作正交变换,令,其中为正交阵,的各分量就是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。
的各分量就是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。
由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。
例如,在对科普产品开发与利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。
经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用与开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。
[编辑]主成分分析法的基本原理主成分分析法就是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。
[编辑]主成分分析的主要作用概括起来说,主成分分析主要由以下几个方面的作用。
1.主成分分析能降低所研究的数据空间的维数。
即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替高维的x空间所损失的信息很少。
即:使只有一个主成分Y l(即m=1)时,这个Y l仍就是使用全部X变量(p个)得到的。
例如要计算Yl的均值也得使用全部x的均值。
在所选的前m个主成分中,如果某个Xi的系数全部近似于零的话,就可以把这个X i删除,这也就是一种删除多余变量的方法。
2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。
3.多维数据的一种图形表示方法。
我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。
要把研究的问题用图形表示出来就是不可能的。
然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布况,由图形可直观地瞧出各样品在主分量中的地位,进而还可以对样本进行分类处理,可以由图形发现远离大多数样本点的离群点。
4.由主成分分析法构造回归模型。
即把各主成分作为新自变量代替原来自变量x做回归分析。
5.用主成分分析筛选回归变量。
回归变量的选择有着重的实际意义,为了使模型本身易于做结构分析、控制与预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。
用主成分分析筛选变量,可以用较少的计算量来选择量,获得选择最佳变量子集合的效果。
[编辑]主成分分析法的计算步骤1、原始指标数据的标准化采集p 维随机向量x = (x1,X2,、、、,X p)T)n 个样品x i =(x i1,x i2,、、、,x ip)T,i=1,2,…,n,n>p,构造样本阵,对样本阵元进行如下标准化变换:其中,得标准化阵Z。
2、对标准化阵Z 求相关系数矩阵其中,。
3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分按确定m 值,使信息的利用率达85%以上,对每个λj, j=1,2,、、、,m,解方程组Rb= λj b得单位特征向量。
4、将标准化后的指标变量转换为主成分U1称为第一主成分,U2称为第二主成分,…,U p称为第p 主成分。
5 、对m 个主成分进行综合评价对m 个主成分进行加权求与,即得最终评价值,权数为每个主成分的方差贡献率。
[编辑]主成分分析法的应用分析[编辑]案例一:主成分分析法在啤酒风味评价分析中的应用[1]啤酒就是个多指标风味食品, 为了全面了解啤酒的风味, 啤酒企业开发了大量的检测方法用于分析啤酒的指标, 但就是面对大量的指标数据, 大多数企业又感到茫然,不知道如何利用这些大量的数据, 由上面的介绍可知,在这种情况下,主成分分析法能够派上用场。
近年来,科研人员为了获得对啤酒风味更好的理解, 多元统计技术的使用越来越多。
这主要有以下两方面的原因:①在啤酒领域里, 几乎没有一个问题能够使用单变量(单指标)就能反映事物的属性, 例如啤酒的好坏、一致性, 不能通过双乙酰一个指标说明问题;②另一个重要的原因就就是, 近年来大量数学统计软件的不断出现与个人电脑的普及促进了多元统计分析技术的应用。
多元统计技术在啤酒风味研究中的一个重要任务就就是找出啤酒风格与啤酒理化指标(风味成分指标也属于理化指标)之间的相关性。
例如可以用多元统计技术来找出啤酒的风味指标与啤酒风味的关系或不同啤酒的风味差异性。
经常使用的多元统计技术有聚类分析、判别分析、主成分分析与回归分析等。
其中主成分分析能够用于多指标产品, 主成分分析可以按照事物的相似性区分产品, 结果可用一维、二维或三维平面坐标图标示, 特别直观。
使用主成分分析法可以研究隐藏在不同变量背后的关系,而且根据这些变量能够获得主成分的背景解释。
鉴于主成分分析在啤酒风味质量应用中的强大作用, 本文简单介绍主成分分析的基本原理及其在啤酒一致性监控中的应用,以引起我国啤酒同行的广泛关注。
[编辑]1 材料与方法1、1 仪器HP 6890 毛细管气相色谱仪(美国安捷伦公司),FID 检测器, HP 7694E 顶空自动进样器, HP 气相色谱化学工作站。
1、2 分析方法1、2、1 样品制备啤酒于5 ℃冷藏, 量取 5 mL 酒液于20 mL 顶空瓶中, 添加2、0 g/L 正丁醇溶液0、10 mL, 加密封垫及铝盖密封,振荡混匀以供顶空气相色谱测定。
1、2、2 色谱条件毛细管色谱柱(DB- WAXETR 30 m×0、53 mm i、d,膜厚1、0 μm);柱温:起始温度为35 ℃, 以10 ℃/min 程序升温至150 ℃, 再以20 ℃/min 升温到180 ℃, 并继续恒温5 min;进样口温度150 ℃; 检测器温度200 ℃; 载气为高纯氮气, 流速为5 mL/min;氢气30 mL/min;空气400 mL/min;采用分流进样,分流比为1∶1。
[编辑]2 主成分分析法的基本原理2、1 主成分分析法在啤酒研究中应用的必要性这里通过一个例子说明, 主成分分析在啤酒研究中的必要性。
假如有6 个啤酒样品,分别标为A- F,每个啤酒样品用3 个指标来描述。
这些指标可以就是仪器的分析数据、感官分析数据或两者都用。
为了便于讨论,假设这3 个指标分别为苦味值(BU)、DMS与酒精浓度。
为了解这6 个样品两两之间的相似性, 便于将这6 个样品进行分类,可以把这6 个样品画在三维空间中,见图1。
显然在这个简单的例子中, 这6 个样品倾向于形成两类, 即分别就是A- C 与D- F。
通过所测的指标可以解释这种分类, 例如, 第一组(A- C)有较高的苦味值与较低的酒精浓度。
这个例子中只涉及到6 个样品与3 个指标。
但就是实际上, 样品数量与指标数量都会很大, 例如, 有20 个指标, 这时, 样品不能在20 维的坐标系中画出。
为了解决多指标的样品的比较问题,可以使用主成分分析法。
2、2 主成分分析法的基本原理主成分分析的第一步就是将所有的指标数据进行标准化, 标准化的一般方法为: (xij− x j mean) / δj, 这里x ij就是样品j 的第i 个指标, x j mean与δj就是第j 个指标的平均值与标准偏差, 通过标准化后, 每个变量的平均值变成0,标准偏差为1。
标准化的好处就是可以消除不同指标间的量纲差异与数量级间的差异。
第二步求出指标间的相关矩阵, 通过相关矩阵, 可以确定具有高度相关性的指标, 这些指标间的协方差可以通过另一个变量替代, 这个变量叫作第一成分。
去掉第一成分后, 计算残留相关阵, 通过残留相关阵, 第二组高度相关的变量也可以发现, 它们的协方差可以用第二成分替代, 第二成分与第一成分就是正交的。
第二成分对原始数据的贡献去除后, 可以提取第三成分。
此过程一直继续, 直到原始数据的所有方差都被提取后结束。
结果就是原数据转化成了同样数量的新变量, 但就是, 这些新变量之间就是正交的。