2017年中考数学复习中考专题:圆与二次函数结合题
二次函数与圆的综合题(中考数学必考压轴题)
二次函数与圆的综合题(中考数学压轴题必考)例1.如图,已知抛物线与x轴交于A,B两点(A在左边),抛物线经过点D以AB为直径画⊙P,试判定点D与⊙P的位置关系,并证明.练习1.如图,二次函数y=ax2﹣(a+1)x(a为常数,且0<a<1)的图象过原点O并与x轴交于点P;过点A(1,﹣1)的直线l垂直y轴于点B,并与二次函数的图象交于点Q,以OA为直径的⊙C交x轴于点D,连接DQ.(1)点B与⊙C的位置关系是;(2)点A是否在二次函数的图象上;(填“是”或“否”)(3)若DQ恰好为⊙C的切线,①猜想:四边形OAQD的形状是,证明你的猜想;②求二次函数的表达式.例2.如图示已知点M的坐标为(4,0),以M为圆心,以2为半径的圆交x轴于A、B,抛物线过A、B两点且与y轴交于点C.过C点作⊙M 的切线CE,求直线OE的解析式.练习2.平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴,设平行于x轴的直线交抛物线y=﹣x2﹣x+2于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.练习3.如图,抛物线y=﹣x2﹣x+2与x轴交于A(﹣4,0),B(2,0),与y 轴交于点C(0,2).以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.练习4.如图,抛物线y=﹣x2+x+2.经过A、B、C三点,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C,M为抛物线的顶点,试说明直线MC与⊙P的位置关系,并证明你的结论.练习5.如图,抛物线与x轴交于A、B两点,与y轴交于C点.以AB为直径作⊙M.(1)求出M的坐标并证明点C在⊙M上;(2)若P为抛物线上一动点,求出当CP与⊙M相切时P的坐标;练习6.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的析式;(2)求点D的坐标:(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.练习7.如图,在平面直角坐标系中,已知OA=n,OC=m,⊙M与y轴相切于点C,与x轴交于A,B两点,∠ACD=90°,抛物线y=ax2+bx+c经过A,B,C三点.(1)求证:∠OCA=∠OBC;(2)若A(x1,0),B(x2,0),且x1,x2满足x1+x2=5,x1•x2=4,求点C 的坐标和抛物线的解析式;(3)若△ACD≌△ABD,在四边形ABDC内有一点P,且点P到四边形四个顶点的距离之和P A+PB+PC+PD最小,求此时距离之和的最小值及P点的坐标(用含n的式子表示).练习8.已知二次函数y=mx2+(m﹣3)x﹣3(m>0)(1)求证:它的图象与x轴必有两个交点;(2)这条抛物线与x轴交于两点A、B(A在B左),与y轴交于点C,顶点为D,sin∠ABD=,⊙M过A、B、C三点,求⊙M的面积;(3)在(2)的条件下,抛物线上是否存在点P,使P A是⊙M的切线?若存在,求出P点的坐标,若不存在,说明理由.例3.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求圆心P的纵坐标.练习9.已知:如图,抛物线y=ax2+bx+1的图象关于y轴对称,且抛物线过点(2,2),点P为抛物线上的动点,以点P为圆心的⊙P与x轴相切,当点P运动对,⊙P始终经过y轴上的一个定点E.(1)求抛物线的解析式;(2)当⊙P的半径为时,⊙P与y轴交于M、N两点,求MN的长;(3)求定点E到直线y=kx﹣8k的距离的最大值.练习10.已知:直线y=﹣x﹣4分别交x、y轴于A、C两点,抛物线y=ax2+bx (a>0)经过A、O两点,且顶点B的纵坐标为﹣2(1)判断点B是否在直线AC上,并求该抛物线的函数关系式;(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,试判断直线AC与⊙D的位置关系,并说明理由;(3)若E为⊙D的优弧AO上一动点(不与A、O重合),连接AE、OE,问在抛物线上是否存在点P,使∠POA:∠AEO=2:3?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.练习11.已知A是x轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,直径OA=m,线段EF是⊙B的一条弦,EF∥x轴,点C为劣弧EF的中点,过点E作DE垂直于EF,交抛物线C1:y=ax2+bx(a>0)于点G,抛物线经过点O和点A.(1)求证:DG=m;(2)拖动点A,如果抛物线C1与⊙B除点O和点A外有且只有一个交点,求b的值;(3)拖动点A,抛物线C1交⊙B于点O、E、F、A,①求证:DE=m﹣;②直接写出FC2的值(用a,m的代数式表示)练习13.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A.B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),求出抛物线的解析式;(4)在该抛物线上是否存在一点D点,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.例4.如图1,抛物线y=ax2+3ax(a为常数,a<0)与x轴交于O,A两点,点B 为抛物线的顶点,点D是线段OA上的一个动点,连接BD并延长与过O,A,B三点的⊙P相交于点C,过点C作⊙P的切线交x轴于点E.(1)①求点A的坐标;②求证:CE=DE;(2)如图2,连接AB,AC,BE,BO,当,∠CAE=∠OBE时,①求证:AB2=AC•BE;②求的值.练习14.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E 四点,B为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.练习15.如图,二次函数与x轴的一个交点A的坐标为(﹣3,0),以点A为圆心作圆A,与该二次函数的图象相交于点B,C,点B,C的横坐标分别为﹣2,﹣5,连接AB,AC,并且满足AB⊥AC.过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N.(1)求该二次函数的关系式;(2)经过点B作直线BD,在A点右侧与x轴交于点D,与二次函数的图象交于点E,使得∠ADB=∠ABM,连接AE,求证:AE=AD;(3)若直线y=kx+1与圆A相切,请求出k的值.例5.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y 轴交于点C.(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式;(2)如图1,连接AC,E为线段AC上一点且横坐标为1,⊙P是△OAE外接圆,求圆心P点的坐标;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F;①点E在运动过程中四边形OEAF的面积是否为定值?如果是,请求出这个定值;如果不是,请说明理由;②求出当△AEF的面积取得最大值时,点E的坐标.练习16.如图1,已知抛物线y=﹣x2+bx+c经过点A(1,0),B(﹣5,0)两点,且与y轴交于点C.(1)求b,c的值.(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O 三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.练习17.如图1,抛物线y=+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式;(2)如图2,以AB为直径在x轴上方画半圆交y轴于点E,圆心为G,P为半圆上一动点,连接DP,点Q为PD的中点.①判断点C、D与⊙G的位置关系,并说明原因;②当点P沿半圆从点B运动到点A时,求线段AQ的最小值.练习18.如图1,二次函数y=ax2﹣3ax+b(a、b为参数,其中a<0)的图象与x 轴交于A、B两点,与y轴交于点C,顶点为D.(1)若b=﹣10a,求tan∠CBA的值(结果用含a的式子表示);(2)若△ABC是等腰三角形,直线AD与y轴交于点P,且AP:DP=2:3.求抛物线的解析式;(3)如图2,已知b=﹣4a,E、F分别是CA和CB上的动点,且EF=AB,若以EF为直径的圆经过点C,并交x轴于M、N两点,求MN的最大值.课后练习1.抛物线y=ax2+bx﹣4交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是介于B、C之间的抛物线上的动点(包括B、C两点),点E是△ABP 的外接圆圆心.(1)求抛物线的解析式;(2)如图1,当P为抛物线的顶点时,求圆心E的坐标;(3)如图2,作PH⊥x轴于点H,延长PH交⊙E于点Q,当P从C点出发,沿该抛物线运动到B点,求点Q在这个运动过程中的路径长.2.如图,在正方形OABC中,AB=4,点E是线段OA(不含端点)边上一动点,作△ABE的外接圆交AC于点D.抛物线y=ax2﹣x+c过点O,E.(1)求证:∠BDE=90°;(2)如图1,若抛物线恰好经过点B,求此时点D的坐标;(3)如图2,AC与BE交于点F.①请问点E在运动的过程中,CF•AD是定值吗?如果是,请求出这个值,如果不是,请说明理由;②若,求点E坐标及a的值.。
2017中考数学复习----二次函数综合题
2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。
最新中考数学复习中考专题:圆与二次函数结合题
2017年中考数学复习中考专题: 圆与函数综合题1、如图,平面直角坐标系中,以点C (22为半径的圆与轴交于A 、B 两点.(1)求A 、B 两点的坐标;(2)若二次函数2y x bx c =++的图象经过点A 、B ,试确定此二次函数的解析式.1、解:(1)过点C 作CM ⊥轴于点M ,则点M 为AB 的中点.∵CA =2,CM =, ∴AM ==1.于是,点A 的坐标为(1,0),点B 的坐标为(3,0)(2)将(1,0),(3,0)代入得,解得 所以,此二次函数的解析式为.2、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线2y x bx c =++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.3、如图,抛物线2y ax bx c =++的对称轴为轴,且经过(0,0116)两点,点P 在抛物线上运动,以P 为圆心的⊙P 经过定点A (0,2),(1)求a,b,c 的值;(2)求证:点P 在运动过程中,⊙P 始终与轴相交;(3)设⊙P 与轴相交于M ()1x ,0,N ()()212x ,0x x 两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标。
4、如图,二次函数y =x 2+bx -3b +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),交y 轴于点C ,且经过点(b -2,2b 2-5b -1).(1)求这条抛物线的解析式;(2)⊙M 过A 、B 、C 三点,交y 轴于另一点D ,求点M 的坐标;(3)连接AM 、DM ,将∠AMD 绕点M 顺时针旋转,两边MA 、MD 与x 轴、y 轴分别交于点E 、F ,若△DMF 为等腰三角形,求点E 的坐标.5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
2017年中考数学备考专题复习二次函数的应用含解析
二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。
初中数学中考复习 第13关 以二次函数与圆的问题为背景的解答题(原卷版)
第十三关:以二次函数与圆的问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。
由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。
“圆”在初中阶段学习占有重要位置,“垂径定理”、“点与圆的位置关系”的判定与性质、“直线与圆的位置关系”的判定与性质、“正多边形的判定与性质”通常是命题频率高的知识点.由于这部分知识的综合性较强,多作为单独的解答题出现.如果把圆放到直角坐标系中,同二次函数结合,则多作为区分度较高的压轴题中出现.此类题目由于解题方法灵活,考查的知识点全面,体现了方程、建模、转化、数形结合、分类讨论等多种数学思想,得到命题者的青睐【解题思路】二次函数与圆都是初中数学的重点内容,历来是中考数学命题的热点,其本身涉及的知识点就较多,综合性和解题技巧较强,给解题带来一定的困难,而将函数与圆相结合,并作为中考的压轴题,就更显得复杂了.只要我们掌握解决这类问题的思路和方法,采取分而治之,各个击破的思想,问题是会迎刃而解的.解决二次函数与圆的问题,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。
解题时要注意各知识点之间的联系和数学思想方法、解题技巧的灵活应用,要抓住题意,化整为零,层层深入,各个击破,从而达到解决问题的目的。
【典型例题】经过点A(1,0)和点B(5,0),与y轴【例1】(2019·黑龙江中考真题)如图,抛物线y=ax2+bx−53交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.【例2】(2019·广西中考真题)如图,直线3y x =-交x 轴于点A ,交y 轴于点C ,点B 的坐标为(1,0),抛物线2(0)y ax bx c a =++≠经过,,A B C 三点,抛物线的顶点为点D ,对称轴与x 轴的交点为点E ,点E关于原点的对称点为F ,连接CE ,以点F 为圆心,12CE 的长为半径作圆,点P 为直线3y x =-上的一个动点.(1)求抛物线的解析式; (2)求BDP ∆周长的最小值;(3)若动点P 与点C 不重合,点Q 为⊙F 上的任意一点,当PQ 的最大值等于32CE 时,过,P Q 两点的直线与抛物线交于,M N 两点(点M 在点N 的左侧),求四边形ABMN 的面积.【例3】(2018·青海中考真题)如图,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,⊙MBC 是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【方法归纳】函数知识要理解好数形结合的思想,知识点的掌握中要理解文字解释和图像之间的关系,至于与圆、三角形、方程的综合题,往往最后一问难度大,要建立模型、框架,完善步骤,循序渐进. 【针对练习】1.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD 的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①√S=√S1+√S2;②√S=√S3+√S4;③“十字形”ABCD的周长为12√10.2.(2019·湖南中考真题)如图,抛物线26y ax ax =+(a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t <0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C . (1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证:CE =DE ;②如图2,连接AC ,BE ,BO ,当3a =∠CAE =∠OBE 时,求11OD OE -的值3.(2019·浙江中考真题)已知在平面直角坐标系xOy 中,直线1l 分别交x 轴和y 轴于点()()3,0,0,3A B -. (1)如图1,已知P 经过点O ,且与直线1l 相切于点B ,求P 的直径长;(2)如图2,已知直线2: 33l y x =-分别交x 轴和y 轴于点C 和点D ,点Q 是直线2l 上的一个动点,以Q 为圆心,.①当点Q 与点C 重合时,求证: 直线1l 与Q 相切;②设Q 与直线1l 相交于,M N 两点, 连结,QM QN . 问:是否存在这样的点Q ,使得QMN ∆是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.4.(2018·山东中考真题)如图①,在平面直角坐标系中,圆心为P (x ,y )的动圆经过点A (1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.5.(2018·江苏中考真题)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.6.(2017·江苏中考真题)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A 的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.7.(2019·山东中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点.其中AB两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径.点E是⊙M 与y轴的另一个交点,过劣弧DE上的点F作FH⊥AD于点H,且FH=1.5.(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.8.(2019·山东中考真题)如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长.(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.9.(2018·山东中考真题)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.10.(2018·湖南中考真题)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB ﹣∠CDB=∠ABD ﹣∠CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式; ①S =1S 2S +;②S=3S 4S +;③“十字形”ABCD 的周长为1210.11.(2017·广西中考真题)已知抛物线y 1=ax 2+bx -4(a≠0)与x 轴交于点A (-1,0)和点B (4,0). (1)求抛物线y 1的函数解析式;(2)如图①,将抛物线y 1沿x 轴翻折得到抛物线y 2,抛物线y 2与y 轴交于点C ,点D 是线段BC 上的一个动点,过点D 作DE ∥y 轴交抛物线y 1于点E ,求线段DE 的长度的最大值;(2)在(2)的条件下,当线段DE 处于长度最大值位置时,作线段BC 的垂直平分线交DE 于点F ,垂足为H ,点P 是抛物线y 2上一动点,⊙P 与直线BC 相切,且S ⊙P :S △DFH =2π,求满足条件的所有点P 的坐标.12.(2018·山东中考真题)抛物线y =ax 2+bx +4(a ≠0)过点A (1,﹣1),B (5,﹣1),与y 轴交于点C . (1)求抛物线的函数表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,求点P 的坐标;(3)如图2,⊙O 1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.13.(2019·四川中考真题)如图,已知抛物线(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求MF的值.14.(2019·江苏中考真题)如图,已知二次函数的图象与轴交于两点与轴交于点,⊙的半径为为⊙上一动点.(1)点的坐标分别为(),();(2)是否存在点,使得为直角三角形?若存在,求出点的坐标;若不存在,请说明理由;(3)连接,若为的中点,连接,则的最大值= .15.(2017·黑龙江中考真题)在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.(1)求抛物线的解析式;(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;(3)将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点的坐标.16.(2017·甘肃中考真题)如图,抛物线与直线交于,两点,直线交轴与点,点是直线上的动点,过点作轴交于点,交抛物线于点.(1)求抛物线的表达式;(2)连接,,当四边形是平行四边形时,求点的坐标;(3)①在轴上存在一点,连接,,当点运动到什么位置时,以为顶点的四边形是矩形?求出此时点的坐标;②在①的前提下,以点为圆心,长为半径作圆,点为上一动点,求的最小值.17.(2017·湖南中考真题)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB 为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足,求二次函数的表达式.18.(2017·江苏中考真题)如图,已知二次函数的图象经过点,,且与轴交于点,连接、、.(1)求此二次函数的关系式;(2)判断的形状;若的外接圆记为,请直接写出圆心的坐标;(3)若将抛物线沿射线方向平移,平移后点、、的对应点分别记为点、、,的外接圆记为,是否存在某个位置,使经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.。
(完整word)2017年中考数学复习中考专题:圆与二次函数结合题
2017年中考数学复习中考专题: 圆与函数综合题1、如图,平面直角坐标系中,以点C (2,3)为圆心,以2为半径的圆与轴交于A 、B 两点.(1)求A 、B 两点的坐标;(2)若二次函数2y x bx c =++的图象经过点A 、B ,试确定此二次函数的解析式.2、如图,半径为2的⊙C 与x 轴的正半轴交于点A,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.3、如图,抛物线2y ax bx c =++的对称轴为轴,且经过(0,0),(1a ,16)两点,点P 在抛物线上运动,以P 为圆心的⊙P 经过定点A (0,2),(1)求a ,b ,c 的值; (2)求证:点P 在运动过程中,⊙P 始终与轴相交;(3)设⊙P 与轴相交于M ()1x ,0,N ()()212x ,0x x 两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标。
4、如图,二次函数y =x 2+bx -3b +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),交y 轴于点C ,且经过点(b -2,2b 2-5b -1)。
(1)求这条抛物线的解析式;(2)⊙M 过A 、B 、C 三点,交y 轴于另一点D ,求点M 的坐标;(3)连接AM 、DM ,将∠AMD 绕点M 顺时针旋转,两边MA 、MD 与x 轴、y 轴分别交于点E 、F ,若△DMF 为等腰三角形,求点E 的坐标。
5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
原题:如图1,在⊙O 中,MN 是直径,AB ⊥MN 于点B ,CD ⊥MN 于点D ,∠AOC =90°,AB =3,CD =4,则BD = 。
九年级中考数学复习练习:类型三 二次函数与圆结合
题型五 函数与几何综合题类型三 二次函数与圆结合针对演练1. (2017麓山国际实验学校二模)已知在平面直角坐标系xOy 中,二次函数y =x 2-2nx -3n 2(n >0)与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C.(1)求A 、B 及顶点的坐标(用含n 的代数式表示);(2)如图所示,当AB =4时,D 为(4,-1),在抛物线上是否存在点P ,使得以线段PD 为直径的⊙O ′经过坐标原点O ?若点P 存在,求出满足条件的点P 的坐标;若不存在,说明理由;(3)在(2)的条件下,已知点E 在x 轴上,点F 在抛物线上,G 为平面内一点,若以B 、E 、F 、G 为顶点的四边形是正方形,请直接写出E 点所有可能的坐标.第1题图2. (2017长沙中考模拟卷五)如图,二次函数y =ax 2+bx +c 的图象交x 轴于点A (-1,0)、B (2,0),交y 轴于点C (0,-2),过点A 、C 画直线.(1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且P A =PC ,求OP 的长;(3)点M 在二次函数图象上,以点M 为圆心的圆与直线AC 相切,切点为点H , ① 若点M 在y 轴右侧,且△CHM ∽△AOC (点C 与点A 对应),求点M 的坐标;② 若⊙M 的半径为455,求点M 的坐标.第2题图 备用图3. (2017日照)如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M (4,0),N (0,3)两点.已知抛物线开口向上,与⊙C 交于N 、H 、P 三点,P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D .(1)求线段CD 的长及顶点P 的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x 轴于A 、B 两点,在抛物线上是否存在点Q ,使得S 四边形OPMN =8S △QAB ,且△QAB ∽△OBN 成立,若存在,请求出Q 点的坐标;若不存在,请说明理由.第3题图4. (2017长沙中考模拟卷一)如图,直线y =x +2与抛物线y =x 2-2mx +m 2+m 交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,抛物线的对称轴与直线AB 交于点M ,与x 轴交于点N .(1)若点P 为直线OD 上一动点,求△APB 的面积;(2)当四边形CODM 是菱形时,求点D 的坐标;(3)作点B 关于直线MD 的对称点B ′,以点M 为圆心,MD 为半径作⊙M ,点Q是⊙M 上一动点,求QB ′+22QB 的最小值.第4题图答案1. 解:(1)令y =0,则x 2-2nx -3n 2=0,解得x =-n 或3n ,∵n >0且A 点在B 点左侧,∴A 点坐标为(-n ,0),B 点坐标为(3n ,0),∵二次函数对称轴为x =--2n 2=n ,将x =n 代入函数得y =-4n 2,∴顶点为(n ,-4n 2);(2) 在抛物线上存在点P 能够使得以线段PD 为直径的⊙O ′经过坐标原点O . 理由如下:∵AB =4n =4,解得n =1,∴y =x 2-2x -3,设P 点的坐标为(x ,x 2-2x -3),∵线段PD 为⊙O′的直径,D (4,-1),∴O ′点的坐标为(x +42,x 2-2x -42), ∵O′O =O′D ,∴(x +42)2+(x 2-2x -42)2=(x +42-4)2+(x 2-2x -42+1)2, 整理得x 2-6x -3=0,解得x =3±23,当x =3+23时,x 2-2x -3=(3+23)2-2(3+23)-3=12+83, 此时P 点的坐标为(3+23,12+83),当x =3-23时,x 2-2x -3=(3-23)2-2(3-23)-3=12-83,此时P 点的坐标为(3-23,12-83),综上所述,当P 点坐标为(3+23,12+83)或(3-23,12-83)时,以线段PD 为直径的⊙O ′经过坐标原点O ;(3)E 点所有可能坐标为(0,0),(-2,0),(-3,0),(-7,0).理由如下: F 点在抛物线y =x 2-2x -3上,E 点在x 轴上,设E 点的坐标为(m ,0), 设F 点的坐标为(m ,m 2-2m -3),分两种情况:①当BE 为正方形BEFG 的边时,∵四边形BEFG 是正方形,∴BE =EF ,∴|m -3|=|m 2-2m -3|,即m -3=m 2-2m -3,或m -3=-(m 2-2m -3),解得m 1=0,m 2=3,或m 3=-2,m 4=3,当m =3时,E 点与B 点重合,不合题意,舍去,∴E 点的坐标为(0,0)或(-2,0);②当BE 为正方形BFEG 的对角线时,∵BE =FG ,BE ⊥FG ,BE 与FG 互相平分,∴点F 在BE 的垂直平分线上,且点F 到x 轴的距离12BE ,∴F 点的坐标为(m +32,|m -32|),∵点F 在抛物线y =x 2-2x -3上,∴|m -32|=(m +32)2-2(m +32)-3,即m -32=(m +32)2-2(m +32)-3,或-m -32=(m +32)2-2(m +32)-3,解得m 1=-3,m 2=3,或m 3=-7,m 4=3,当m =3时,E 点与B 点重合,不合题意,舍去,∴E 点的坐标为(-3,0)或(-7,0),综上可知,E 点所有可能的坐标为(0,0)或(-2,0)或(-3,0)或(-7,0).2. 解:(1)∵二次函数y =ax 2+bx +c 的图象交x 轴于点A(-1,0)、B (2,0), ∴设该二次函数的解析式为y =a (x +1)(x -2),又∵二次函数y =ax 2+bx +c 的图象交y 轴于点C (0,-2),将x =0,y =-2代入得-2=a (0+1)(0-2),解得a =1,∴抛物线的解析式为y =(x +1)(x -2),即y =x 2-x -2;(2)设OP =x ,则PC =P A =x +1,在Rt △POC 中,OP =x ,PC =x +1,OC =2,由勾股定理可得:x 2+22=(x +1)2,解得x =32,即OP =32;(3)① ∵△CHM ∽△AOC ,点C 与点A 对应,∴∠MCH =∠CAO ,情形Ⅰ:如解图①,当H 在点C 下方时,∵∠MCH =∠CAO ,∠CAO +∠OCA =90°,∴∠MCH +∠OCA =90°,∴∠OCM =90°,∴CM ∥x 轴,∴y M =-2,又∵点M 在二次函数图象上,∴x 2-x -2=-2,解得x 1=0(舍去)或x 2=1,∴M (1, -2);情形Ⅱ:如解图②,当H 在点C 上方时,∵∠MCH =∠CAO ,∴P A =PC ,由(2)得,M 为直线CP 与抛物线的另一交点,设直线CM 的解析式为y =kx -2,将点P (32,0)的坐标代入,得32k -2=0,解得k =43,∴y =43x -2,由43x -2=x 2-x -2,解得x =0(舍去)或x =73,∴y =43×73-2=109,∴M (73,109),∴点M 的坐标为(1,-2)或(73,109);②在x 轴上取一点D ,如解图③,过点D 作DE ⊥AC 于点E ,使DE =455,作D关于点A 的对称点D′也满足要求.在Rt △AOC 中AC =AO 2+CO 2=12+22=5,∵∠COA =∠DEA =90°,∠OAC =∠EAD ,∴△AED ∽△AOC ,∴AD AC =DE OC , ∴AD 5=4552,解得AD =2, ∴点D 的坐标为(1,0)或(-3,0),如解图③,过点D 作DM ∥AC ,交抛物线于点M ,设直线AC 的解析式为y =kx -2,将A (-1,0)代入得k =-2,∴设直线DM 的解析式为y =-2x +b ,将D (1,0)或(-3,0)代入得-2+b =0或6+b =0,解得b =2或b =-6,∴直线DM 的解析式为:y =-2x +2或y =-2x -6,当-2x -6=x 2-x -2时,即x 2+x +4=0,Δ=b 2-4ac =-15<0,方程无实数根, 当-2x +2=x 2-x -2时,即x 2+x -4=0,得x 1=-1-172,x 2=17-12,当x =-1-172时, -2x +2=3+17,当x =17-12时,-2x +2=3-17,∴点M 的坐标为(-1-172,3+17)或(17-12,3-17).3. 解:(1)∵⊙C 经过M 、N 、O 三点,且∠MON 是直角, ∴MN 是⊙C 的直径,即MN 过圆心C ,∵M(4,0),N (0,3),∴OM =4,ON =3,C (2,32),∴MN =OM 2+ON 2=42+32=5,∴⊙C 的半径为52,∵CP 所在直线为抛物线的对称轴,且与x 轴垂直,垂足为点D ,CP 为⊙C 的半径,∴D (2,0),∴CD =32,∴DP =CP -CD =52-32=1,∴P (2,-1);(2)∵抛物线的顶点坐标为P (2,-1),∴可设抛物线表达式为y =a (x -2)2-1,∵抛物线经过点N (0,3),∴3=a (0-2)2-1,解得a =1,∴抛物线的表达式为y =(x -2)2-1;(3)存在.理由如下:∵P (2,-1),∴DP =1,∵OM =4,ON =3,∴S 四边形OPMN =S △MON +S △MOP =12OM ·ON +12OM ·DP =8,∵S 四边形OPMN =8S △QAB ,∴S △QAB =1,将y =0代入y =(x -2)2-1中,解得x =1或x =3,∴A (1,0),B (3,0),∴AB =2,∴△QAB 中AB 边上的高为2S △QAB AB =1,∴若存在满足条件的点Q ,则Q 点的纵坐标为1或-1, ∵OB =ON =3,∠NOB =90°,∴△OBN 为等腰直角三角形,∵△OBN ∽△QAB ,∴△QAB 为等腰直角三角形,∠BQA =∠NOB =90°, 当点Q 在x 轴上方的抛物线上时,∠BQA 不可能为直角, ∴点Q 不可能在x 轴上方;当点Q 在x 轴下方时,∵△QAB 是等腰直角三角形,∠BQA =90°,∴AQ =BQ ,∴点Q 在抛物线的对称轴上,∴点Q 为抛物线的顶点,当Q (2,-1)时,其纵坐标为-1,满足条件,且AQ =BQ =2, ∵AB =2,AQ 2+BQ 2=AB 2,∴∠AQB 为直角,△ABQ 为等腰直角三角形,满足题意, 综上所述:抛物线上存在点Q (2,-1),使得S 四边形OPMN =8S △QAB ,且△QAB ∽△OBN.4. 解:(1)由⎩⎨⎧y =x +2y =x 2-2mx +m 2+m, 解得⎩⎨⎧x 1=m -1y 1=m +1或⎩⎨⎧x 2=m +2y 2=m +4, ∵点A 在点B 的左侧,∴A (m -1,m +1),B (m +2,m +4),∴AB =[m -1-(m +2)]2+[(m +1)-(m +4)]2=3 2.∵y =x 2-2mx +m 2+m =(x -m )2+m ,∴D (m ,m ),∴∠DON =∠COD =45°,∴直线OD 的解析式为y =x .∵直线y =x +2与y 轴交于点C ,∴C (0,2).∴OC =2,∵直线AB 的解析式为y =x +2,∴AB ∥OD ,∴直线AB 与OD 之间的距离h =22OC =2,∴S △APB =12AB ·h =12×32×2=3;(2)∵AB ∥OD ,OC ∥DM ,∴四边形CODM 是平行四边形,∵四边形CODM 是菱形,∴OD =OC . ∴(2m )2=22,解得:m =±2,∴点D 的坐标为(2,2)或(-2,-2);(3)∵四边形CODM 是平行四边形,∴MQ =MD =OC =2,∵A (m -1,m +1),B(m +2,m +4),抛物线对称轴为x =m , ∴点B 到对称轴的距离为m +2-m =2,如解图,连接BF ,∵直线A B 的解析式为y =x +2,∴∠FMB =∠MBF =45°,∴BF =MF =2,∠MFB =90°,∴MB =22,取MB 的中点E ,则ME =2,∴ MQ 2=4=ME·MB ,即MQ MB =ME MQ又∵∠QME =∠BMQ ,∴△QME ∽△BMQ ,∴QE QB =ME MQ =22,∴QE =22QB ,∴QB ′+22QB 的最小值即为QB ′+QE 的最小值,亦即线段B′E 的长, 设直线MD 与⊙M 相交于另一点F , ∵点B 关于直线MD 的对称点为B ′,∴∠B ′MF =∠BMF =45°,MB ′=MB =22, ∴∠B ′MB =90°,∴B′E =B′M 2+ME 2=8+2=10.。
中考数学备考资料-二次函数与圆结合的压轴题及详细解析
二次函数和圆【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数图象上,并与x 轴相交于A 、B 两点. k y x =(1)k >且始终与y 轴相切于定点C (0,1).(1)求经过A 、B 、C 三点的二次函数图象的解析式;(2)若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形.【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线与坐标轴交于D 、E 。
设M 是AB 的中点,P 是线段DE 上的动点.32y x =-+(1)求M 、D 两点的坐标;(2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标;(3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.(2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;(3)试判断点C是否在抛物线上?(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C5点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M 与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.【例题5】(南充市)25.如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线过点A 和B ,与y 轴交于点C .216y x bx c =++(1)求点C 的坐标,并画出抛物线的大致图象.(2)点Q (8,m )在抛物线上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的216y x bx c =++最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.【例题6】(山西省临汾市)26. 如图所示,在平面直角坐标系中,经过原点,且与轴、轴分M A O x y 别相交于两点.(60)(08)A B --,,,(1)请求出直线的函数表达式;AB (2)若有一抛物线的对称轴平行于轴且经过点,顶点在上,开口向下,且经过点,求此抛物线的y M C M A B 函数表达式;(3)设(2)中的抛物线交轴于两点,在抛物线上是否存在点,使得?若存在,请求x D E ,P 115PDE ABC S S =△△出点的坐标;若不存在,请说明理由.P x【例题7】在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x为何值时,y 的值最大,最大值是多少?【例题8】如图,点P 在y 轴上,半径为3的⊙P 分别交x 轴于A 、B 两点,AB=4,交y 轴负半轴于点C ,连接AP 并延长交⊙P 于点D ,过D 作⊙P 的切线分别交x 轴、y 轴于点F 、G ;(1)求直线FG 的解析式;(2)连接CD 交AB 于点E ,求的值;PCD tan (3)设M 是劣弧BC 上的一个动点,连接DM 交x 轴于点N ,问:是否存在这样的一个常数k ,始终满足AN·AB+DN·DM=K ,如果存在,请求出K 的值,如果不存在,请说明理由;B DB图 1图 3。
中考数学压轴题二次函数与圆
中考数(Shu)学压轴题二次函数与圆一(Yi)、二次函数与圆(Yuan)综合【例1】已知(Zhi):抛物线与(Yu)轴(Zhou)相交于两(Liang)点,且(Qie).(Ⅰ)若,且为正整数,求抛物线的解析式;(Ⅱ)若,求的取值范围;(Ⅲ)试判断是否存在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;(Ⅳ)若直线过点,与(Ⅰ)中的抛物线相交于两点,且使,求直线的解析式.【解析】(Ⅰ)解法一:由题意得,.解得,.为正整数,∴.∴.解法二:由题意知,当时,.(以下同解法一)解法三:,.又.∴.(以下同解法一.)解法四:令,即,∴.(以下同解法三.)(Ⅱ)解法一:.,即.,∴.解得:.∴的取值范围是.解法二:由题意知,当时,.解得:.∴的取值范围是.解法三:由(Ⅰ)的解法三、四知,.∴∴.∴的(De)取值范围是.(Ⅲ)存(Cun)在.解法一(Yi):因为过两点的(De)圆与轴(Zhou)相切于点,所(Suo)以两点(Dian)在轴的同(Tong)侧,∴.由切割线定理知,,即.∴,∴∴.解法二:连接.圆心所在直线,设直线与轴交于点,圆心为,则.,∴在中,.即.解得.(Ⅳ)设,则.过分别向轴引垂线,垂足分别为.则.所以由平行线分线段成比例定理知,.因此,,即.过分别向轴引垂线,垂足分别为,则.所以....,或.当时,点.直线过,解得当时,点.直线过,解得故所求直线的解析式为:,或.【例2】已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式并且线段CM的长为(1)求抛物线的解析式。
(2)设抛物(Wu)线与x轴有(You)两个交点A(X1 ,0)、B(X2,0),且(Qie)点A在(Zai)B的左侧,求线(Xian)段AB的(De)长。
(3)若(Ruo)以AB为(Wei)直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。
【解析】(1)解法一:由已知,直线CM:y=-x+2与y轴交于点C(0,2)抛物线.过点C(0,2),所以c=2,抛物线的顶点M在直线CM上,所以,解得或若,点C、M重合,不合题意,舍去,所以.即M过M点作y轴的垂线,垂足为Q,在所以,,解得,。
专题30 圆与二次函数结合(解析版)
专题30 圆与二次函数结合1.一动点P 在二次函数2111424y x x =-+的图像上自由滑动,若以点P 为圆心,1为半径的圆与坐标轴相切,则点P 的坐标为______.【答案】(1,1)-或(3,1)或(1,0)【分析】根据题意可分两种情况讨论:①当P 与x 轴相切时,则点P 的纵坐标为1,则得一元二次方程,解方程即可;②当P 与y 轴相切时,点P 的横坐标为1或-1,则可得点P 的坐标,综上即可求解. 【详解】解:如图所示:则可分两种情况:①当P 与x 轴相切时,则点P 的纵坐标为1,令21111424x x -+=,解得11x =-,23x =,此时点P 的坐标为:(1,1)-或(3,1),②当P 与y 轴相切时,点P 的横坐标为1或-1,则此时点P 的坐标为:(1,1)-或(1,0), 综上所述:点P 的坐标为:(1,1)-或(3,1)或(1,0), 故答案为:(1,1)-或(3,1)或(1,0).【点睛】本题考查了二次函数的图像及性质和圆的切线的应用,掌握切线的性质,巧妙运用分类讨论思想解决问题是解题的关键.2.如图,平面直角坐标系中,以点C (2,3)为圆心,以2为半径的圆与x 轴交于A ,B 两点.若二次函数y =x 2+bx +c 的图象经过点A ,B ,试确定此二次函数的解析式为 ____________.【答案】y=x 2-4x +3【分析】过点C 作CH ⊥AB 于点H ,然后利用垂径定理求出CH 、AH 和BH 的长度,进而得到点A 和点B 的坐标,再将A 、B 的坐标代入函数解析式求得b 与c ,最后求得二次函数的解析式. 【详解】解:过点C 作CH ⊥AB 于点H ,则AH=BH ,∵C (2,3), ∴CH=3, ∵半径为2, ∴AH=BH=()2223-=1,∵A (1,0),B (3,0),∴二次函数的解析式为y=(x ﹣1)(x ﹣3)=x 2﹣4x +3, 故答案为:y=x 2-4x +3.【点睛】本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C 作CH ⊥AB 于点H ,利用垂径定理求出点A 和点B 的坐标. 3.如图,抛物线2143115y x =-与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.【答案】26【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可. 【详解】令214311515y x x =--中y=0,得x 1=-3,x 2=53, ∴直线AC 的解析式为313y x =--, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1 ∴PQ 2=PB 2-BQ 2, =(x-53)2+(313x )2-1, =242837533x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ 的最小值是26, 故答案为:26,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.二、解答题4.如图,在平面直角坐标系中,以()5,4D 为圆心的圆与y 轴相切于点C ,与x 轴相交于A 、B 两点,且6AB =.(1)求经过C 、A 、B 三点的抛物线的解析式; (2)设抛物线的顶点为F ,证明直线FA 与D 相切;(3)在x 轴下方的抛物线上,是否存在一点N ,使CBN 面积最大,最大值是多少,并求出N 点坐标. 【答案】(1)215442y x x =-+ (2)证明见解析 (3)存在.当4n =时,BCNS 最大,最大值为16,此时()4,2N -.【分析】(1)连接CD ,由y 轴是D 的切线,可得DC y ⊥轴,过点D 作DE AB ⊥于点E ,根据垂径定理可得3AE BE ==,连接AD ,在Rt ADE △中可求出AD ,即圆的半径,然后利用矩形的判定证明四边形OCDE 是矩形,得到4CO =,2OA =,8OB =,从而得到C 、A 、B 三点的坐标,再利用待定系数法即可确定经过点C 、A 、B 三点的抛物线的解析式;(2)因为点D 为圆心,点A 在圆周上,5r AD ==,利用勾股定理的逆定理证明90DAF ∠=︒即可; (3)设存在点N ,过点N 作NPy 轴,交BC 于点P ,求出直线BC 的解析式,设点N 的坐标215,442n n n ⎛⎫-+ ⎪⎝⎭,则可得点P 的坐标为1,42n n ⎛⎫-+⎪⎝⎭,从而根据BCN PNC PNB S S S =+△△△,表示出BCN △的面积,利用配方法可确定最大值,继而可得出点N 的坐标. (1)解:如图,连接CD ,AD ,过点D 作DE AB ⊥于点E , ∴90DEO ∠=︒,∵以()5,4D 为圆心的圆与y 轴相切于点C ,且6AB =,90COB ∠=︒,∴DC y ⊥轴,1AE BE AB 32===,4DE =,∴90DCO ∠=︒,2222435DA DE AE A =+=+=, ∴四边形OCDE 是矩形, ∴4CO DE ==,5==OE CD ,∴2OA OE AE =-=,8OB OA AB =+=, ∴()0,4C ,()2,0A ,()8,0B ,设经过点C 、A 、B 三点的抛物线解析式为:2y ax bx c =++, 将点C 、A 、B 三点的坐标代入可得:42064804a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得:14524a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴经过C 、A 、B 三点的抛物线的解析式为:215442y x x =-+.(2)证明:∵点D 为圆心,点A 在圆周上, 由(1)知,5r DA ==, 抛物线解析式为:215442y x x =-+,且顶点F 的坐标为95,4⎛⎫- ⎪⎝⎭, 又∵()5,4D ,与D 相切.N ,使CBN 面积最大,N 作NP y 轴,交()8,0B ,的解析式为:y kx =NPy 轴,交的坐标为142n =-+BCN PNC S =△当4n =时,BCNS最大,最大值为16,此时()4,2N -.【点睛】本题考查了二次函数及圆的综合应用,涉及垂径定理,矩形的判定和性质,切线的判定与性质,勾股定理及勾股定理逆定理,待定系数法求二次函数解析式,二次函数的性质等知识.由BCN PNC PNB S S S =+△△△得到BCNS与n 的函数关系是解题的关键.5.定义:平面直角坐标系xOy 中,过二次函数图像与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P (2,2),以P 5P 是不是二次函数y =x 2﹣4x +3的坐标圆,并说明理由;(2)已知二次函数y =x 2﹣4x +4图像的顶点为A ,坐标圆的圆心为P ,如图1,求△POA 周长的最小值; (3)已知二次函数y =ax 2﹣4x +4(0<a <1)图像交x 轴于点A ,B ,交y 轴于点C ,与坐标圆的第四个交点为D ,连接PC ,PD ,如图2.若∠CPD =120°,求a 的值. 【答案】(1)⊙P 是二次函数y =x 2﹣4x +3的坐标圆,理由见解析 (2)△POA 周长的最小值为6 (3)43312a +=【分析】(1)先求出二次函数y=x2-4x+3图像与x轴、y轴的交点,再计算这三个交点是否在以P(2,2)为圆心,5为半径的圆上,即可作出判断.(2)由题意可得,二次函数y=x2-4x+4图像的顶点A(2,0),与y轴的交点H(0,4),所以△POA周长=PO+P A+OA=PO+PH+2≥OH+2,即可得出最小值.(3)连接CD,P A,设二次函数y=ax2-4x+4图像的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,设PE=m,由∠CPD=120°,可得P A=PC=2m,CE=3m,PF=4-m,表示出AB、AF=BF,在Rt△P AF中,利用勾股定理建立方程,求得m的值,进而得出a的值.(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图像与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴P A=PB=PC=5,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图像的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+P A+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD ,P A ,设二次函数y =ax 2﹣4x +4图像的对称轴l 与CD 交于点E ,与x 轴交于点F ,由对称性知,对称轴l 经过点P ,且l ⊥CD , ∵AB =161641a aa a--=, ∴AF =BF =21aa-, ∵∠CPD =120°,PC =PD ,C (0,4), ∴∠PCD =∠PDC =30°,设PE =m ,则P A =PC =2m ,CE =3m ,PF =4﹣m , ∵二次函数y =ax 2﹣4x +4图像的对称轴l 为2x a=, ∴23m a=,即23a m =,在Rt △P AF 中,P A 2=PF 2+AF 2, ∴222214(4)()a m m a-=-+, 即22224(1)34(4)43mm m m -=-+,化简,得(823)16m +=,解得843m =+, ∴2433123a m+==.【点睛】此题是二次函数与圆的综合题,主要考查了二次函数的性质、圆的基本性质、解直角三角形、勾股定理等知识以及方程的思想,添加辅助线构造直角三角形是解答本题的关键.6.已知抛物线y =ax 2+bx +3(a ≠0)经过A (3,0)、B (4,1)两点,且与y 轴交于点C . (1)求抛物线的解析式;(2)如图,设抛物线与x 轴的另一个交点为D ,在抛物线上是否存在点P ,使△P AB 的面积是△BDA 面积的2倍?若存在,求出点P 的坐标;若不存在,请说明理由.(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合),经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求面积的最小值及E 点坐标.【答案】(1)215322y x x =-+;(2)存在,点P 坐标(7172-,5172-)或(7172+,5172+);(3)面积的最小值为94,E 点坐标(32,32) 【分析】(1)根据待定系数法求解即可;(2)根据抛物线的解析式求出点D 的坐标,取点E (1,0),作EP ∥AB 交抛物线于点P ,得到直线EP 为y =x ﹣1,联立方程组求解即可;(3)作BD ⊥OA 于D ,得到OA =OC =3,AD =BD =1,证明EF 是△AEO 的外接圆的直径,得到△EOF 是等腰直角三角形,当OE 最小时,△EOF 的面积最小,计算即可; 【详解】(1)将点A (3,0),B (4,1)代入可得: 933014431a b a b ++⎧⎨++⎩==,解得:1252a b ⎧=⎪⎪⎨⎪=-⎪⎩, 故函数解析式为215322y x x =-+; (2)∵抛物线与x 轴的交点的纵坐标为0, ∴2153022x x -+=,解得:x 1=3,x 2=2, ∴点D 的坐标为(2,0),取点E (1,0),作EP ∥AB 交抛物线于点P ,∵ED =AD =1,∴此时△P AB 的面积是△DAB 的面积的两倍, ∵直线AB 解析式为y =x ﹣3, ∴直线EP 为y =x ﹣1,由2115322y x y x x =-⎧⎪⎨=-+⎪⎩解得71725172x y ⎧-=⎪⎪⎨-⎪=⎪⎩或71725172x y ⎧+=⎪⎪⎨+⎪=⎪⎩, ∴点P 坐标(7172-,5172-)或(7172+,5172+). (3)如图2中,作BD ⊥OA 于D .∵A (3,0),C (0,3),B (4,1), ∴OA =OC =3,AD =BD =1, ∴∠OAC =∠BAD =45°, ∵∠OAF =∠BAD =45°, ∴∠EAF =90°,∴EF 是△AEO 的外接圆的直径, ∴∠EOF =90°,∴∠EFO =∠EAO =45°, ∴△EOF 是等腰直角三角形, ∴当OE 最小时,△EOF 的面积最小, ∵OE ⊥AC 时,OE 最小,OC =OA ,∴CE =AE ,OE =12AC =322, ∴E (32,32),S △EOF =1323292224⨯⨯=.∴当△OEF 的面积取得最小值时,面积的最小值为94,E 点坐标(32,32). 【点睛】本题主要考查了二次函数综合、一次函数的性质、圆的综合应用,准确计算是解题的关键. 7.如图,在直角坐标系中,抛物线y =ax 2+bx -2与x 轴交于点A (-3,0)、B (1,0),与y 轴交于点C .(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D ,使得△ABD 的面积等于△ABC 的面积的53倍?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点E 是以点C 为圆心且1为半径的圆上的动点,点F 是AE 的中点,请直接写出线段OF 的最大值和最小值.【答案】(1)224x 233y x =+-;(2)存在,理由见解析;D (-4, 103)或(2,103);(3)最大值13122+;最小值13122- 【分析】(1)将点A 、B 的坐标代入函数解析式计算即可得到;(2)点D 应在x 轴的上方或下方,在下方时通过计算得∴△ABD 的面积是△ABC 面积的43倍,判断点D 应在x 轴的上方,设设D (m ,n ),根据面积关系求出m 、n 的值即可得到点D 的坐标;(3)设E(x,y),由点E 是以点C 为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E 的坐标为E 2(,12)x x,再根据点F 是AE 中点表示出点F 的坐标2312(,)22x x ,再设设F(m,n),再利用m 、n 、与x 的关系得到n=21(23)22m ,通过计算整理得出22231(1)()()22n m ,由此得出F 点的轨)时,02C (,-)4533<,所以设D (m ,n ), △∴n =103∴223m +y=212x ,2,12)x x ,是AE 的中点, 的坐标2312(,)22x x ,,n=2122x ,n=21(23)22m ,∴2n+2=21(23)m ,∴(2n+2)2=1-(2m+3)2, ∴4(n+1)2+4(32m)2=1, ∴22231(1)()()22n m, ∴F 点的轨迹是以3(,1)2--为圆心,以12为半径的圆,∴最大值:2231131(0)12222, 最小值:2231131(0)12222最大值13122+;最小值13122- 【点睛】此题是二次函数的综合题,考察待定系数法解函数关系式,图像中利用三角形面积求点的坐标,注意应分x 轴上下两种情况,(3)还考查了两点间的中点坐标的求法,两点间的距离的确定方法:两点间的距离的平方=横坐标差的平方+纵坐标差的平方.8.如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线y =16x 2+bx+c 过点A 和B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象(要求过点A 、B 、C ,开口方向、顶点和对称轴相对准确)(2)点Q (8,m )在抛物线y =16x 2+bx+c 上,点P 为此抛物线对称轴上一个动点,求PQ+PB 的最小值;(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.【答案】(1)C (0,2),图象见解析;(2)PQ+PB 的最小值210;(3)OE 的解析式为y=12x -. 【详解】试题分析:(1)根据题意可知点A ,B 的坐标分别为(2,0),(6,0),代入函数解析式即可求得抛物线的解析式,即可得点C 的坐标;(2)根据图象可得PQ+PB 的最小值即是AQ 的长,所以抛物线对称轴l 是x=4.所以Q (8,m )抛物线上,∴m=2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK=2,AK=6,求的AQ 的值即可;(3)此题首先要证得OE ∥CM ,利用待定系数法求得CM 的解析式,即可求得OE 的解析式. 试题解析:(1)由已知,得A (2,0),B (6,0),∵抛物线y=16x 2+bx+c 过点A 和B ,则2212206{16606b c b c ⨯++⨯++== 解得4{32b c -== 则抛物线的解析式为y=16x 2-43x+2.故C (0,2).(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确) (2)如图①,抛物线对称轴l 是x=4. ∵Q (8,m )在抛物线上,∴m=2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK=2,AK=6, ∴AQ=22=210AK QK +.又∵B (6,0)与A (2,0)关于对称轴l 对称, ∴PQ+PB 的最小值=AQ=210. (3)如图②,连接EM 和CM .由已知,得EM=OC=2.∵CE是⊙M的切线,∴∠DEM=90°,则∠DEM=∠DOC.又∵∠ODC=∠EDM.故△DEM≌△DOC.∴OD=DE,CD=MD.又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.则OE∥CM.设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),∴40 {2k bb+==解得1 {22 kb-==直线CM的解析式为y=−12x+2.又∵直线OE过原点O,且OE∥CM,∴OE的解析式为y=−12x或y=0.5x.9.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为.(直接写出答案)【答案】(1)y=﹣x 2+2x+3;(2)当x=32时,CD 最大=94;(3)x=±12或x=±2;(4)1.【详解】分析:(1)用待定系数法求出抛物线解析式即可;(2)先确定出直线AB 解析式,进而得出点D ,C 的坐标,即可得出CD 的函数关系式,即可得出结论;(3)先确定出CD=|-x2+3x|,DP=|-x+3|,再分两种情况解绝对值方程即可;(4)利用四个点在同一个圆上,得出过点B ,C ,P 的外接圆的圆心既是线段AB 的垂直平分线上,也在线段PC 的垂直平分线上,建立方程即可. 本题解析:(1)∵抛物线y=﹣x 2+bx+c 与x 轴正半轴交于点A (3,0),与y 轴交于点B (0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x 2+2x+3;(2)∵A (3,0),B (0,3),∴直线AB 解析式为y=﹣x+3, ∵P (x ,0).∴D (x ,﹣x+3),C (x ,﹣x 2+2x+3), ∵0<x <3,∴CD=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x=﹣(x ﹣32)2+94,当x=32时,CD 最大=94; (3)由(2)知,CD=|﹣x 2+3x|,DP=|﹣x+3|①当S △PDB =2S △CDB 时,∴PD=2CD ,即:2|﹣x 2+3x|=|﹣x+3|,∴x=±12或x=3(舍),②当2S △PDB =S △CDB 时,∴2PD=CD ,即:|﹣x 2+3x|=2|﹣x+3|,∴x=±2或x=3(舍), 即:综上所述,x=±12或x=±2; (4)直线AB 解析式为y=﹣x+3,∴线段AB 的垂直平分线l 的解析式为y=x , ∵过点B ,C ,P 的外接圆恰好经过点A ,∴过点B ,C ,P 的外接圆的圆心既是线段AB 的垂直平分线上,也在线段PC 的垂直平分线上, ∴2232x x x -++=,∴x=±3,故答案为3± 10.如图,已知抛物线的对称轴为直线l :4,x =且与x 轴交于点(2,0),A 与y 轴交于点C (0,2).(1)求抛物线的解析式;(2)试探究在此抛物线的对称轴l 上是否存在一点P ,使AP CP +的值最小?若存在,求AP CP +的最小值,若不存在,请说明理由;(3)以AB 为直径作⊙M ,过点C 作直线CE 与⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE 的解析式. 【答案】解:(1)如图,由题意,设抛物线的解析式为:2y a x 4a 0k =-+≠()()∵抛物线经过(2,0)A 、C (0,2).∴24)204)2(0{(2a k a k --+=∴+= 解得:a=16,23k =-.∴212(4)63y x =--,即:214263y x x =-+. (2)存在.令0y =,得28120,x x -+=即(2)(6)0x x --=,122, 6.x x ∴== ∴抛物线与x 轴的另-交点(6,0)B .如本题图2,连接CB 交l 于点P ,则点P 即是使AP CP +的值最小的点.因为A B 、关于l 对称,则AP BP =,AP CP CB ∴+=,即AP CP +的最小值为BC . ∵6,2OB OC ==,226240210.BC ∴=+==AP CP ∴+的最小值为210;(3)如图3,连接ME ,∵CE 是⊙M 的切线,∴90ME CE CEM ,⊥∠=︒,由题意,得2.OC ME ODC MDE ==∠=∠, ∵在COD MED ∆∆与中,{COD MED ODC EDM OC EM∠=∠∠=∠=, ∴AAS COD MED ∆∆≌(), OD DE DC DM ∴==,,设OD x =,则4CD DM OM OD x ==-=-, 则在Rt △COD 中,又222OD OC CD +=,∴2224(4)x x +=-,解得32x =,∴D (32,0) 设直线CE 的解析式为y mx b =+,∵直线CE 过C (0,2)、D (32,0)两点, ∴3{22m b b +==,解方程组得:4{32m b =-=. ∴直线CE 的解析式为y 423x =-+.【详解】试题分析:(1)根据题意设抛物线的解析式为2y a x 4a 0k =-+≠()(),将(2,0)A 、C (0,2)代入解析式,即可求出a ,k 的值,得出抛物线的解析式,令0y =,即可求出抛物线与x 轴另-交点(6,0)B ;(2)连接CB 交l 于点P ,则点P 即是使AP CP +的值最小的点. 则AP CP +的最小值为BC ,在Rt △OBC 中,根据勾股定理即可求出BC 的值;(3)连接ME ,根据已知条件可得COD MED ∆∆≌,根据全等三角形的对应边相等可得OD DE DC DM ==,,在Rt △COD 中,根据勾股定理求出OD ,即可得出D 点坐标,设直线CE 的解析式为y mx b =+,代入C ,D 两点坐标,即可解得直线CE 的解析式. 考点:二次函数的综合题.点评:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,也考查了二次函数与圆的综合,本题综合性强,有一定难度.11.如图,已知二次函数23y ax bx =++的图象与x 轴交于点A (1,0)、B (3-,0),与y 轴的正半轴交于点C .(1)求二次函数23y ax bx =++的表达式;(2)点D 是线段OB 上一动点,过点D 作y 轴的平行线,与BC 交于点E ,与抛物线交于点F ,连接CF ,探究是否存在点D 使得△CEF 为直角三角形?若存在,求点D 的坐标;若不存在,说明理由;(3)若点P在二次函数图象上,是否存在以P BC相切,若存在,求点P的坐标;若不存在,说明理由.y x.3∥OB关于抛物线对称轴直线x=)②当∠ECF =90°时,作FG ⊥y 轴于G , 由OB =OC ,∠BOC =90°,可知∠BCO =45° ∵CF ⊥CB , ∴∠FCG =45°,∴△CFG 是等腰直角三角形, 设CG =a ,则点F 坐标为(-a ,a +3),代入223y x x =--+得:23()2()3a a a +=----+ 解得11a =,20a =(舍去) 点F (-1,4),此时点D 坐标为(-1,0).综上所述:存在这样的点D ,点D 坐标为(-2,0)或(-1,0) (3)解:①当点P 在BC 上方时,过点P 作PG ⊥BC 于点G ,作PM ⊥x 轴,交BC 于点N ,过点P 作直线PH ∥BC .则PNG 是等腰直角三角形,∵PG =2, ∴PN =2, ∵PM ⊥x 轴,∴直线PH 由直线BC 向上平移两个单位长度得到, ∴直线PH 的解析式为5y x =+. 联立直线PH 和抛物线的解析式,得:2235y x x y x ⎧=--+⎨=+⎩, 解得:14x y =-⎧⎨=⎩或23x y =-⎧⎨=⎩.∴点P 坐标为(-1,4)或(-2,3) .②当点P 在BC 下方时,同理可得直线PH 由直线BC 向下平移两个单位长度得到, ∴直线PH 的解析式为1y x =+.2231y x x y x ⎧=--+⎨=+⎩, 解得:31721172x y ⎧-+=⎪⎪⎨-+⎪=⎪⎩或31721172x y ⎧--=⎪⎪⎨--⎪=⎪⎩.∴点P 坐标为(31711722,-+-+)或(31711722----,). 综上所述:点P 坐标为(-1,4)或(-2,3)或(31711722,-+-+)或(31711722----,). 【点睛】此题考查了二次函数的综合应用,涉及了待定系数法求解析式,二次函数的性质,圆的切线的性质,解题的关键是熟练掌握并灵活应用相关性质进行求解,难度适中.12.已知二次函数的图象交x 轴于点A (3,0),B (-1,0),交y 轴于点C (0,-3),P 这抛物线上一动点,设点P 的横坐标为m .(1)求抛物线的解析式:(2)当△P AC 是以AC 为直角边的直角三角形时,求点P 的坐标:(3)抛物线上是否存在点P ,使得以点P 为圆心,2为半径的圆既与x 轴相切,又与抛物线的对称轴相交?若存在,求出点P 的坐标,并求出抛物线的对称轴所截的弦MN 的长度;若不存在,请说明理由.(写出过程) 【答案】(1)223y x x =--(2)点P 的坐标为(-2,5)或(1,-4);(3)点P 的坐标为()122--,或()122+-,,抛物线的对称轴所截的弦MN 的长度为22【分析】(1)利用待定系数法求解即可;(2)分当∠P AC =90°时,当∠PCA =90°时,两种情况讨论求解即可;(3)由圆P 的半径为2,且圆P 与抛物线对称轴有交点,且与x 轴相切,可得点P 的纵坐标为-2,由此求出点P 的坐标即可;过点P 作PE ⊥MN 于E ,由垂径定理可得MN =2ME ,利用勾股定理求出ME 即可得到答案.(1)解:设抛物线解析式为()()13y a x x =+-,把点C (0,-3)代入得,()()01033a +-=-,∴1a =,∴抛物线解析式为()()21323y x x x x =+-=--;(2)解:如图所示,当∠P AC =90°时,设P A 与y 轴交点为D , ∵点A 坐标为(3,0),点C 坐标为(0,-3), ∴OA =OC =3, ∵∠AOC =90°, ∴∠CAO =45°, ∴∠DAO =45°, ∴OA =OD =3,∴点D 的坐标为(0,3), 设直线AD 的解析式为y kx b =+,∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线AD 的解析式为3y x =-+,联立2323y x y x x =-+⎧⎨=--⎩, 解得25x y =-⎧⎨=⎩或30x y =⎧⎨=⎩(舍去),∴点P 的坐标为(-2,5);当∠PCA =90°,设直线PC 与x 轴的交点为E , 同理可证∠ECO =45°,即OE =OC , ∴点E 的坐标为(-3,0),同理可以求出直线PC 的解析式为3y x =--,联立2323y x y x x =--⎧⎨=--⎩, 解得14x y =⎧⎨=-⎩或03x y =⎧⎨=-⎩(舍去),∴点P 的坐标为(1,-4),综上所述,点P 的坐标为(-2,5)或(1,-4);(3)解:∵抛物线解析式为()222314y x x x =--=--, ∴抛物线对称轴为直线1x =,∴点A 和点B 到抛物线的对称轴的距离都为2,∵圆P 的半径为2,且圆P 与抛物线对称轴有交点,且与x 轴相切, ∴点P 的纵坐标为-2, 当2y =-时,2232x x --=-, 解得121212x x =-=+,,∴点P 的坐标为()122--,或()122+-,, 过点P 作PE ⊥ME 交抛物线对称轴于E ,∴1212PE =+-=或()112=2--,2MN ME =, ∴222ME MP PE =-=, ∴22MN =,∴点P 的坐标为()122--,或()122+-,,抛物线的对称轴所截的弦MN 的长度为22【点睛】本题主要考查了二次函数综合,一次函数与几何综合,圆与函数综合,待定系数法求函数解析式等等,正确理解题意,利用分类讨论和数学结合的思想求解是解题的关键.13.如图,二次函数24y ax =+的图象与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OA=OC(1)求二次函数的解析式;(2)若以点O 为圆心的圆与直线AC 相切于点D ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P 使得以P 、A 、D 、O 为顶点的四边形是直角梯形?若存在,直接写出点P 坐标;若不存在,请说明理由.【答案】(1)2144y x =-+(2)点D 的坐标为()2,2-(3)存在,点1P 的坐标为()8,12-,点2P 的坐标为()225,225----【分析】(1)由题意可知C 坐标,根据题意得到三角形AOC 为等腰直角三角形,确定出A 坐标,代入二次函数解析式求出a 的值,即可确定出解析式;(2)由题意连接OD ,作DE ∥y 轴,交x 轴于点E ,DF ∥x 轴,交y 轴于点F ,如图1所示,由圆O 与直线AC 相切于点D ,得到OD 垂直于AC ,由OA =OC ,利用三线合一得到D 为AC 中点,进而求出DE 与DF 的长,确定出D 坐标即可;(3)根据题意分两种情况考虑:经过点A 且与直线OD 平行的直线的解析式为y =-x -4,与抛物线解析式联立求出P 坐标;经过点O 且与直线AC 平行的直线的解析式为y =x ,与抛物线解析式联立求出P 坐标即可. (1)解:∵二次函数24y ax =+的图象与y 轴交于点C , ∴点C 的坐标为()0,4,∵二次函数24y ax =+的图象与x 轴交于点A ,tan ∠OAC =1, ∴∠CAO =45°, ∴OA =OC =4, ∴点A 的坐标为()4,0-, ∴()2044a =-+,∴14a =-,∴二次函数的解析式为2144y x =-+;(2)连接OD ,作DE 轴,交x 轴于点E ,DF 轴,交y 轴于点F ,如图1所示,∵⊙O 与直线AC 相切于点D ,∴OD ⊥AC , ∵OA =OC =4, ∴点D 是AC 的中点,∴122DE OC ==,122DF OA ==,∴点D 的坐标为()2,2-; (3)直线OD 的解析式为y =-x ,如图2所示,则经过点A 且与直线OD 平行的直线的解析式为y =-x -4,解方程组24144y x y x =--⎧⎪⎨=-+⎪⎩,消去y ,得24320x x --=,即()()840x x -+=, ∴18x =,24x =-(舍去), ∴y =-12,∴点1P 的坐标为()8,12-;直线AC 的解析式为y =x +4, 则经过点O 且与直线AC 平行的直线的解析式为y =x ,解方程组2144y x y x =⎧⎪⎨=-+⎪⎩, 消去y ,得24160x x +-=,即225x =-+, ∴1225x =--,2225x =-+(舍去), ∴225y =--,∴点2P 的坐标为()225,225----.【点睛】本题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,坐标与图形性质,直线与抛物线的交点,直线与圆相切的性质,锐角三角函数定义,以及等腰直角三角形的性质,熟练掌握二次函数的性质是解答本题的关键.14.如图,已知二次函数213442y x x =-++的图像与x 轴交于点A ,B ,与y 轴交于点C ,顶点为D ,连接BC ;(1)求顶点D 的坐标; (2)求直线BC 的解析式;(3)点E 是第一象限内抛物线上的动点,连接BE ,CE ,求△BCE 面积的最大值; (4)以AB 为直径,M 为圆心作圆M ,试判断直线CD 与圆M 的位置关系,并说明理由 【答案】(1)25(3,)4(2)142y x =-+(3)16(4)直线与圆M 相交,理由见解析【分析】(1)利用配方法将一般式解析式转化为顶点式解析式;(2)先解得(2,0),(8,0)A B -,(0,4)C ,再利用待定系数法,代入点B 、C 的坐标即可解答; (3)根据中点公式解得点M 的坐标,再利用两点间的距离公式解得CM ,MD 的长,比较MD <CM ,得到直线与圆M 有两个交点,据此解答. (1)解:222213114612264=()4()445949(3)44y x x x x x x x --=-++-+=-+--+=+-即顶点D 的坐标25(3,)4; (2)由(1)知(0,4)C 令0y =得201(3)254=4x -+- 解得128,2x x ==-(2,0),(8,0)A B ∴-设直线BC 的解析式:y kx b =+,代入点B 、C480b k b =⎧⎨+=⎩124k b ⎧=-⎪∴⎨⎪=⎩ 142y x ∴=-+ (3)如图,设21(,)3442E x x x ++-(0<x <8),过点E 作EH x ⊥于H , BCE BOC COBE S S S=-四边形 BHE BOC COHE SS S =+-梯形 1()1222EH CO OH BH EH BO CO +⋅=⋅+-⋅223432421(4)1114(8)()842422x x x x x x -+⋅=-⋅-+-++⨯+⨯+ 2=8x x -+2(4)16=x --+即当x =4时,△BCE 面积的最大值为16;(4)直线与圆M 的位置是相交,理由如下,如图,M 为BC 的中点,0804(,)22M ++∴ 即(4,2)M222225305(04)(42)25,(34)(2)44CM MD ∴=-+-==-+-= 32030532025,444=< MD MC ∴<∴直线CD 与圆M 有两个交点,即直线与圆M 的位置是相交.【点睛】本题考查二次函数与一次函数的综合,涉及配方法、待定系数法求一次函数的解析式、直线与圆的位置关系、勾股定理、中点公式、两点距离公式等知识,是重要考点,掌握相关知识是解题关键. 15.如图,已知二次函数y =ax 2+bx +3的图象与x 轴交于点A (﹣1,0)、B (4,0),与y 轴交于点C . (1)二次函数的表达式为 ;(2)点M 在直线BC 上,当△ABM 为等腰三角形时,求点M 的坐标;(3)若点E 在二次函数的图象上,以E 为圆心的圆与直线BC 相切于点F ,且EF =65,请直接写出点E 的坐标. 【答案】(1)239344y x x =-++;(2)点M 为(0,3)或(8,﹣3)或(32,158);(3)点E 的坐标为3626,4⎛⎫- ⎪ ⎪⎝⎭或3626,4⎛⎫+- ⎪ ⎪⎝⎭或3222,34⎛⎫-+ ⎪ ⎪⎝⎭或3222,34⎛⎫+- ⎪ ⎪⎝⎭. 【分析】(1)根据A 、B 两点的坐标,应用待定系数法即可求出二次函数的表达式;(2)首先通过BC 两点坐标,求出直线BC 的解析式,再根据三角形△ABM 是等腰三角形,分3种情况考虑,得到关于M 点横坐标x 的方程,解之即可得到x 的值,进而得到M 点坐标;(3)利用面积法求出O 到直线BC 的距离,结合EF 的长度可知P 1为线段OC 中点,可得P 1的坐标,进而可得P 2坐标,结合直线BC 的表达式,可求出直线EP 的表达式,联立直线EP 和抛物线的函数表达式,组成方程组,即可解得点E 的坐标.【详解】解:(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx +3得:3016430a b a b -+=⎧⎨++=⎩, ∴a =34-,b =94, ∴239344y x x =-++, 故二次函数表达式为:239344y x x =-++; (2)当x =0时,y =3,∴点C 的坐标是(0,3),设直线BC 的表达式为:y =kx +c (k ≠0),将B (4,0),C (0,3)代入y =kx +c 得:4303k c +=⎧⎨=⎩, ∴343k c ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为:334y x =-+,使得△ABM 为等腰三角形,存在如图所示的三种情况:过点M 1作M 1D ⊥AB ,∵A (﹣1,0),B (4,0),∴AD =12AB =52, ∴OD =32, 设M 1(x ,﹣34x +3), ∴M 1(32,158), ∵△ABM 为等腰三角形,∴AB =BM 2=5或AB =BM 3=5,设M 2(x 1,﹣34x 1+3), ∴BM 2=()22113434x x ⎛⎫-+-+ ⎪⎝⎭=5, 解得x 1=8或0,当x 1=0时,y =3,当x 1=8时,y =﹣3,∴点M 为(0,3)或(8,﹣3)或(32,158); (3)过点E 作EP ∥BC ,交y 轴于点P ,这样的点有两个,分别记为P 1,P 2,如图所示:∵OB =4,OC =3,∴BC =22OB OC +=5,∴点O 到直线BC 的距离为:125OB OC BC ⋅=, ∵以E 为圆心的圆与直线BC 相切于点F ,且EF =65, ∴点E 到直线BC 的距离是65, ∴点P 1为线段OC 的中点,∴CP 1=CP 2,∴P 2(0,92), ∵直线BC 的函数表达式为y =﹣34x +3, ∴直线EP 的函数表达式为y =﹣34x +32或y =﹣34x +92, 联立直线EP 和抛物线的表达式方程组,得:2334239344y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩或2394239344y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩, 得1126364x y ⎧=-⎪⎨=⎪⎩或2226364x y ⎧=+⎪⎨=-⎪⎩或33223234x y ⎧=-⎪⎨=+⎪⎩或44223234x y ⎧=+⎪⎨=-⎪⎩, ∴点E 的坐标为36264⎛⎫- ⎪ ⎪⎝⎭,或36264⎛⎫+- ⎪ ⎪⎝⎭,或322234⎛⎫-+ ⎪ ⎪⎝⎭,或322234⎛⎫+- ⎪ ⎪⎝⎭,.【点睛】本题主要考查了二次函数与几何的综合应用.解题的关键要熟练掌握代入法求二次函数的解析式和一次函数的解析式、两点间的距离公式及勾股定理等.。
初中数学二次函数与圆相结合的压轴题专题,中考数学二次函数与圆相结合的经典题型讲解及答案解析
【仲烦1】(我市)已知圆P的圆心在反比例函数y=-(A:>1)上,并与工轴相交于X、3两点.且x始终与]轴相切于定点C(0,1).⑴求经过三点的二次匣1数图象的解析式;(2)若二次函教图象的顶点为D,问当上为何值时'四边形也站尹为菱形.【耕音】解:(1)连接PC、PAx PB,谊P点ffPHXx轴.垂足为H・(1分)与y轴相切于点C(0, 1),.-.PC±y^.•.•P点在反比例函数》二占的囹象上,X•.•P点坐标为(k,1).(2分)•.•PAU.在RtAAPH中,AH=厨2_尸於后一1,•'•A(k-90 ).(3分)•.•由。
P交x轴于A、B两点,且PHJLAB,由垂径击理可知,PH垂直平分AB.AOB=OA+2AH=k•••B3小2_1,0).《4分〉故过A、B两点的抛物线的对称轴为PH所在的直钱斛析式为x=k.可设该抛物线解析式为y=a<x-k)2+h.(5分)又二.抛物线过C(。
,1),B(k-^2_r0),[ak^-^h=1•3|—?昭得a=l,h=1-k^.(7分)•.•抛物线解析式为y=心)2+1上2.(B分)(2)由<1)知抛物线顶点D坐标为(k,l-k2>•・•DH-k2-l.若四边形ADBP为装形.则必有PH=DH.(10分)VPH=1,.•-k2-l=l.又">1,(11分)•・•当k取以时,PD与AB互相垂直平分,则四边形ADBP为菱形•(12分)3【百麒2]翎南省韶关市)25.如图6,在平面直角坐标系中旭边形OABC是矩形,。
虹4应=2,直线),=-":与坐标轴交于D、E。
设M是加的中点,P是线段DE上的动点.(1)求M、D两点的坐标;<2)当P在什么位置时,PA=PB?求出此时P点的坐标j<3)过P作PH1BC,垂足为H,当以PM为直径的OF与BC相切于点N时,求梯形PHBH的面积.图6【分析】(1)因为四边形OABC是逅形,0A=4,AB=2»直线>=r-?与坐标轴交于D、E,M是AB的中点2.所以令y=0,即司术出D的坐标,而AM-1.印以M(4,1);(2)因为PA=PB.断以P是AB的香直平分线和直线ED的交点,而AE的中垂线是y=l,断以P的纵坐标为1,令直线ED的解析式中的y=l,求出的x的值即为相应的P的横坐标;(3〉可设P(x,y>,连将PN、MN、NF,因为点P在y・x-:上,所以P《x,粮据蹦意可2得PNlMNi FN±BCi F是圈心,又因N是钱段HB的中点,HN-NB-—»PH-2-(-x*-)t2 2 2BM=1,利用直径对的圆周角是直甬可得到ZHPX-ZHNP=ZHNP-ZBNM=90°•所以ZHPN=ZB取ph ir£x+| NM,又因ZPHN-ZB-900-所以可得到R tAPNH<^RtANMB•所以—•A2=—^,这BM BN—4-x1—样牧可得到关于X的方程,解之即可求出X的值,而饬求面招的四边形是一个直角梯形,南以Spg=也皿滋或"医号)("6+应)=.21_色叵.2 2 24满答】俄;《1)M", 1),D《9,0);(2分)2(2)V PA=PB>•七点P在线段AB的中毒线上,•.•点P的纵坐标是I,3又•:点P在尸-X-—上,2・.•点P的坐标为(【,1)?(4分)(3)设P(x,y),连接PN、MN、NF,3点P lSy=・x+-上,匕3・'・P(x ,-w+—),2依题意知:PN«LMN>FN^BC,F是圆心,・'・N是线段HB的中点,HN=NB=±M,PH=2.2口,BM=1,<6分)22HPN-ZHNP=NHNP-ZBNM=90°,NHPN=ZBNN1,又ZPHN=ZB=90°5RtAPNH^RtANMBs:HN_PH•'两南,4-x x*.."F=二,-等」22,(8分)x?-12x+14=0»朋得;x-6-j22(^-*>^舍去),k=6-皿=些罕=空也艾竺=一*孕屈,(9分)2【例题31(||-4省白银等7市新课程)28.在直角坐标系中>0A的丰径为4,圆心A曜标为(2, 0),S与X轴交于E、尸两点,与),轴交于(7、D两点,过点(7作0X的切线时,交x轴于点3.(1)求直线C5的解析式:(2)若抛物线.件履7)日€的顶点在直线3C上,与x轴的交点恰为点E、已求该抛物线的解析式J(3)试判断点C是否在抛物线上?(4)在抛物线上是否存在三个点,由它构成的三角形与A4OC相似?直接与出两组这样的点•4[分析】(1>SHAC.根撮区]的李径求出AC. W1B点人的坐麻求出0A,燃后利用勾腹定理列式求出0C・从而得到点C的坐标,再求出ZCAO=60=.然后粮掘直有三甬形两锐角互余米出NB=30。
中考数学总复习《圆与二次函数结合型》专题训练-附答案
中考数学总复习《圆与二次函数结合型》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,二次函数()20y x bx c a =-++≠的图像经过点()1,0A -,()3,0B 交y 轴于点C ,点E 为该二次函数图象上第一象限内一动点.(1)b =__________,c =__________; (2)如图①,连接AE 与BC 相交于点P ,当PBEPACSS-的值最大时,求点E 的坐标;(3)如图①,过点E 作EH x ⊥轴于H 点,交直线BC 于点F ,以EF 为直径的M 与BC 交于点R ,当EFR 周长最大时,求点E 的坐标.2.已知半径为5的A 与平面直角坐标系交于O ,B 两点,二次函数2y ax bx c =++的图像顶点C 在A 上并经过O ,B 两点,且8OB =,如图1所示.(1)求二次函数的解析式; (2)如图2,连结OC ,若点D 为A 上一点,当30BOD ∠=︒时,求线段OD 的长;(3)如图3,连结OC ,若A 上有一点N ,连结BN 使BN OC ∥,连结ON 并与CA 的延长线交于点M ,求:OM MN 的值.3.如图,已知二次函数2449y x =-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C 的半径为5,P 为C 上一动点.(1)点B,C的坐标分别为B________,C________.(2)连接PB,若E为PB的中点,连接OE,则OE的最大值 ________.(3)是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,P A,PC,若152PACS△=,求点P的坐标;(3)如图乙,过A,B,P三点作①M,过点P作PE①x轴,垂足为D,交①M于点E.点P 在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.5.如图,二次函数y=﹣56x2+bx+c与x轴的一个交点A的坐标为(﹣3,0),以点A为圆心作圆A,与该二次函数的图象相交于点B,C,点B,C的横坐标分别为﹣2,﹣5,连接AB,AC,并且满足AB①AC.(1)求该二次函数的关系式;(2)经过点B作直线BD①AB,与x轴交于点D,与二次函数的图象交于点E,连接AE,请判断①ADE的形状,并说明理由;(3)若直线y=kx+1与圆A相切,请直接写出k的值.6.如图,在平面直角坐标系xOy中,将二次函数21y x=-的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求22+的最大值;PA PB(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.7.如图,二次函数223y ax ax a=--(a<0)的图象与x轴交于A,B两点(点B在点A 的右侧),与y轴的正半轴交于点C,顶点为D.若以BD为直径的①M经过点C.(1)请直接写出C,D的坐标(用含a的代数式表示);(2)求抛物线的函数表达式;(3)①M上是否存在点E,使得①EDB=①CBD?若存在,请求出所满足的条件的E的坐标;若不存在,请说明理由.8.如图1,二次函数23y ax ax b =-+(a 、b 为参数,其中a<0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D .(1)若10b a =-,求tan CBA ∠的值(结果用含a 的式子表示);(2)若ABC ∆是等腰三角形,直线AD 与y 轴交于点P ,且:2:3AP DP =.求抛物线的解析式;(3)如图2,已知4b a =-,E 、F 分别是CA 和CB 上的动点,且35EF AB =,若以EF 为直径的圆经过点C ,并交x 轴于M 、N 两点,求MN 的最大值.9.如图,y 关于x 的二次函数()()333y x m x m m=-+-图象的顶点为M ,图象交x 轴于A 、B 两点,交y 轴正半轴于点D .以AB 为直径作圆,圆心为点C ,定点E 的坐标为()3,0-,连接ED .(0m >)(1)求用m 表示的A 、B 、D 三点坐标;(2)当m 为何值时,点M 在直线ED 上?判定此时直线ED 与圆的位置关系; (3)当m 变化时,用m 表示AED △的面积.10.如图,抛物线22y ax x c =-+经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D .(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APBABCSS=的点P 的坐标;(3)M 是过A 、B 、C 三点的圆,连接MC 、MB 、BC ,求劣弧CB 的长.11.如图,二次函数()21y x a =-+与x 轴相交于点A ,B ,点A 在x 轴负半轴,过点A 的直线y x b =+交该抛物线于另一点D ,交y 轴正半轴于点H .(1)如图1,若1OH =,求该抛物线的解析式; (2)如图1,若点P 是线段HD 上一点,当113AH AD AP+=时,求点P 的坐标(用含b 的代数式表示);(3)如图2,在(1)的条件下,设抛物线交y 轴于点C ,过A ,B ,C 三点作Q ,经过点Q 的直线y hx q =+交Q 于点F ,I ,交抛物线于点E ,G .当EI GI FI =+时,求22h 的值.12.如图(1),二次函数25y ax x c =-+的图像与x 轴交于()4,0A -,(),0B b 两点,与y 轴交于点()0,4C -.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图像上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E '是圆在x 轴上方圆弧上的动点(点E '不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ',线段AE 的对应线段为A E '',连接E C ',A A ',A A '的延长线交直线E C '于点N ,求AA CN'的值.13.如图,y 关于x 的二次函数3()(3)3y x m x m m=-+-图象的顶点为M ,图象交x 轴于A 、B 两点,交y 轴正半轴于D 点.以AB 为直径作圆,圆心为C .定点E 的坐标为(3,0)-,连接ED .(0)m >(1)写出A 、B 、D 三点的坐标;(2)当m 为何值时M 点在直线ED 上?判定此时直线与圆的位置关系;(3)当m 变化时,用m 表示AED △的面积S ,并在给出的直角坐标系中画出S 关于m 的函数图象的示意图.14.抛物线2y ax bx c =++交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴为1x =,(3,0)B 和(0,3)C -(1)求二次函数2y ax bx c =++的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;(3)平行于x 轴的一条直线交抛物线于M N 、两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.15.如图,抛物线()230y ax bx a =+-≠与x 轴交于()3,0A -,()1,0B 两点,与y 轴交于点C ,直线y x =-与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH EF ⊥于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,过点B 作C 的切线切点为点D ,求切点D 的坐标.参考答案: 1.(1)2,3(2)点E 的坐标为()1,4(3)点E 的坐标315,24⎛⎫ ⎪⎝⎭2.(1)()21482y x =--+ (2)433+或433-(3)563.(1)()3,0 ()0,4-;(2)552+;(3)1122,55⎛⎫- ⎪⎝⎭或()1,2--或4535,455⎛⎫-- ⎪ ⎪⎝⎭或4535,455⎛⎫-- ⎪ ⎪⎝⎭4.(1)y =12x 2﹣x ﹣4;(2)P (3,﹣52);(3)没有变化,2 5.(1)y =﹣56x 2﹣376x ﹣11;(2)①ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或26.(1)245y x x =-++;(2)38417+;(3)25. 7.(1)C 的坐标为(0,﹣3a ),D 的坐标为(1,﹣4a );(2)223y x x =-++;(3)(4,1)、(85,15-). 8.(1)tan①CBA=-2a ;(2)26364622y x x =-++;(3)MN 的最大值=22 9.(1)()0A m -,,()30B m ,和()03D m ,(2)当1m =时,点M 在直线ED 上;直线ED 与C 相切(3)()()223330322333322m m m S m m m ⎧-+<<⎪⎪=⎨⎪->⎪⎩10.(1)2=23y x x --(2)()1,0-或()4,5(3)52π11.(1)223y x x =-- (2)点P 的坐标为22223,11b b b b b b ⎛⎫++ ⎪++⎝⎭(3)2220113h =-12.(1)254y x x =--- 1b(2)不存在(3)113.(1)(,0)A m -,(3,0)B m 和(0,3)D m ;(2)当1m =时,M 点在直线DE 上,直线ED 与C 相切(3)当03m <<时233322S m m =-+,当3m >时2_33322S m m =. 14.(1)2=23y x x --(2)(1,6)-(3)1172+或1172-+ 15.(1)()0,3C - 223y x x =+-(2)2128 (3)()1,3-或412,55⎛⎫-- ⎪⎝⎭。
2017年中考数学复习中考专题:圆与二次函数结合题
2017年中考数学复习中考专题: 圆与函数综合题1、如图,平面直角坐标系中,以点C (2,3)为圆心,以2为半径的圆与轴交于A 、B 两点.(1)求A 、B 两点的坐标;(2)若二次函数2y x bx c =++的图象经过点A 、B ,试确定此二次函数的解析式.1、解:(1)过点C 作⊥轴于点M ,则点M 为的中点.∵2,, ∴1.于是,点A 的坐标为(1,0),点B的坐标为(3,0) (2)将(1,0),(3,0)代入得, 解得所以,此二次函数的解析式为.2、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233y x bx c =-++过A 、B 两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠∠?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△的面积为S,求S的最大(小)值.)3、如图,抛物线2y ax bx c=++的对称轴为轴,且经过(0,0),(1a,16两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M()x,0,N1()()x,0x x两点,当△为等腰三角形时,求圆212心P的纵坐标。
4、如图,二次函数2-33的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).(1)求这条抛物线的解析式;(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;(3)连接、,将∠绕点M顺时针旋转,两边、与x轴、y轴分别交于点E、F,若△为等腰三角形,求点E的坐标.5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
原题:如图1,在⊙O中,是直径,⊥于点B,⊥于点D,∠90°,3,4,则。
二次函数和圆结合的题
二次函数和圆结合的题二次函数和圆是数学中常见的几何概念,它们在解题过程中经常结合在一起。
本文将探讨二次函数和圆结合的一些题目,并分析解题思路和方法。
一、已知二次函数和圆的方程,求二者的交点坐标。
题目描述:已知二次函数的方程为f(x)=ax^2+bx+c,圆的方程为(x-h)^2+(y-k)^2=r^2,求二者的交点坐标。
解题思路:将二次函数和圆的方程联立,求解交点坐标。
首先,将二次函数的方程代入圆的方程,得到方程(ax^2+bx+c-h)^2+(x-k)^2=r^2,然后将该方程化简,整理成关于x的二次方程,即ax^2+(b-2ah)x+(c-h^2-k^2-r^2)=0。
根据二次方程的求根公式,可以求得x的两个解,然后将x的值代入二次函数的方程,求得对应的y值,即得到二者的交点坐标。
二、已知二次函数与圆的交点,求二次函数和圆的方程。
题目描述:已知二次函数与圆的交点的坐标为(x1,y1)和(x2,y2),求二次函数和圆的方程。
解题思路:根据已知的交点坐标,可以列出两个方程。
首先,将交点坐标代入二次函数的方程,得到方程ax1^2+bx1+c=y1和ax2^2+bx2+c=y2,然后将这两个方程联立,消去c,得到方程a(x1^2-x2^2)+b(x1-x2)=y1-y2。
接着,将交点坐标代入圆的方程,得到方程(x1-h)^2+(y1-k)^2=r^2和(x2-h)^2+(y2-k)^2=r^2,将这两个方程联立,消去h和k,得到方程(x1^2-x2^2)+(y1^2-y2^2)=2hx1-2hx2+2ky1-2ky2。
将方程a(x1^2-x2^2)+b(x1-x2)=y1-y2和方程(x1^2-x2^2)+(y1^2-y2^2)=2hx1-2hx2+2ky1-2ky2联立,即可得到二次函数和圆的方程。
三、已知二次函数和圆的交点,求交点到圆心的距离。
题目描述:已知二次函数的方程为f(x)=ax^2+bx+c,圆的方程为(x-h)^2+(y-k)^2=r^2,已知二次函数和圆的交点的坐标为(x1,y1)和(x2,y2),求交点到圆心的距离。
初中考试数学专题讲解:二次函数与圆结合的压轴题
二次函数和圆【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数ky x=(1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次函数图象的解析式;(2) 若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形.【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线32y x =−+与坐标轴交于D 、E 。
设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标;(2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标;(3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.(2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;(3)试判断点C是否在抛物线上?(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.【例题5】(南充市)25.如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C . (1)求点C 的坐标,并画出抛物线的大致图象.(2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.【例题6】(山西省临汾市)26.如图所示,在平面直角坐标系中,M 经过原点O,且与x轴、y轴分别相交于(60)(08)A B−−,,,两点.(1)请求出直线AB的函数表达式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在M上,开口向下,且经过点B,求此抛物线的函数表达式;(3)设(2)中的抛物线交x轴于D E,两点,在抛物线上是否存在点P,使得115PDE ABCS S=△△?若存在,请求出点P的坐标;若不存在,请说明理由.x【例题7】在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?【例题8】如图,点P 在y 轴上,半径为3的⊙P 分别交x 轴于A 、B 两点,AB=4,交y 轴负半轴于点C ,连接AP 并延长交⊙P 于点D ,过D 作⊙P 的切线分别交x 轴、y 轴于点F 、G ;(1)求直线FG 的解析式;(2)连接CD 交AB 于点E ,求PCD ∠tan 的值;(3)设M 是劣弧BC 上的一个动点,连接DM 交x 轴于点N ,问:是否存在这样的一个常数k ,始终满足AN·AB+DN·DM=K ,如果存在,请求出K 的值,如果不存在,请说明理由;B DB 图 1图 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学复习中考专题: 圆与函数综合题1、如图,平面直角坐标系中,以点C (2,3)为圆心,以2为半径的圆与轴交于A 、B 两点.(1)求A 、B 两点的坐标;(2)若二次函数2y x bx c =++的图象经过点A 、B ,试确定此二次函数的解析式.2、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.3、如图,抛物线2y ax bx c =++的对称轴为轴,且经过(0,0),(1a,16)两点,点P 在抛物线上运动,以P 为圆心的⊙P 经过定点A (0,2),(1)求a,b,c 的值;(2)求证:点P 在运动过程中,⊙P 始终与轴相交;(3)设⊙P 与轴相交于M ()1x ,0,N ()()212x ,0x x 两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标。
4、如图,二次函数y =x 2+bx -3b +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),交y 轴于点C ,且经过点(b -2,2b 2-5b -1).(1)求这条抛物线的解析式;(2)⊙M 过A 、B 、C 三点,交y 轴于另一点D ,求点M 的坐标;(3)连接AM 、DM ,将∠AMD 绕点M 顺时针旋转,两边MA 、MD 与x 轴、y 轴分别交于点E 、F ,若△DMF 为等腰三角形,求点E 的坐标.5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。
原题:如图1,在⊙O 中,MN 是直径,AB ⊥MN 于点B ,CD ⊥MN 于点D ,∠AOC =90°,AB =3,CD =4,则BD = 。
⑴尝试探究:如图2,在⊙O 中,M N 是直径,AB ⊥MN 于点B ,CD ⊥MN 于点D ,点E 在MN 上,∠AEC =90°,AB =3,BD =8,BE :DE =1:3,则CD = (试写出解答过程)。
⑵类比延伸:利用图3,再探究,当A 、C 两点分别在直径MN 两侧,且AB ≠CD ,AB ⊥MN 于点B ,CD ⊥MN 于点D ,∠AOC =90°时,则线段AB 、CD 、BD 满足的数量关系为 。
⑶拓展迁移:如图4,在平面直角坐标系中,抛物线经过A (m ,6),B (n ,1)两点(其中0<m <3),且以y 轴为对称轴,且∠AOB =90°,①求mn 的值;②当S △AOB =10时,求抛物线的解析式。
6、如图,设抛物线2113424y x x =--交x 轴于A,B 两点,顶点为D .以BA 为直径作半圆,圆心为M ,半圆交y 轴负半轴于C .(1)求抛物线的对称轴;(2)将△ACB 绕圆心M 顺时针旋转180°,得到△APB ,如图.求点P 的坐标;(3)有一动点Q 在线段AB 上运动,△QCD 的周长在不断变化时是否存在最小值?若存在,求点Q 的坐标;若不存在,说明理由.7、如图1,已知抛物线y =-x 2+bx +c 经过点A (1,0),B (-3,0)两点,且与y 轴交于点C .(1) 求b ,c 的值。
(2)在第二象限的抛物线上,是否存在一点P ,使得△PBC 的面积最大?求出点P 的坐标及△PBC 的面积最大值.若不存在,请说明理由.(3) 如图2,点E 为线段BC 上一个动点(不与B ,C 重合),经过B 、E 、O 三点的圆与过点B 且垂直于BC 的直线交于点F ,当△OEF 面积取得最小值时,求点E 坐标.8、如图,点P在y轴的正半轴上,⊙P交x轴于B、C 两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连结AC、FC.(1)求证:∠ACF=∠ADB;(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,DE AO的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.9、如图,在平面直角坐标系xOy中,半径为25的圆C与x轴交于A(-1,0)、B(3,0)两点,且点C在x轴的上方.(1)求圆心C的坐标;(2)已知一个二次函数的图像经过点A、B、C,求这二次函数的解析式;(3)设点P在y轴上,点M在(2)的二次函数图像上,如果以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.10、如图,在⊙M 中,弦AB 所对的圆心角为120°,已知圆的半径为1cm ,并建立如图所示的直角坐标系.(1)求圆心M 的坐标;(2)求经过A,B,C 三点的抛物线的解析式;(3)点P 是⊙M 上的一个动点,当△PAB 为Rt △时,求点p 的坐标。
11、如图,在半径为2的扇形AOB 中,∠AOB=90°,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC,OE ⊥AC ,垂足分别为D 、E .(1)当BC=1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出自变量的取值范围.12、已知抛物线23y ax bx =++经过A(3,0), B(4,1)两点,且与y 轴交于点C .(1)求抛物线23y ax bx =++的函数关系式及点C 的坐标;(2)如图(1),连接AB ,在题(1)中的抛物线上是否存在点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合)经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求点E 的坐标.13、已知:如图,抛物线y=x2-x-1与y轴交于C点,以原点O为圆心,OC长为半径作⊙O,交x轴于A,B两点,交y轴于另一点D.设点P为抛物线y=x2-x-1上的一点,作PM⊥x轴于M点,求使△PMB∽△ADB时的点P的坐标.14、点A(-1,0)B(4,0)C(0,2)是平面直角坐标系上的三点。
①如图1先过A、B、C作△ABC,然后在在轴上方作一个正方形D1E1F1G1, 使D1E1在AB上, F1、G1分别在BC、AC上②如图2先过A、B、C作圆⊙M,然后在轴上方作一个正方形D2E2F2G2, 使D2E2在轴上,F2、G2在圆上③如图3先过A、B、C作抛物线,然后在轴上方作一个正方形D3E3F3G3, 使D3E3在轴上, F3、G3在抛物线上请比较正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3的面积大小15、如图,已知经过坐标原点的⊙P 与x 轴交于点A (8,0),与y 轴交于点B (0,6),点C 是第一象限内⊙P 上一点,CB =CO ,抛物线2y ax bx =+经过点A 和点C .(1)求⊙P 的半径;(2)求抛物线的解析式;(3)在抛物线上是否存在点D ,使得点A 、点B 、点C 和点D 构成矩形,若存在,直接写出符合条件的点D 的坐标;若不存在,试说明理由.16、已知:如图9-1,抛物线经过点O 、A 、B 三点,四边形OABC 是直角梯形,其中点A 在x 轴上,点C 在y 轴上,BC ∥OA ,A (12,0)、B (4,8).(1)求抛物线所对应的函数关系式;(2)若D 为OA 的中点,动点P 自A 点出发沿A →B →C →O 的路线移动,速度为每秒1个单位,移动时间记为t 秒.几秒钟后线段PD 将梯形OABC 的面积分成1﹕3两部分?并求出此时P 点的坐标;(3)如图9-2,作△OBC 的外接圆O ′,点Q 是抛物线上点A 、B 之间的动点,连接OQ 交⊙O ′于点M ,交AB 于点N .当∠BOQ=45°时,求线段MN 的长.17、如图, 已知抛物线21y 2x bx c =++与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1)。
(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由。
18、如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D 的坐标;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,求证:无论b ,c 取何值,点D 均为顶点,求出该定点坐标.19、抛物线22y ax ax b =++与直线y=x+1交于A 、C 两点,与y 轴交于B ,AB ∥x 轴,且S △ABC =3(1)求抛物线的解析式。
(2)P 为x 轴负半轴上一点,以AP 、AC 为边作,是否存在P ,使得Q 点恰好在此抛物线上?若存在,请求出P 、Q 的坐标;若不存在,请说明理由。
(3)AD ⊥X 轴于D ,以OD 为直径作⊙M ,N 为⊙M 上一动点,(不与O 、D 重合),过N 作AN 的垂线交x 轴于R 点,DN 交Y 轴于点S ,当N 点运动时,线段OR 、OS 是否存在确定的数量关系?写出证明。
20、如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数6y x =(x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B .(1)判断P 是否在线段AB 上,并说明理由;(2)求△AOB 的面积;(3)Q 是反比例函数6y x=(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .备用图21、如图, 在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点p, PH ⊥OA,垂足为H, △PHO 的中线PM 与NH 交于点G .(1)求证:2PG GM; (2)设PH=x,GP=y,求y 关于x 的函数解析式,并写自变量的取值范围;(3)如果△PGH 是等腰三角形,试求出线段PH 的长.22、如图,在Rt △ABC 中,∠ACB =90°,BC>AC ,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2=17,且线段O ( )A .OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根.(1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过( )A .B .E 三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.参考答案1、解:(1)过点C作CM⊥轴于点M,则点M为AB的中点.∵CA=2,CM=,∴AM==1.于是,点A的坐标为(1,0),点B的坐标为(3,0)(2)将(1,0),(3,0)代入得,解得所以,此二次函数的解析式为.2、考点:二次函数综合题。