固体物理总结
固体物理知识总结
§5-2 线缺陷——位错 线缺陷——位错
一,位错的基本类型
"刃位错 刃位错"和"螺位错 螺位错" 刃位错 螺位错 刃型位错的特点是位错线垂直 垂直于滑移矢量b; 垂直 螺型位错的特点是位错线平行 平行于滑移矢量b. 平行 位错线的特征
二,位错的运动
位错的滑移 位错的攀移
§5-3 面缺陷与体缺陷
一,层错(堆垛层错) 二,晶界 三,小角晶界 四,体缺陷(包裹体)
2.元胞 初基元胞,基矢, 初基元胞,基矢,格矢,威格纳-赛兹 元胞(W-S元胞,对称元胞), 3.惯用元胞和轴矢 惯用元胞,轴矢
三,常见晶体结构举例
致密度η(又称空间利用率),配位数,密 堆积 1. 简单立方(sc) 配位数=6,惯用元胞包含格点数 = 1 惯用元胞包含格原子数 = 1 2. 面心立方(fcc) 配位数=12,惯用元胞包含格点数=4 惯用元胞包含格原子数 = 4 3.体心立方(bcc) 配位数=8,惯用元胞包含格点数=2 惯用元胞包含格原子数 = 2
九,硅和锗的能带结构 1. 能带的简并 2. k空间等能面 3. 回旋共振 4. 硅和锗的导带结构 5. 硅和锗的价带结构
第五章
§5-1
晶体缺陷
点缺陷
一,点缺陷的类型 (1)肖脱基(Schottky)缺陷 (2)费伦克尔(Frenkel)缺陷 (3)间隙原子缺陷 (4)色心
二,杂质原子 施主,受主杂质的能级
(4)旋转-反演操作(象转操作) 2.分数周期平移T/n
(1) n度螺旋轴指数 2.晶向指数 3.晶面指数(密勒指数)
六角晶系的四指数表示.
六,倒格子与布里渊区 1. 倒格子:
(1)定义 (2)倒格子的重要性质(正倒格子间的关系) 2. 布里渊区(B.Z) 七,晶体x光衍射 1.决定散射的诸因素 1.决定散射的诸因素 (1)原子散射因子 (2)几何结构因子
固体物理重要知识点总结
固体物理重要知识点总结晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点2微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。
晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。
(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。
布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量化,以hv i来增减其能量,hv i就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了8 2以上3高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区爱因斯坦模型在低温下与实验存在偏差的根源是什么?答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013H Z,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。
固体知识点物理总结高中
固体知识点物理总结高中一、固体的特性固体是物质存在的三种形态之一,其特点主要表现在以下几个方面:1. 定形性固体具有固定的形状和体积,不易被外力改变。
2. 弹性固体在受到外力作用时,会发生形变,但在去除外力后,又会恢复原状。
3. 坚固性固体的分子间有着紧密结合,使得它们具有一定的强度和硬度。
4. 导热性固体具有较强的导热性,能够传递热量。
5. 导电性部分固体具有导电性,能够传递电流。
二、固体的结构固体的结构主要分为离子晶体、分子晶体和金属晶体。
1. 离子晶体离子晶体是由正负离子通过静电力相互结合而成,晶体中正负离子的数量相等,呈电中性。
2. 分子晶体分子晶体是由分子通过共价键相互结合而成的固体,分子间的相互作用力比较弱。
3. 金属晶体金属晶体是由金属元素经过离子键相互结合而成的固体,金属晶体中的原子之间存在金属键的结合。
三、固体的性质固体的性质主要包括热性质、电性质和力学性质。
1. 热性质固体在不同温度下具有不同的热膨胀系数,随着温度的升高,固体的体积会扩大。
2. 电性质固体的电性质可以分为导电和绝缘两种情况。
金属晶体具有良好的导电性,离子晶体、分子晶体和非金属晶体通常是绝缘体。
3. 力学性质固体的力学性质主要包括硬度、弹性模量、屈服强度、断裂强度等。
四、固体的物理现象在日常生活和实验研究中,固体所表现出的物理现象主要包括:1. 热膨胀固体在受热时会发生体积的膨胀,这种现象被称为热膨胀。
2. 电阻现象不同类型的固体在受到电流作用时,会表现出不同的电阻特性,并且会有发热现象。
3. 弹性变形固体在受力作用时会发生弹性变形,这种变形是可逆的,即去除外力后,固体会恢复原状。
4. 塑性变形当固体受到较大的外力作用时,会发生塑性变形,使得其形状产生永久性改变。
五、固体的相关物理量在研究固体的过程中,涉及到一些固体的相关物理量。
主要包括:1. 密度固体的密度是指单位体积内的物质质量。
2. 热膨胀系数固体在受热时体积变化的比例与温度变化的比例之比。
固体物理重点总结
所对应的点的排列。晶格是晶体结构周期性的数学抽象。
原胞
构造:取一格点为顶点,由此点向近邻的三个格点作三个 不共面的矢量,以此三个矢量为边作平行六面体即为固体物理 学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无
格点,平均每个固体物理学原胞包含1个格点。它反映了晶体 结构的周期性。 基矢:固体物理学原胞基矢通常用 a 1 , a 2 , a表示。 3 体积:
h h h 若遇负数,则在该数上方加一横线h h h 。
1 2 3
1 2 3
配位数、密堆积、致密度
1.配位数 一个粒子周围最近邻的粒子数称为配位数。它可以描述晶 体中粒子排列的紧密程度,粒子排列越紧密,配位数越大。 可能的配位数有:12、8、6、4、3、2 。 2.密堆积 如果晶体由完全相同的一种粒子组成,而粒子被看作小圆 球,则这些全同的小圆球最紧密的堆积称为密堆积。密堆积的 配位数最大,为12 。
(2)在低温时,绝缘体的比热按T3趋于零。
2.模式密度 定义: 单位频率间隔内的振动模式数。 计算:
D
Vc 3 1 2 π
3n
s
q q
ds
3.晶体比热的爱因斯坦模型和德拜模型
爱因斯坦模型
(1)晶体中原子的振动是相互 独立的;
德拜模型
(1)晶体视为连续介质,格波视 为弹性波; (2)有一支纵波两支横波; (3)晶格振动频率在 0 ~ D 之间 (D为德拜频率)。
在此范围内k共有N个值(N为晶体原胞数) ,可容纳2N个电子。
(r ) (r ) k K
k
h
布里渊区
在倒格空间中以任意一个倒格点为原点,做原点和其他所 有倒格点连线的中垂面(或中垂线),这些中垂面(或中垂线)将倒 格空间分割成许多区域,这些区域称为布里渊区。
固体物理知识点总结
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
固体物理各章节知识点详细总结
3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
固体物理期末反思报告总结
固体物理期末反思报告总结一、引言在本学期的固体物理课程中,我通过学习和实践的方式,对固体物理学的基本概念、原理和应用有了更深入的了解。
通过课堂学习、实验操作和小组讨论,我进一步巩固了基础知识,并提高了实际运用的能力。
在本篇报告中,我将对这一学期的学习进行总结,并反思自己的不足之处,以期在今后的学习中能够更加全面和有效地提高自己。
二、学习收获在本学期的固体物理学习中,我收获了许多知识和技能。
首先,通过课堂学习,我对固体物理学的基本原理有了更深入的理解。
老师通过生动的讲解和实例分析,使我能够更好地理解固体的结构和性质,并了解到固体物理学在科学研究和工程应用中的重要性。
其次,实验操作也是我学习的重要环节。
通过实验,我亲自动手进行了一系列的固体物理实验,例如测量金属的热导率、弹簧的弹性系数等。
通过实验操作,我不仅能够更直观地了解实验原理和步骤,还能够培养自己的动手能力和实际问题解决能力。
此外,小组讨论也是我学习中不可或缺的一环。
在小组讨论中,我能够与同学们共同探讨和解决一些难题,互相帮助和启发。
通过与同学们的交流和对问题的深入思考,我不仅能够从他人的经验和观点中吸取新的知识和思路,还能够提高自己的表达和沟通能力。
三、不足反思尽管本学期我在固体物理学习中有所收获,但我也意识到了自己的不足之处。
首先,我在课堂听讲和记录方面还有待提高。
有时候,我会平时听讲不够仔细,导致课后复习时遗漏了一些重要的概念和公式。
另外,我在课堂笔记书写上也有些拖延,导致整理和回顾的时候效果不佳。
因此,我需要更加专注于课堂学习,培养良好的记录习惯。
其次,我在实验操作和数据处理方面也有一些不足。
在进行实验时,我有时候会因为一些小的失误而导致实验结果不准确,例如读数错误、操作不规范等。
而在数据处理方面,我有时候会因为对统计和计算方法不熟悉而无法正确地分析实验结果。
为了改善这些问题,我需要在实验前仔细阅读实验指导和方法,提高操作的规范性。
同时,我还需要加强对数据处理方法的学习和实践,提高自己的分析能力。
固体物理各章节重点总结
固体物理各章节重点总结第一章1、晶体的共性:长程有序、自限性、各向异性2、长程有序:晶体中的原子都是按照一定规则排列的,这种至少在微米数量级范围内的有序排列,称为长程有序。
3、自限性:晶体具有自发地形成封闭几何多面体的特性。
4、原子之间的结合遵从能量最小原理5、一个原子周围最近邻的原子数,称为该晶体的配位数,用来表征原子排列的紧密程度,最紧密的堆积称密堆积6、布喇菲提出了空间点阵学说:晶体内部结构可以看成是由一些相同的点子在空间做规则的周期性的无线分布。
这一学说是对实际晶体结构的一个数学抽象,它只反映出晶体结构的周期性。
人们把这些点子的总体称为布喇菲点阵7、沿三个不同方向通过点阵中的结点作平行的直线,把结点包括无遗,点阵便构成一个三维网格。
这种三维格子称为晶格,又称为布喇菲格子,结点又称点阵。
8、某一方向上两相邻结点的距离为该方向上的周期,以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元,体积最小的重复单元,称为原胞或固体物理学原胞,它能反映晶格的周期性。
9、为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心。
这种重复单元称作晶胞,惯用晶胞或布喇菲原胞10、简立方:a1=a,a2=b,a3=c11、体心立方:a1=0.5(-a+b+c)|a2=0.5(a-b+c)|a3=0.5(a+b-c)12、面心里放:a1=0.5(b+c)|a2=0.5(a+c)|a3=0.5(a+b)|13、氯化铯结构为简立方结构14、氯化钠结构为面心立方结构15、金刚石结构为面心立方结构16、所欲格点都分布在相互平行的一平面族上,每一平面都有格点分布,称这样的平面为晶面17、若ij=1,2…则可用正格基失来构造倒格基失18、将正格基失在空间平移可构成正格子,相应地我们把倒格基失平移形成的格子叫做倒格子19、正格原胞体积与倒格原胞体积之积等于(2π)3;正格子与倒格子互为多方的倒格子;倒格失K h=h1b1+h2b2+h3b3与正格子晶面族正交;倒格失的模K h与晶面族(h1h2h3)的面间距成反比20、晶体有230种对称类型,称其为空间群;若不包括平移,有32种宏观对称类型,称其为点群21、晶体的宏观对称操作一共有八种基本对称操作P1922、计算题P25P34第二章1、五种基本结合类型:共价结合、离子结合、金属结合、分子结合、氢键结合2、体积弹性模量3、计算题P53P63第三章1、玻恩和卡门提出了一个遐想的边界条件,即所谓的周期性边界条件。
固体物理知识点总结
固体物理知识点总结1. 固体的结构固体的结构是固体物理研究的重要内容之一。
固体的结构可以分为晶体结构和非晶体结构两类。
晶体是指固体物质中原子、离子或分子按照一定规则有序排列的结构,具有长程有序性。
晶体的周期性结构使其具有一些特殊的性质,如晶格常数和晶胞结构等。
晶体的结构可以根据晶体的对称性将晶系分为七类:三斜晶系、单斜晶系、单轴晶系、三方晶系、四方晶系、立方晶系和六方晶系。
非晶体是指固体中原子、离子或分子无序排列的结构,没有明显的周期性,具有短程有序性。
2. 固体的热力学性质固体的热力学性质是指固体在温度、压力等条件下的热力学行为。
其中包括固体的热容、热导率、热膨胀系数等热力学性质。
固体的热容是指单位质量的固体物质吸收或释放的热量与温度变化之间的关系。
固体的热导率是指单位时间内,单位面积和单位温度梯度下热量的传导速率。
固体的热膨胀系数是指单位体积的固体物质在温度变化时体积的变化与温度变化之间的关系。
3. 固体的光学性质固体的光学性质是指固体对光的吸收、散射和折射等性质。
固体的光学性质与其结构和原子(分子)的能级结构有关。
固体物质中的原子和分子会吸收特定波长的光子,产生特定的光谱线。
固体的折射率是指光在固体中传播时的光线偏折情况,也称为光线传播速度与真空中的光速之比。
4. 固体的电学性质固体的电学性质包括固体的导电性、介电常数、电阻率等。
固体的导电性是指固体对电流的导通能力。
固体的介电常数是指固体在外电场作用下的电极化程度。
固体的电阻率是指固体对电流的阻碍程度。
5. 固体的磁学性质固体的磁学性质是指固体在外磁场下的磁化行为。
固体物质中的原子和分子会在外磁场下产生磁化。
固体的磁学性质与其结构和原子(分子)的磁矩分布有关。
固体的磁化率是指固体在外磁场下的磁化程度。
固体物理是物理学中一个重要而广泛的研究领域,涉及的内容十分丰富和复杂。
本文仅对固体物理的基本知识点进行了简要的介绍和总结,希望能够为读者的学习和研究提供一些帮助。
固体物理知识点总结
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序短程有序多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体;原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体;每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴晶轴为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞;晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞;WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子;4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积;六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数;晶体最大配位数为12,晶体可能配位数12,8,6,4,3,2;晶列过任意两格点的直线称为晶列晶向晶列方向晶向指数晶面全部格点用一族平行平面包含,该平行平面族称为晶面族,族中每个平面称为晶面晶面指数晶面在元胞基矢截距的倒数的互质整数组称为晶面指数密勒指数hkl晶面在晶胞基矢上截距的倒数的互质整数组称为密勒指数面间距面密度体密度致密度解理面对原子晶体,密勒指数简单的晶面族,面间距较大,晶面格点密度大,晶面间结合力较小,容易解理;对离子晶体,晶面格点密度大且晶面是电中性的晶面容易解理7、倒格子:定义倒格子是晶格点阵在波矢空间的傅立叶变换倒格子基矢倒格矢布里渊区以任意倒格点为原点,作所有倒格矢的垂直平分面将倒格子空间分成的一系列区域,称为布里渊区理论公式1、布拉菲点阵分布函数2、倒格矢3、倒格子基矢与正格子关系式4、晶面指数57-60、密勒指数61、晶面间距65-66、晶面原子密度的计算图形和关系曲线1、简单立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同晶面上格点分布、倒格子基矢、第一布里渊区2、体心立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格点分布、倒格子基矢、第一布里渊区2、面心立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格点分布、倒格子基矢、第一布里渊区3、115-1204、金刚石结构最小结构单元、配位数、元胞、晶胞、晶胞基矢、不同面格点分布、倒格子基矢、第一布里渊区第二章晶体结合基本概念1、两粒子间排斥力及其性质两粒子间吸引力及其性质两粒子间总相互作用力及其特点2、两粒子间相互作用势能晶体总相互作用能晶体结合能绝对零度下,忽略粒子零点振动能,晶体粒子最小总相互作用势能等于晶体结合能3、离子键及特点马德隆常数4、共价键的形成及其特点两个原子各出一个电子,在两个原子核之间形成较大电子云密度被两个原子共用、自旋相反配对的电子结构极性共价键形成及其特点共用电子对偏向负电性大的原子的共价键6、金属键形成及其特点金属原子结合成金属晶体时,价电子脱离原子成为晶格共有电子,原子成为正离子实,共有化电子与离子实库仑引力构成金属键7、范德瓦耳斯键形成及其特点原子负电性原子电离能基态原子失去一个电子成为正离子所需能量原子亲和能基态原子俘获一个电子成为负离子时释放的能量5、原子负电性与晶体结构关系10、SP3、SP2、SP轨道杂化的形成及其性质原子S、P轨道波函数杂化形成的波函数给出的电子几率分布称为杂化轨道;理论公式1、两粒子间相互作用能的一般形式2、两粒子间相互作用力的一般形式3、晶体体积弹性模量4、原子负电性计算式图形和关系曲线1、两粒子相互作用势能2、两粒子相互作用力3、SP3杂化轨道示意图第三章晶格振动基本概念1、一维单原子晶格振动及其特点2、一维双原子晶格振动及其特点3、简谐近似原子绕格点弹性振动谐振,振动位移与弹性力成正比4、最近邻近似5、周期性边界条件6、格波8、格波波矢、波矢空间、波矢密度第一布里渊区波矢个数8、色散关系圆频率-波长关系群速度相速度原子振动状态用格波位相描述,波速等于振动位相传播速度,称为相速度6、光学支格波声学支格波长纵光学波、长纵声学波基元中两个原子相反振动,形成长光学波10、振动模式数每个波矢对应一个声学波圆频率和一个光学波圆频率;N个元胞一维双原子晶格共有2N个独立振动模式自由度;11、振动模式数与晶体结构的关系11、声子晶格振动能量的“量子”声子准动量声子统计分布一定温度下,晶体中能量为的平均声子数由玻色-爱因斯坦统计给出,平均声子数12、振动模式密度12、正则变换独立振动模式的正交性、完备性周期性边界条件下,所有的晶格振动模式构成正交、完备集态空间理论公式1、一维格波、二维格波三维格波解2、一维、二维、三维晶格周期性边界3、三维晶格振动总能量表达式及其意义4、晶格振动模式密度定义5、一维、二维、三维晶格振动模式密度计算图形和关系曲线1、一维单原子晶格色散关系曲线2、一维双原子晶格色散关系曲线第四章晶体能带基本概念1、单电子近似包括:绝热近似假设相对于电子运动速度,离子实近似固定在格点上不动;平均场近似假设每个价电子所处的周期场相同,与其它价电子、离子实的库仑相互作用只与该价电子位置有关周期性势场近似若单电子势具有晶格平移周期性,晶体价电子的定态薛定谔方程求解转化为晶格周期场中单电子薛定谔方程求解2、电子共有化运动、晶体电子、能带电子波包代表的电子称为能带电子3、布洛赫定理布洛赫波的物理意义4、周期性边界条件5、电子波矢、波矢空间、波矢空间密度、电子能态状态密度6、能带共有化电子能量本征值,不同波矢对应的能量值能级的集合,称为能带禁带能隙、满带、空带、导带能量最低的空带、价带能量最高的满带、近满带、半满带、能带底、能带顶、能带宽度7、准经典近似、波包8、电子平均速度能带电子波包群速度定义为能带电子的平均速度电子加速度9、电子有效质量及其物理意义电子有效质量概括了周期场对电子的作用,使外场下能带电子的运动,可用服从牛顿运动定律、具有有效质量的“赝电子”来描述;能带底电子有效质量能带顶电子有效质量10、导体、绝缘体、半导体的能带图11、固体导电性特点及其能带论解释11、空穴及物理意义电场作用下,缺1个电子的能带中其余2N-1个电子对电流的贡献等效为1个带正电子电量粒子的贡献,这个粒子称为空穴、空穴电荷量、空穴有效质量理论公式1、一维晶格、二维晶格、三维晶格的状态能态密度2、布洛赫波函数3、电子、空穴平均速度4、电子、空穴有效质量5、晶体电子在外场作用下的牛顿第二定律6、单电子近似下的薛定谔方程图形和关系曲线1、电子能带的四种不同表示方法2、导体、半导体、绝缘体能带三、试卷结构共七大题1、填空题20空,共20分2、画图及计算10分3、概念解释题共5个概念,10分4、画图及计算15分5、论述题10分6、画图及论述15分7、运用公式计算20分满分:100分四、成绩构成期末考试成绩80%,平时成绩20%特点:1、考试题目体现不同章节内容的连续 2、对所学内容的准确掌握补充:第一章PPT68改错第一章PPT75说明。
固体物理1-6章总结
CV
3NkB
θE 2 θE / T ) e T
爱因斯坦特征温度
CV 3NkB (
Debye模型 认为晶体可以看成是连续介质中的弹性波,但晶体中的格波的频率应 该有一个分布,频率与波矢的关系近似为线性关系 CV 3Nk 在高温下:T >> D
12 Nk B T 3 D 在低温下:T << D CV T 德拜温度 D 5 D kB 在高温下多用爱因斯坦模型,低温下则应用德拜模型。
熔点和沸点介于离子晶体和分子晶体 之间,密度小,有许多分子聚合的趋 势,介电系数大。
冰 H2F H2N
弱
~ 0.1ev/ 键
习题
P35- 1.1; ▲ 1.5; ▲ 1.6; ▲ 1.7;1.8;1.10 ▲ 1.设一格子基矢分别为a1=3i,a2=3j,a3=1.5(i+j+2k),试 求该晶体的倒格子基矢。 ▲ 2.半导体GaAs具有闪锌矿结构, Ga、As两原子最近 距离为d=2.45A,求晶格常数,原胞基矢和倒格子基矢。 ▲ P58- 2.8
ni 0,1,2,3....
1 E i (ni )i 2 i 1 i 1 1 ni ▲频率为ωi的格波的平均声子数
i
平均能量
i i i i 2 e k BT 1
e k BT 1
绝缘体中声子热导率与温度的关系
1 CV v l 3
离子晶体导电的机制 离子晶体的导电率 位错的定义、分类,刃型位错的滑移
半导体物理
作业
▲ P101- 4.3;4.4;4.7
第五章 金属电子论
1. ▲自由电子气的概念及模型:特鲁德模型与索末菲模型(定性)
固体物理重点知识点总结——期末考试、考研必备!!
固体物理概念总结——期末考试、考研必备!!第一章1、晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2、晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3、单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4、基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5、原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6、晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7、原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8、布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9、简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
物理固体的知识点总结
物理固体的知识点总结1. 固体的结构物理固体有着多种结构,包括晶体结构和非晶体结构。
晶体属于有序结构,原子、离子或分子之间以固定的空间排列和交错方式连接在一起,形成一个周期性的结构。
而非晶体则属于无序结构,原子、离子或分子之间仅存在短程有序的排列,整体上没有周期性的结构。
2. 固体的力学性质固体的力学性质包括弹性模量、塑性变形和断裂等。
弹性模量是固体材料在受力时的变形能力,包括杨氏模量、剪切模量和泊松比。
塑性变形是指固体在受力时会发生形变,而不会恢复到原始形状。
断裂是指固体在受到过大的外力作用时会发生裂纹和断裂现象。
3. 固体的热学性质固体的热学性质包括热扩散、导热和热容等。
热扩散是指固体在受到热量作用时会扩散和传播,导热是指固体对热量的传递能力,而热容则是指固体在受热时所吸收的热量。
4. 固体的光学性质固体的光学性质包括光的透射、反射和折射等。
固体对光的透射、反射和折射能力取决于固体的光学密度和折射率等因素。
5. 固体的电学性质固体的电学性质包括导电性和绝缘性。
导电性是指固体对电流的导电能力,而绝缘性则是指固体对电流的隔绝能力。
6. 固体的磁学性质固体的磁学性质包括顺磁性、铁磁性和反铁磁性等。
固体的磁性取决于固体中磁性原子或原子团簇的排列方式和磁矩的相互作用。
物理固体的研究是固体物理学的一个重要方向,通过对固体的结构和性质进行深入的研究,可以更好地了解和利用固体材料的特性。
随着科学技术的不断发展,人们对固体物理学的研究也将会进行更深入、更全面的探索,为人类社会的发展和进步提供更多的科学支撑。
固体物理学复习总结
第一章 晶体结构1.晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构;eg :单晶硅。
晶体具有的典型物理性质:均匀性、各向异性、自发的形成多面体外形、有明显确定的熔点、有特定的对称性、使X 射线产生衍射。
非晶体:组成固体的粒子只有短程序,但无长程周期性;eg :非晶硅、玻璃准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性,不具备晶体的平移对称性;eg :快速冷却的铝锰合金2.三维晶体中存在7种晶系14种布拉菲格子;对于简单格子晶胞里有几个原子就有几个原胞,复式格子中包含两个或更多的格子。
3.典型格子特点:sc bcc fcc hcp Diamond 晶胞体积3a 3a 3a 32a 3a 每晶胞包含的格点数1 2 4 6 8 原胞体积3a 321a 341a 332a 341a 最近邻数(配位数)6 8 12 12 4 填充因子0.524 0.68 0.74 0.74 0.34 典型晶体 NaCl CaO Li K Cu Au Zn Mg Si Ge4.sc 正格子基矢:k a a j a a i a a ===321,,;sc 倒格子基矢:k ab j a i a πππ2,2b ,2b 321===; fcc 正格子基矢:)2),2),2321j i a a k i a a k j a a +=+=+=(((; fcc 倒格子基矢:)2),2),2b 321k j i ab k j i a b k j i a -+=+-=++-=(((πππ; bcc 正格子基矢: )2),2),2321k j i a a k j i a a k j i a a -+=+-=++-=(((; bcc 倒格子基矢:)2),2),2b 321j i a b k i a b k j a +=+=+=(((πππ; 倒格子原胞基V a a )(2b 321⨯=π,V a a )(2b 132⨯=π,Va a )(2b 213⨯=π 正格子和倒格子的基矢关系为ij a πδ2b j i =⋅;设正格子原胞体积为V,倒格子原胞体积为Vc ,则3)2(V c V π=⨯。
固体物理复习总结
固体物理复习总结(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 晶体结构1、试说明空间点阵和晶体结构的区别。
答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。
晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k aa ⨯==-++ 213422()()4ab i j k i j k a aππ∴=⨯⨯-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω3123,,222(),,2222,,222aa a a a a a a aa a a a -Ω=⋅⨯=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+-213222()()2a b j k j k a aππ∴=⨯⨯+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。
固体物理学基础知识点总结
固体物理学基础知识点总结固体物理学基础知识点总结固体物理学是研究物质的结构和性质以及固体内部的物质运动规律的科学。
它不仅在科学研究领域中占据重要位置,还在工程技术和工业生产中发挥着巨大的作用。
本文将总结固体物理学的基础知识点,包括晶体结构、电子能带理论、磁性、声学和热学等方面。
1. 晶体结构晶体是由原子、分子或离子排列有序而规则的三维结构组成的物质。
晶体的结构可以用晶格描述,晶格是一种周期性的重复结构,包括点阵和晶胞。
点阵是由点和空间矢量组成的,而晶胞则是将点阵用平行平面包围起来形成的一个最小单位。
晶体的晶格分为14种布拉维格子。
2. 电子能带理论电子能带理论是描述固体中电子能级分布的理论。
根据电子能带理论,固体中的电子将分布在一系列离散的能带中。
导带是离价带最近而又没有电子填充的能带,而价带所有被填充的能级。
固体的导电性与导带和价带之间的能隙有关。
导电体的导带与价带之间有较小的能隙,允许电子在外界提供能量的情况下跃迁到导带;绝缘体的导带与价带之间存在巨大的能隙,不容易发生电子跃迁;半导体的导带与价带之间存在较小的能隙,可以通过少量的能量供给实现电子跃迁。
3. 磁性磁性是固体物理学中的重要现象之一。
磁性可分为顺磁性、抗磁性和铁磁性。
顺磁性是指物质在外磁场作用下的磁化行为,磁矩与磁场方向一致;抗磁性是指物质在外磁场作用下抵抗磁化的行为,磁矩与磁场方向相反;铁磁性是指物质在外磁场作用下的磁化行为,磁矩保持一定方向。
4. 声学声学研究固体中的声波传播和振动。
固体中的声波传播是通过弹性介质中的粒子振动进行能量传递。
固体中的声速取决于物质的弹性性质和密度。
固体中的声波可分为纵波和横波,纵波的振动方向与传播方向一致,横波的振动方向与传播方向垂直。
5. 热学热学研究固体中的热学性质,包括热传导、热膨胀、热容等。
热传导是指固体中热量的传递过程,取决于物质的热导率和温度梯度。
热膨胀是指固体在受热时产生体积扩张的现象,取决于物质的热膨胀系数。
固体物理学知识点总结
固体物理学知识点总结固体物理学是物理学中的一个重要分支,它涉及到物态的变化以及固体物质中的各种物理现象。
固体物理学的研究对象是固体物质,包括晶体、多晶体、非晶体等。
本文将就固体物理学的相关知识点进行总结。
一、结晶学结晶学是研究晶体的形成、结构和性质的一门学科。
它是固体物理学的基础,对于了解其他领域的科学研究也有着重要的作用。
1. 晶体的定义:晶体是由原子、分子或离子有序排列而形成的固体。
晶体具有明确的几何形状和规则的面、棱和角,呈现六方晶系、四方晶系、正交晶系和三角晶系等多种不同的结构类型。
2. 晶体的结构:晶体结构是晶体内部的原子、离子、分子的有序排列方式。
晶体结构可以用格点、基元和晶体单元来描述。
其中,格点为表示固体结构的原点,基元是固体中的最小重复单元,晶体单元则表示晶体中最小可测量结构。
3. 晶体学定律:晶体学定律总结了晶体结构中的规律性关系,包括布拉维格子点计数定理、米勒克氏平面、勒沃伊-克瑞斯特兴霞法则等。
二、各向同性和各向异性各向同性和各向异性是固体物理学中的重要概念。
材料的各向同性或各向异性对于材料的性质和应用具有重要意义。
1. 各向同性:材料的各向同性是指材料在各个方向具有相同的物理性质。
例如,光学各向同性材料可以使光线在任何方向传播的速度都相同。
2. 各向异性:材料的各向异性是指材料在不同方向具有不同的物理性质。
例如,晶体在不同方向上的机械性质、热膨胀系数和光学性质等均不同,因此被称为各向异性材料。
三、固体物理学中的热热是固体物理学中的重要研究对象,与热有关的知识点有相当多的内容。
1. 热量与内能:热量是物体的能量从高温度向低温度传递的过程中所传递的能量。
内能则是物体自身所固有的能量。
固体物理学中,热量和内能是研究热学性质的重要概念。
2. 物态转变:物质在经历一定的温度变化时就会发生物态转变。
固体物理学中,物态转变包括固体的熔化、晶化、升华等等。
3. 热容和热传导:热容是指物体在升温过程中吸收热量与温度变化之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在没有碰撞时,电子与电子(独立电子近似)、电子与离子(自由电子近似)之间得相互作用完全忽略;无外场时,每个电子作匀速直线运动;在外场存在时,服从牛顿定律。
k空间得概念:参量空间,状态空间。
把波矢k瞧作空间矢量,相应得空间称为k空间。
T=0时,N个电子得基态可从能量最低得k=0态开始,按能量从低到高,每个k态占据两个电子,依次填充。
最后,占据区形成一个球,称为费米球。
能态密度:T=0时,基态,单位体积自由电子气体得基态能量E。
费米-狄拉克函数得性质:随温度发生变化。
极限情况:
一般情况:随着T得增加,发生变化得能量范围变宽,但在任何情况下,此能量范围约在附近±kBT范围内。
温度不为零时,电子占据态与非占据态之间得界面不在就是某个等能面
电子占据态与非占据态得界限可以近似为一个薄层。
电子漂移速度:
等离子体频率:自由电子气体作为整体相对正电荷背景集体运动得频率。
低频端(从直流到远红外),金属对光波有明显得衰减。
(安检,金属屋子信号屏蔽)
可见光到近红外波段,金属就是高反射得。
(铜镜,镜子)
电磁波频率大于等离子频率时,金属就是透明得。
(金属可以作为滤波片,分离近红外-可见光与XUV/x-ray)
晶体结构包括两个最主要得特征:1、重复排列得具体单元——基元。
2、晶格:基元重复排列得形式,一般抽象为空间点阵,称为晶体格子,简称晶格,由布拉维格子得形式来概括。
原胞:晶体中体积最小得周期性重复单元。
某一格点为中心,作其近邻格点连线得垂直平分面,这些平面围成得以格点为中心得最小体积单元—WS原胞。
晶胞:能表现对称性得单元,但就是未必最小。
7类晶系:三斜、单斜、正交、四方、三角、六角、立方。
群由群元素集合与规定乘法定义。
封闭性:若a,b∈G,则存在唯一确定得c∈G,使得a*b=c;
结合律:任意a,b,c∈G,有(a*b)*c=a*(b*c);
单位元:存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元;
逆元:任意a∈G,存在唯一确定得b∈G, a*b=b*a=e(单位元),则称a与b互为逆元素,简称逆元,记作a-1=b。
点群:在点对称操作基础上组成得对称操作群称为点群。
点群得元素:点对称操作。
点群得乘法:连续操作。
点对称操作:绕固定轴得转动、镜面反映、中心反演。
对称要素:固定轴、镜像面、反演点。
倒格子定义:对布拉维格子中所有格矢,满足得全部端点得集合,构成布拉维格子,称为正格子得倒格子。
同一晶体得正格子与倒格子有相同得对称性。
体心立方得倒格子为面心立方;
面心立方得倒格子为体心立方;
简单立方得倒格子仍为简单立方。
倒格子空间中得WS原胞称为第一布里渊区。
高阶布里渊区:从原点把所有倒格矢得垂直平分面都画出来,k空间被分割成许多区域,这些区域称为布里渊区。
第三章
三步简化:第一步:绝热近似。
第二步:单电子近似。
第三步:周期场近似。
布洛赫定理:周期势场下,对单电子薛定谔方程得任意本征态
都存在一个k使得对属于布拉维格子得所有都成立。
物理意义:平面波形式×周期函数形式
平面波形式代表了布洛赫电子得共有性、非局域性——能带理论得基础
布洛赫电子不再束缚于个别原子,在整个晶体内部运动,称为共有化电子
周期函数形式代表了布洛赫电子受周期势场得影响,波函数得局域性
对同一能带,电子状态具有周期性;对同一能带,电子能量具有周期性。
弱周期势近似:周期场起伏较小,可以用势场平均值(周期得)代替离子产生得势场。
小得平均势场瞧作微扰,波函数接近自由电子。
弱周期势近似针对得就是金属中得s态与p态得外层电子。
周期场就是微扰,波函数近似平面波能量从连续谱断裂形成能带。
紧束缚近似:电子在一个原子附近时,主要受该原子场得作用,周围其它原子(格点)得势场作用瞧作微扰。
紧束缚模型中,固体能带由孤立原子得分立能级演化而来。
轨道波函数与最临近交叠很少时,形成得能带较窄交叠比较多时,不同能带间会有所重叠。
波函数为原子波函数得线性叠加能量从分立原子能级演化为能带。
只有当自由程远远大于原胞时,才可以将电子瞧作一个准经典粒子。
因为微分可以交换次序,因此倒有效质量张量就是对称张量,可以对角化。
能带宽,能量随波矢变化较为剧烈,倒有效质量张量得分量大
能带窄,倒有效质量张量得分量小
空穴:带正电荷,填满带中所有未占据态得假想得粒子。
半导体物理得基础就是固体能带理论。
电子在k空间匀速运动,电子得本征能量沿ε(k)函数曲线周期性变化
价带:能量最高得满带
导带:能量高于满带得第一个能带
半导体物理得基础就是固体能带理论
电子得运动轨迹:垂直于磁场得平面与等能面得交线
回旋频率:
根据量子理论,在(x, y)平面得圆周运动对应一种简谐振荡,能级就是量子化
得,这种能级称为朗道能级
第五章
简谐近似得物理基础:离子实对平衡位置得瞬时偏离很小。
简谐近似:势能函数可以在平衡位置附近展开成泰勒级数,并且只保留到二次项原。
一个格波解表示所有原子同时做频率为ω得振动,不同原子间有相位差。
长声学波,原胞中相邻原子得振动方向相同,且振幅相同。
长光学波,原胞中相邻原子得振动方向相反,质心保持不变。
一个原胞有p个原子,一共有3个声学支,3p −3个光学支,格波总数共计3pN
N个原胞每个原胞有p个原子得三维晶体,晶体中格波得支数=原胞内得自由度数:3p 其中3 支为声学支(1支纵波、2支横波),3p-3支为光学支(也有纵波、横波之分)
晶格振动得波矢数=晶体得原胞数N
晶格振动得模式数=晶体得自由度数3nN
第一布里渊区内q允许得数目为N,声学支格波数N,光学支格波数N,共2N个格波
由简正坐标所代表得体系中所有原子一起参与得共同振动常被称作晶体得一个振动模。
从量子力学得观点瞧,表征原子集体运动得简谐振子得能量就是量子化得,每个振动模式能量得最小单位被称为声子。