纳米材料--石墨烯的世界ppt
超硬新材料石墨烯简介ppt课件
无碳原子缺失,原子间作用力强 原子间的连接非常柔韧
当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不 必重新排列来适应外力,也就保持了结构稳定。
良好的导电性——通畅高速干扰小
稳定的晶格结构使碳原子具有优秀的导电性。石墨烯 中的电子在轨道中移动时,不会因晶格缺陷或引入外 来原子而发生散射。
.
制备方法
微机械分离法
撕胶带法 轻微摩擦法
用另外一种材料膨化或者引入缺陷的热解石墨进行 摩擦,体相石墨的表面会产生絮片状的晶体,在这 些絮片状的晶体中含有单层的石墨烯。
不足
尺寸不易控制,无法可靠地制造长度足供应用 的石墨薄片样本
.
加热碳化硅法
加热碳化硅以除去硅,然后生成石墨烯薄层
1. 让碳原子在 1 1 5 0 ℃下渗入钌 2. 冷却到850℃后, 碳原子就会浮到钌表面 3. 形成镜片形状的单层的碳原子“ 孤岛” 布满基质表面,
并最终长成完整的一层石墨烯。 4. 第一层覆盖 8 0 %后,第二层开始生长。
底层的石墨烯会与钌产生强烈的交互作用,而第 二层后就几乎与钌完全分离,只剩下弱电耦合, 得到的单层石墨烯薄片表现令人满意。
采用这种方法生产的石墨烯薄片往往厚度不均匀, 且石墨烯和基质之间的黏合会影响碳层的特性。 另外使用的基质是稀有金属钌。
.
恳请指导,谢谢!
.
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
在室温下传递电子的速度比已知导体都快。 由于原子间作用力十分强,在常温下,即使周围碳原
子发生挤撞,石墨烯中电子受到的干扰也非常小。
.
石墨烯:轻薄刚导电性好
.
应用领域
可做“太空电梯”缆线 代替硅生产超级计算机 超薄防弹衣 航空材料 高性能储能元件
石墨烯ppt课件
04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制
石墨烯PPT
航空航天领域应用
• 石墨烯的高导电性、高强度、超轻薄等特性, 可开发应用于航天领域的传感器,以便更精确 对地球高空大气层的微量元素、航天器上的结 构性缺陷等进行检测。而石墨烯在超轻型飞机 材料等潜在应用上也将发挥更重要的作用.
这架小型飞机由巴西大 学生在航空工程学教师 保罗·恩里克斯的指导 下花费5年时间完成,是 巴西第一架完全使用碳 纤维制造的飞机并实现 每小时521公里的飞行速 度,打破了500公斤以下 级别小型飞机的飞行速 度世界纪录。
一 、石墨烯是什么?
• 一种由碳原子以sp2杂 化轨道组成六角型呈 蜂巢晶格的平面薄膜 ,只有一个碳原子厚 度的二维材料. • 2004年,英国曼彻斯 特大学物理学家安德 烈· 海姆(Andre Geim)和 康斯坦丁· 诺沃肖洛 (Konstantin Novoselov) ,成功地在实验中从 石墨中分离出石墨烯 ,而证实它可以单独 存在,两人也因“在 二维石墨烯材料的开 创性实验”,共同获
少层石墨烯 (Few-layer or multi-layer graphene)
• 概念:指由3-10层以苯环结构(即六角形蜂 巢结构)周期性紧密堆积的碳原子以不同堆 垛方式(包括ABC堆垛,ABA堆垛等)堆垛 构成的一种二维碳材料。
移动设备——可自由弯曲手机
• 韩国三星公司在研制课弯曲显示屏上技术最成熟 。多层石墨烯等材料组成的透明可弯曲显示屏, 相信大规模商用指日可待。(中科院重庆绿色智 能技术研究所的石墨烯手机已经上市了)
二、石墨烯分类
单层石 墨烯
石墨 烯
双层石 墨烯 少层石 墨烯
单层石墨烯(Graphene)
• 概念:指由一层以苯环结构(即六角形蜂巢结 构)周期性紧密堆积的碳原子构成的一种二维 碳材料。
2024版《石墨烯的研究》PPT课件
目录•引言•石墨烯的基本性质•石墨烯的制备方法•石墨烯的应用领域•石墨烯的挑战与前景•结论引言石墨烯是一种由单层碳原子组成的二维材料。
石墨烯具有极高的电导率、热导率和机械强度等优异性能。
石墨烯的发现引起了科学界的广泛关注,被认为是未来材料科学的重要发展方向之一。
石墨烯的背景与概念0102 03推动材料科学的发展石墨烯作为一种新型材料,其研究有助于推动材料科学的发展,为制备更高性能的材料提供新的思路和方法。
促进相关产业的发展石墨烯的优异性能使其在电子、能源、生物等领域具有广泛的应用前景,其研究有助于促进相关产业的发展。
提高国家科技实力石墨烯作为一种具有重要战略意义的材料,其研究水平的提高有助于提高国家的科技实力和竞争力。
石墨烯的研究意义国内研究现状国内石墨烯研究起步较早,目前已经取得了一系列重要成果,包括石墨烯的制备、表征、应用等方面。
国外研究现状国外石墨烯研究也非常活跃,许多国际知名大学和科研机构都在开展石墨烯相关的研究工作。
发展趋势未来石墨烯的研究将更加注重应用基础研究,探索石墨烯在各个领域的应用潜力,同时加强石墨烯的规模化制备和产业化应用等方面的研究。
国内外研究现状及发展趋势石墨烯的基本性质石墨烯是由单层碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。
二维碳纳米材料石墨烯中的碳原子以六边形进行排列,每个碳原子与周围三个碳原子通过σ键相连,形成稳定的晶格结构。
碳原子排列方式石墨烯中碳-碳键长约为0.142nm ,每个晶格内有三个σ键,所有碳原子均为sp2杂化。
原子尺寸零带隙半导体石墨烯是一种零带隙半导体,其载流子在狄拉克点附近呈现线性色散关系,具有极高的载流子迁移率。
高电导率由于石墨烯中载流子的特殊性质,其电导率极高,甚至超过铜等传统导体。
量子霍尔效应在低温强磁场条件下,石墨烯会表现出量子霍尔效应,这是其独特电学性质之一。
石墨烯的强度极高,其抗拉强度是钢铁的数百倍,同时具有优异的韧性。
石墨烯简介PPT课件
精选
17
应用与性能的关系
E
Relation between application and performance
精选
应用与性能的关系
精选
20
应用与性能的关系
透明度大
透明电极
电导率高
触控屏幕
比表面积大
太阳能电池
力学性能好 导热系数大
晶体管 复合材料
电子迁移率高
锂离子电池
精选
21
应用与性能的关系
B
精选
石墨烯的性能
力学性质:106N/cm2 光学性质:2.3%
Science, 321, 385 (2008) Science 320, 1308 (2008)
热学性质:5300 W/mK 电学性质:1/300光速
Nano Lett. 8, 902 (2008) Science, 306, 666 (2004)
精选
16
石墨烯的表征—其它方法
石墨烯表征方法
热重—示差扫描
用于分析温度变化过程中的物理化学变化,如物质含量、 分解和氧化还原等,研究样品的热失重行为和热量变化。
低温氮吸附测试
测定石墨烯的孔结构和比表面积,计算比表面积、孔径大小、 孔分布、孔体积等物理参数。
傅里叶变换红外光谱分析(FT-IR)
用来识别化合物和结构的官能团,在石墨烯制备中主要用于 氧化石墨烯的基面和边缘位的官能团的识别。
石墨烯的优异性能
精选
19
制备方法 Preparation Method
C
精选
机械剥离法
碳纳米管横向切割法
微波法 电弧放电法 光照还原法 外延生长法
石墨烯制备方法
石墨氧化还原法 电化学还原法
石墨烯纳米材料PPT课件
三、石墨烯的表征——拉曼光谱(Raman)
第13页/共20页
石墨烯的拉曼光谱由若干峰组成,主要为G峰,D峰以及G’峰。
514nm激光激发下单层石墨烯的典型拉曼光谱
由图,G峰是石墨烯的主要特征峰, 由sp2碳原子的面内振动引起的,出 现在1580cm-1附近,该峰能有效反 映石墨烯的层数;D峰被认为是石 墨烯的无序振动峰,它是由于晶格 振动离开布里渊区中心引起的,用 于表征石墨烯样品中的结构缺陷或 边缘;G’峰是双声子共振二阶拉曼 峰,用于表征石墨烯样品中碳原子 的层间堆垛方式。
第17页/共20页
石墨烯五大应用领域
•
1.光电产品领域,以其非常好的透光性、导电性和可弯曲性,在触摸屏、
可穿戴设备、OLED(有机电激光显示)、太阳能等领域中发挥作用。这也是目前来自认最可能首先实现商品化的领域。
•
2.能源技术领域,主要依赖于石墨烯超高的比表面积、超轻的重量和非常
好的导电性。采用石墨烯的超级电容器,其极限储能密度是现有材料的2-5倍
END
第19页/共20页
感谢您的观看!
第20页/共20页
物理法:
微机械剥离法、取向附生法 、液相和气相直接剥离法、碳纳米管剪切法。
化学法:
化学氧化还原法、化学气相沉积法、化学溶液直接剥离法、SiC高温分
解法、PMMA碳化法、有机合成法。
第10页/共20页
1、机械剥离法:
• 机械剥离法是最早用于制备石墨烯的方法,主要通过机械 力从新鲜石墨晶体的表面剥离出石墨烯片层。早期的机械剥 离法所制得的石墨薄片通常含有几十至上百个片层,随着技术
第1页/共20页
碳的同素异形体: 零维(石墨稀量子点(GQDs),富勒烯) 一维(碳纳米管,石墨稀纳米带) 二维(石墨稀) 三维(石墨,金刚石)
石墨烯简介ppt
石墨烯的制备方法:物理方法和化学方法 物理方法:机械剥离,印章切取转移印制,剖切碳纳米管等。 (1)机械剥离:利用是石墨层间结合强度较小的原理,用胶带 粘附在高度取向的石墨表面,反复粘附撕开,最终获得单层石 墨烯,难以精确控制,难以大规模制备。
(4)其他,离子筛、超轻型飞机,超坚石墨烯的发展前景
作为导电性、机械性能都很优异的材料,素来有“黑金子” 之称的石墨烯之前在中国市场上的价格近十倍于黄金,超过 2000元/克,目前随着产量的增加价格降低很多。
❖ 由于其独有的特性,石墨烯被称为“神奇材料”,科学家甚 至预言其将“彻底改变21世纪”。曼彻斯特大学副校长 Colin Bailey教授称:“石墨烯有可能彻底改变数量庞大的 各种应用,从智能手机和超高速宽带到药物输送和计算机芯 片。”
石墨烯电池
a (2)用于传感器 b
c
因为石墨烯极强的敏感性,可用于PH传感器,用于需要 高速工作的通信设备,如太赫兹波成像探测隐藏的武器, 在光电传感器检测光纤中携带的信息。
光电传感器 光敏二极管
(3)石墨烯复合材料 现在关于石墨烯的论文,70%是关于石墨烯复合材 料的,制备石墨烯复合材料在弹性,断裂强度和 断裂能方面显著提高。关于其他方面的性能有待 研究。
正是看到了石墨烯的应用前景,许多国家纷纷建立石墨 烯相关技术研发中心,尝试使用石墨烯商业化,进而在工业、 技术和电子相关领域获得潜在的应用专利。欧盟委员会将石 墨烯作为“未来新兴旗舰技术项目”,设立专项研发计划, 未来10年内拨出10亿欧元经费。英国政府也投资建立国家石 墨烯研究所(NGI),力图使这种材料在未来几十年里可以从 实验室进入生产线和市场。
石墨烯科普PPT课件
Thank you!
第28页/共29页
感谢您的观看!
第29页/共29页
第10页/共29页
石墨烯材料制备
3、热膨胀法 用酸进行插层反应得到膨胀率较低的石墨鳞片, 鳞片的平均厚度约为30μm,横向尺寸在400μm左 右,这种石墨鳞片就是可膨胀石墨。将这种可膨 胀石墨放入微波或高温炉中加热,就可以的到厚 度为几纳米到几十个纳米的纳米石墨片。
第11页/共29页
石墨烯材料制备
Outline
➢石墨烯材料的简介 ➢石墨烯材料的制备 ➢石墨烯材料的性质 ➢石墨烯材料的应用 ➢石墨烯材料的展望
第13页/共29页
石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每 100纳米距离上可承受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压 力才能使1米长的石墨烯断裂。如果物理学家们能制取出 厚度相当于普通食品塑料包装袋的(厚度约100纳米)石 墨烯,那么需要施加差不多两万牛的压力才能将其扯断。 换句话说,如果用石墨烯制成包装袋,那么它将能承受大 约两吨重的物品。
施加外部机械力时,碳原子面就弯曲变形,从而使 碳原子不必重新排列来适应外力,也就保持了结构 稳定。这种稳定的晶格结构使碳原子具有优秀的导 电性。
石墨烯最大的特性是其中电子的运动速度达 到了光速的1/300,远远超过了电子在一般导体中 的运动速度。这使得石墨烯中的电子,或更准确地, 应称为“载荷子”(electric charge carrier), 的性质和相对论性的中微子非常相似。
石墨烯的应用
微电子领域 微电子领域也具有巨大的应用潜力。研究人员甚至将石
《石墨烯的研究方向及发展.ppt》
航空航天 军事装备
导热材料
锂离子电池
传感材料
石墨烯
散热材料
防腐耐磨涂层
生物医药
摩擦材料 水处理
薄膜 太阳能电池
5
02 制备方法
• 固相法 • 液相法 • 气相法
过渡页
Transition Page
6
02. 制备方法
固相法
机械剥离法
液相法
氧化还原法
气相法
化学气相 沉积法
外延生长法
液相剥离法
7
02. 制备方法
2630 m2/g,4 g可铺满一个
足球场
• 优异的热学性能
• 石墨烯的室温热导率约为5000 W/m· K, 是铝的20倍。
5
4
• 优异的力学性能
• 杨氏模量>1100 GPa; 抗拉强 度>130 GPa, 比钻石还坚硬。
4
01. 研究进展
1.3 石墨烯的应用方向 新能源汽车
显示触摸屏
超级电容器
已被石墨覆盖的金属表面发生吸附和分解,避免了碳膜的
多层生长,理论上CVD法能获得准确的单层石墨烯。 该法制备的石墨烯的纯度与微机械剥离法相近,具有很高 的产率和高的电子迁移率。
质量
成本
污染
产率
规模
2.1 机械剥离法
用胶带黏住石墨片的两侧面反复剥离或在固体表面反 复摩擦而获得石墨烯。 机械剥离法时间长、产率低、石墨烯层数与尺寸不可 控,难以分离,无法用于规模化生产。
质量
规模
污染
成本
产率
8
02. 制备方法
2.2 液相剥离法
直接将石墨或石墨层间化合物在具有匹配表面能的 有机溶剂中进行超声或高速剪切剥离与分散,再将得到 的悬浊液离心分离,去除厚层石墨,即可获得石墨烯。
石墨烯结构图(共28张PPT)
•
尽管特斯拉实现这种高性能石墨烯电池的量产,可能
需要数年的时间,但是只要能够做出高性能石墨烯电池,那
么电动汽车就没有什么值得挑剔的了。这也意味着,电动汽
车离成为主流又更近了一步。
石墨烯时代
•
任正非在接受媒体采访时声称,未来10至20
年内会爆发一场技术革命,“我认为这个时代将来最
大的颠覆,是石墨烯时代颠覆硅时代〞,“现在芯片
的Model S电动汽车一次充电可以行驶265英里。然而,该公司
的CEO伊隆·马斯克上个月在接受媒体采访时表示,“一次充电
行驶500英里也是有可能的,而且我们很快就能做到这一点。
〞
•
特斯拉可能很快就会推出一次充电即可行驶500英里
的电动汽车,因为高性能石墨烯电池的研发取得了不错的进
展,而这种电池的输出密度是锂离子电池的四倍。
的开展,人们发现,将石墨烯带入工业化生产的领域已为时不 ④石墨烯的发现,之所以意义重大,是因为它创造了诸多“纪录〞。
任正非在接受媒体采访时声称,未来10至20年内会爆发一场技术革命,“我认为这个时代将来最大的颠覆,是石墨烯时代颠覆硅时代〞,“现在芯
远了。因此,两人在2021年获得诺贝尔物理学奖。 片有极限宽度,硅的极限是七纳米,已经临近边界了,石墨是技术革命前沿〞。
研究历史
①想在一秒钟内下载一部高清电影吗?石墨烯调制器的问世或许能让这个愿望得以实现。 这以后,制备石墨烯的新方法层出不穷,经过5年的开展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。 ⑥让材料学家更为惊喜的是,石墨烯几乎完全透光,透光率在97%以上。 同时,石墨烯太阳能技术的光电转换效率高达60%,是现有多晶硅太阳能技术的2倍,这使太阳能产业的升级成为可能。 根据美国环保局公布的信息,我们知道特斯拉广受好评的Model S电动汽车一次充电可以行驶265英里。
2024石墨烯技术PPT课件
contents •石墨烯概述•石墨烯制备方法•石墨烯表征技术•石墨烯应用领域•石墨烯产业发展现状与趋势•总结与展望目录石墨烯定义与结构定义结构石墨烯的每个碳原子与周围三个碳原子通过共价键连接,形成稳定的六边形结构。
这种结构使得石墨烯具有出色的力学、电学和热学性能。
石墨烯性质与特点力学性质石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,可以弯曲成各种形状而不断裂。
电学性质石墨烯具有优异的导电性能,电子在其中的移动速度极快,使得石墨烯成为理想的电极材料。
热学性质石墨烯具有极高的热导率,可以快速地将热量从一个区域传递到另一个区域,这使得石墨烯在散热领域具有广阔的应用前景。
光学性质石墨烯对光的吸收率很低,且透光性极好,这使得石墨烯在透明导电薄膜等领域具有潜在的应用价值。
石墨烯发现历程及意义发现历程石墨烯最初是由英国曼彻斯特大学的两位科学家通过机械剥离法从石墨中分离出来的。
这一发现引起了科学界的广泛关注,并开启了石墨烯研究的新篇章。
意义石墨烯的发现不仅打破了二维晶体无法稳定存在的传统认知,而且为材料科学、凝聚态物理以及电子器件等领域的发展带来了新的机遇。
石墨烯的优异性能使得它在能源、环保、医疗、航空航天等领域具有广阔的应用前景,有望引领新一轮的技术革命和产业变革。
机械剥离法01020304原理优点缺点应用领域化学气相沉积法在高温下,碳源气体在催化剂表面分解并沉积形成石墨烯。
可控制备大面积、高质量的石墨烯;与现有半导体工艺兼容。
设备成本高,制备过程中可能产生有毒气体。
透明导电薄膜、电子器件、传感器等。
原理优点缺点应用领域原理优点缺点应用领域氧化还原法利用溶剂将石墨剥离成单层或少层石墨烯,适用于大规模生产。
液相剥离法碳化硅外延法电弧放电法激光诱导法通过高温处理碳化硅晶体,使其表面外延生长出石墨烯,适用于制备高质量石墨烯。
利用电弧放电产生的高温高压条件,将石墨转化为石墨烯,但产量较低。
利用激光束照射石墨表面,诱导出石墨烯,但设备成本较高。
石墨烯PPT课件
富勒烯(左)和碳纳米管(中)都可以看作是由单层的石墨烯通过某种方式卷成的, 而石墨(右)是由多层石墨烯通过范德华力的联系堆叠成的
机械特性
石墨烯是人类已知强度最高的物质,比钻石还坚硬,强 度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物 理学家对石墨烯的机械特性进行了全面的研究。在试验过程 中,他们选取了一些之间在10—20微米的石墨烯微粒作为研 究对象。研究人员先是将这些石墨烯样品放在了一个表面被 钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。 之后,他们用金刚石制成的探针对这些放置在小孔上的石墨 烯施加压力,以测试它们的承受能力。
电子显微镜下观测的石墨烯片,其碳原子间距仅0.14纳米
发展简史
石墨烯出现在实验室中是在2004年,当时,英国曼彻斯 特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发 现他们能用一种非常简单的方法得到越来越薄的石墨薄片。 他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特 殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这 样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳 原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新 方法层出不穷,经过5年的发展,人们发现,将石墨烯带入 工业化生产的领域已为时不远了。
中国科学院物理研究所利用含碳的钌单晶在超高真空环境下经高温 退火处理可以使碳元素向晶体表面偏析形成外延单层石墨烯薄膜加热 NhomakorabeaSiC法
该法是通过加热单晶6H-SiC脱除Si,在单晶(0001) 面上 分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理 得到的样品在高真空下通过电子轰击加热,除去氧化物。用 俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热 使之温度升高至1250~1450℃后恒温1min~20min,从而形 成极薄的石墨层,经过几年的探索,Berger等人已经能可控 地制备出单层或是多层石墨烯。其厚度由加热温度决定,制 备大面积具有单一厚度的石墨烯比较困难。
石墨烯-最终版PPT课件
.
15
氧化石墨还原法——低质高产
石墨 氧化
氧化石 墨
超声剥离
氧化石 墨片
还原
.
石墨烯
16
特点
优势:成本低廉,工艺简单,已经实现大规 模量产。含氧基团的存在使得石墨烯容易分 散在基体中,更容易和其他物质结合,便于 制造复合材料。
劣势:纯度较低,制成的石墨烯片存在大量 结构缺陷,易发生褶皱或折叠,带有许多含 氧基团,影响了石墨烯的优良性质,无法满 足一些应用领域的需要,如光电器件,储氢 材料等。
cvd法日趋成熟有望在510年实现应用用于导电散热等领域拥有含氧基团应用于药物监测催化剂等特殊领域24石墨烯电子材料领域重点领域透明电极太阳能电池柔性屏幕可穿戴设备电子材料领域重点领域透明电极太阳能电池电池负极材料替代硅的芯片材料柔性屏幕可穿戴设备散热材料领域等设备的散热问题散热材料领域解决手机计算机等设备的散热问题进一步提升性能环保监测领域方面表现优异环保监测领域功能化石墨烯及石墨烯复合材料在污染物吸附过滤方面表现优异生物医学领域石墨烯在细胞成像生物医学领域石墨烯在细胞成像干细胞工程等生物纳米技术领域有着广泛的应用前景
背景
集成电路制造技术不断改进,极紫外光刻的引入, 将特征尺寸大幅度减小,下一代硅基集成电路的 特征尺寸将达到15甚至10nm以下。随之而来的 短沟道效应和介质隧穿效应等的影响,以及制造 难度的提升,将很难得到特征寸小于10nm的性 能稳定的电路产品。所以急需研究开发基于新材 料、新结构和新工艺的器件。
B. H. Hong研究组进一步发展该 法, 制备出30英寸的石墨烯膜,透 光率达97.4%。
N. P. Guisinger组的研究表明:石墨 烯的生长始于石墨烯岛,具有不同的 晶体取向,从而导致片层的结合处形 成线缺陷。
环境材料-石墨烯-PPT模版
LOGO
LOGO
石墨烯利用前景
Other Uses
涂料
海水淡化 抗菌效用 多孔材料 物理研究
石墨烯基涂料可用于导电油墨,抗静电,电磁 干扰屏蔽,和气体阻隔的应用 石墨烯过滤器远优于其它海水淡化技术,与水分 子分解发电技术结合,水、电可成为廉价产品 石墨烯氧化物对于抑制大肠杆菌的生长超级有效, 而且不会伤害到人体细胞
当石墨烯被释放到地表水中时,它 的硬度会增大,吸附的的有机材料 也更少,它很快就会变得不稳定, 既不能发生沉淀,也不能随水的流 动而被带走。
LOGO
【参考文献】
The Rise of Graphene. A K Geim & K S Novoselov. Nature Materials 6, 183-191 (2007) A Road Map for Graphene. K S Novoselov et al. Nature 490, 192200 (2012) The Transportation and Stability of Graphene Oxide Nanoparticles in Ground Water and Surface nphere. Environmental Engineering Science,2014
LOGO
石墨烯制备及产业化
机械分离 机械分离(Mechanical exfoliation):最普通的是微机械分离法,直接将石墨烯薄片 从较大的晶体上剪裁下来,如用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦, 体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。产 率低、仅供实验研究。 氧化还原法 氧化还原(Oxidation-reduction):将天然石墨与强酸和强氧化性物质反应生成氧化 石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),然后加入还原剂去除氧 化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。宏量制备产生废液污 染、石墨烯品质不高存在缺陷。 取向附生法 取向附生(Epitaxy):让碳原子在 1150 ℃下渗入钌,然后冷却到850℃,之前吸收 的大量碳原子就会“浮”到钌表面,镜片形状的单层碳原子“ 孤岛” 布满整个基质表面, 最终生长成完整的一层石墨烯。成本高、厚度不均匀。
纳米材料--石墨烯的世界ppt
石墨烯的应用
双层石墨烯可降低元器件电噪声 美国IBM公司T·J·沃森研究中心 的科学家,攻克了在利用石墨构建 纳米电路方面最令人困扰的难题, 即通过将两层石墨烯片叠加,可以 将元器件的电噪声降低10倍,由此 可以大幅改善晶体管的性能,这将 有助于制造出比硅晶体管速度快、 体积小、能耗低的石墨烯晶体管。
新材料产业面临的问题
第一:炒作过甚
在世纪之交,世界各地刮起了一阵纳米狂热风。欧美、日本以及国内 争相出台纳米发展计划。科学家们纷纷预言“21世纪将是纳米时代”。 于是,国内一时之间出现了“纳米水“、”纳米电冰箱“、“纳米毛衣”、 “纳米化妆品”令人眼花缭乱、不明觉厉的产品。2010年获得诺贝尔奖 之后,石墨烯在不少研究方向上捷报频传。
对材料抵抗裂缝能力——也就是断裂韧性——的测量不仅仅 包括抗拉强度——也就是指当材料被拉伸时它断裂的可能 性,它还测量了当一种特定材料被扭曲时,它在断裂之前 所能忍受的“惩罚”。例如金属是可延展的,你需要反复扭 曲弯曲才能折断一根汤匙。玻璃能够抵抗扭曲,但它不具 有延展性,因此如果扭曲力或者拉伸力超过一定的极限, 它便会迅速断裂。即使是一个小裂缝也足以导致玻璃碎裂。 朱教授和莱斯大学的娄俊(Jun Lou)合作进行的研究发现, 有裂缝的石墨烯断裂的可能性是钢铁的10倍,且此时它的 断裂韧性更接近于氧化铝或者碳化硅基陶瓷。相对较低的 断裂韧性意味着一片石墨烯里一个小裂缝就足以摧毁它。 这样小的裂缝很可能是制造石墨时自然产生的结果。
利用石墨烯试 制的触摸面板
含有石墨烯的柔性材料在产业化过程中 可作为一种透明导电材料,应用在可弯 曲、可折叠电子显示器的生产中。
13年E-Ink推出世界最薄电子纸手表,厚度仅为0.8毫米
石墨烯的其他用途
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯的加工
机械剥离法 化学气相沉积法(CVD) 氧化-还原法 溶剂剥离法 加热Si-C法
1、机械剥离法
通过机械力从新鲜石墨晶体的表面剥离石墨烯片 层。
2、加热SiC法
通过加热单晶SiC脱除Si,在单晶(0001)面上分解 出石墨烯片层。Berger等人已经能可控地制备出 单层. 或是多层石墨烯 。据预测这种方法很可能 是未来大量制备石墨烯的主要方法之一。
石墨烯的应用
双层石墨烯可降低元器件电噪声 美国IBM公司T·J·沃森研究中心 的科学家,攻克了在利用石墨构建 纳米电路方面最令人困扰的难题, 即通过将两层石墨烯片叠加,可以 将元器件的电噪声降低10倍,由此 可以大幅改善晶体管的性能,这将 有助于制造出比硅晶体管速度快、 体积小、能耗低的石墨烯晶体管。
石墨烯 是2004年由曼 彻斯特大学科斯提亚• 诺沃谢夫和安德烈•盖 姆发现的,他们使用 的是一种被称为机械 微应力技术的简单方 法
石墨烯的结构
1、单原子层石墨晶体薄膜 2、碳原子构成的二维蜂窝状物质 3、只包括六角原胞(等角六边形)
石墨烯的神奇特性
石墨烯的性能
强度最高 —— 美国哥伦比亚大学的专家为了测试石 墨烯的强度,先在一块硅晶体板上钻出一些直径一 微米的孔,每个小孔上放置一个完好的石墨烯样本, 然后用一个带有金刚石探头的工具对样本施加压力。 结果显示,在石墨烯样品微粒开始断裂前,每100纳 米距离上可承受的最大压力为2.9 微牛左右。按这 个结果测算,要使 1 米长的石墨烯断裂,需要施加 相当于55 牛顿的压力。
第三:技术低端、忽视研发 与其他产业相比,新材料的研发投入高、周期长、产业化 风险较大。企业需要保持技术的敏感性和创新意识,并愿 意持续投入资金研发。综合考虑这些特点,导致不少企业 对于新材料研发不重视,甚至没有研发部门,直接向国外 高价购买成熟技术、设备。这样造成的恶果是国内企业基 本只能生产低端产品。 第四:污染严重 一直以来,钢铁、有色、水泥、玻璃这些传统材料行业对 环境的巨大污染早已为人诟病。而新材料产业对环境的破 坏也比较常见,急需解决。
新材料产业面临的问题
第一:炒作过甚
在世纪之交,世界各地刮起了一阵纳米狂热风。欧美、日本以及国内 争相出台纳米发展计划。科学家们纷纷预言“21世纪将是纳米时代”。 于是,国内一时之间出现了“纳米水“、”纳米电冰箱“、“纳米毛衣”、 “纳米化妆品”令人眼花缭乱、不明觉厉的产品。2010年获得诺贝尔奖 之后,石墨烯在不少研究方向上捷报频传。
对材料抵抗裂缝能力——也就是断裂韧性——的测量不仅仅 包括抗拉强度——也就是指当材料被拉伸时它断裂的可能 性,它还测量了当一种特定材料被扭曲时,它在断裂之前 所能忍受的“惩罚”。例如金属是可延展的,你需要反复扭 曲弯曲才能折断一根汤匙。玻璃能够抵抗扭曲,但它不具 有延展性,因此如果扭曲力或者拉伸力超过一定的极限, 它便会迅速断裂。即使是一个小裂缝也足以导致玻璃碎裂。 朱教授和莱斯大学的娄俊(Jun Lou)合作进行的研究发现, 有裂缝的石墨烯断裂的可能性是钢铁的10倍,且此时它的 断裂韧性更接近于氧化铝或者碳化硅基陶瓷。相对较低的 断裂韧性意味着一片石墨烯里一个小裂缝就足以摧毁它。 这样小的裂缝很可能是制造石墨时自然产生的结果。
第二:行业标Βιβλιοθήκη 缺失没有标准,就无法使用一个公认的准绳来衡量该产品的质量,致使产 品和企业真伪难辨、优劣难辨。市面上同样的商品,价格千差万别, 势必损害消费者对商品的信任度。而且,没有标准,高端产品不能区 分开来,最终陷入低劣产品的价格战的乱像。所以,行业标准缺失往 往被认为行业混乱的源头。作为新兴产物,正处在快速发展的新材料 产业领域,标准缺失问题尤其明显。
利用石墨烯试 制的触摸面板
含有石墨烯的柔性材料在产业化过程中 可作为一种透明导电材料,应用在可弯 曲、可折叠电子显示器的生产中。
13年E-Ink推出世界最薄电子纸手表,厚度仅为0.8毫米
石墨烯的其他用途
1、透明电极——染料太阳能电池的正极 2 、电化学生物传感器——石墨烯为电子传 输提供了二维环境和在边缘部分快速多相电 子转移 3 、超级电容器——高效储存和传递能量的 体系 , 它具有功率密度大 , 容量大 , 使用寿命 长,经济环保 4 、能源存储——质量轻、高化学稳定性和 高比表面积 5 、复合材料——独特的物理、化学和机械 性能为复合材料的开发提供了原动力
CVD法
使用的是一种以镍 为基片的管状简易 沉积炉,通入含碳气 体 , 例如 , 碳氢化合 物,它在高温下分解 成碳原子沉积在镍 的表面,形成石墨烯, 通过轻微的化学刻 蚀,使石墨烯薄膜和 镍片分离得到石墨 烯薄膜。
溶液剥离法
原理是将少量的石墨分散于溶剂中,形成低 浓度的分散液,利用超声波的作用破坏石墨 层间的范德华力,此时溶剂可以插入石墨层 间,进行层层剥离,制备出石墨烯
纳米材料——石 墨烯的世界
制作者 安雪 2014年05月
1985
发现富勒烯
1991
1996
2004
发现碳纳米管
富勒烯的发现者获得了诺贝化学奖。 石墨烯首次制备成功
2010
Geim教授获得诺贝尔物理学奖
2014
结 构
石墨烯
什么是石墨烯
石墨烯(Graphene)是碳原子紧密堆积成 单层二维蜂窝状晶格结构的一种碳质新材 料,厚度只有0.335纳米,仅为头发的20万 分之一,是构建其它维数碳质材料(如零 维富勒烯、一维纳米碳管、三维石墨)的 基本单元,具有极好的结晶性、力学性能 和电学质量
限制石墨烯实际应用的相关课题
高品质
如何在所要求的基板或位置 制作出不含缺陷及杂质的 高品质的任意层数的石墨烯
制备工 艺课题
进一步改进CVD法或开 大面积 发新的制备工艺制备所 要求基板的大面积石墨烯
石墨烯产品最终能否抢占硅 量产化 材料产品地位,取决于其 能否实现工业化标准化生产
石墨烯也像陶瓷一样脆弱!