直线的参数方程教案word

合集下载

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。

高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案第06课时2、2、3 直线的参数方程学习目标1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程一、学前准备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则 =︱︱ ;3、经过点,倾斜角为的直线的普通方程为。

二、新课导学◆探究新知(预习教材P35~P39,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则 = ,而直线的单位方向向量因为,所以存在实数,使得 = ,即有,因此,经过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?◆应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A ,B两点的距离之积。

(教材P36例1)解:例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材P37例2)解:◆反馈练习1.直线上两点A ,B对应的参数值为,则 =( )A、0B、C、4D、22.设直线经过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。

三、总结提升◆本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价一、自我评价你完成本节导学案的情况为( )A.很好B.较好C. 一般D.较差课后作业1. 已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程3.过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

直线的参数方程(第一课时)

直线的参数方程(第一课时)

教 案直线的参数方程(第一课时)教学设计一、教学目标1、初步能推导直线的参数方程,理解其几何意义2、了解何时选用直线的参数方程3、体会参数方程的消元作用,初步能用联系的观点理解参数的意义二、教学重点:直线参数方程的推导及简单应用三、教学难点:直线参数方程几何意义的应用四、教学过程1、引入:引例1. 直线的参数方程方案1. 已知直线上定点M 0(X 0、y 0)和倾斜角解决1. 如图1. 述M 0作X 轴、Y 轴垂线交于H在RT △MHM 0中易得cos sin x xo MMo x y yo MMo x=+⎧⎨=+⎩ 当点M 与Mo 重合时也适合⊗⎩⎨⎧=+=+==⎩⎨⎧-=-=为参数的参数方程可得直线合左行时也可得在同理,当t x ts yo y x t xo x mmosocx yo y x mmo xo x mo cos l , ter |t ||mmo |cos m 其中,参数t 为几何意义是|t |表示直线上任一点M 0到定点M 的距离,式称为直线参数方程的标准式。

解法2. 从直线普通方程化为参数方程)t (0cos 0x cos )(cosxsomx yo y )x -mx(t =y -y 的点斜式方程为L 直线0X 2)1(为参数即得记比值为时或π当⎩⎨⎧+=+=-=-⇒-==⇒≠≠tsomx y y x t x t x xo x somx yo y xo x x X ⊗为参数注意:也可写成的距离到定点表示直线上统一点的几何意义是其中参数为参数的参数方程为直线时也适合上式或当t o t M M |t |)(o Yo y cos t Xo X 02)2(⎩⎨⎧+=+=⎩⎨⎧+=+=∴==ttaonX Y Y Xo X o t t mXTs X l X X2.解法3,用向量方法推导直线的参数方程如图2的几何意义同上为参数的倾斜角则为直线,,可以取为参数,)(使得则存在平行即与非零向量若直线t t cos ,cos ),(,R 11),(a ),(⎩⎨⎧=+=+===⎩⎨⎧+=+=⇒==-=--xts go y x t xo x l x somx m x l ter t tmyo y tl xo x m l t yo y xo x T l MoM m l l Yo Y Xo X MoM ε你还有其他方案吗?程的非标准形式式为直线参数方的水平距离与定点终点的几何意义表示直线上其中参数时,符合)当(为参数,则记比值为时当的点斜式方程为直成和斜率⋯⋯⎩⎨⎧+=+==⎩⎨⎧+=+=-=≠=@o @x 2)(k yo -y 0k (1)xo)-k(x yo -y l K Yo )o,X o(M 上定点L 已知直线 2.方案m m t ktyo y t xo o k t ktyo y t xo x t xo x 练习2(1)o(1,2)32m,103203(t )cos 20l M x y x tsom o y t o χ+-==+⎧⎨=⎩设直线过点倾斜角为试写出它的一个参数方程。

《直线的参数方程》教学设计

《直线的参数方程》教学设计

《直线的参数方程》教学设计一、教学目标知识与技能:通过分析质点在匀速直线运动中时间与位置的关系,了解直线参数方程,体会参数的意义;通过直线的点斜式方程及向量法推导直线参数方程的标准形式与一般形式,理解标准形式中参数t 的几何意义,会初步利用参数的几何意义解决问题,体会直线参数方程在解决问题中的作用。

过程与方法:通过直线参数方程的推导与应用,培养学生分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想。

情感态度与价值观:通过建立直线参数方程的过程,培养学生数学抽象、数学建模以及逻辑推理的能力。

二、教学重、难点教学重点:建立直线的参数方程。

教学难点:理解参数t 的几何意义及其应用。

三、学情分析学生前面已经学习过参数方程的概念,普通方程与参数方程的互化,体验了参数方程在解决问题中的一些应用。

但是,由于学生刚刚接触参数方程的概念,所以对于直线参数方程中参数的选定还是比较困难的,根据确定直线的几何条件联想到向量进而建立联系也是难点。

四、教学过程复习引入:问题:选取适当参数,把直线方程23y x =+化为参数方程.【师生活动】教师提问,学生回答【设计意图】本问题是教材上一节课2.1中的例题,通过学生的回忆,既节省了时间,又让学生体会到直线参数方程对于大家来说是不陌生的,让学生认识到直线参数方程的形式不是唯一的。

探究一:把直线看作质点的匀速运动曲线,建立直线的参数方程问题:设质点从点00(,)M x y 出发,沿着与x 轴成α角的方向作匀速直线运动,其速率为0v .(1)写出质点在x 轴、y 轴上的速度分量;(2)设(,)M x y 为t 时刻质点所在位置,试用t 表示,x y【师生活动】教师提问,学生思考并回答【设计意图】从物理的角度引出直线的参数方程,选取时间t 为参数,这样可以使学生更深刻且自然的理解参数的意义,若不顾及t 的物理意义,则可以在参数t 与质点位置(,)x y 之间建立一个一一对应的关系。

《直线的参数方程》教学案3

《直线的参数方程》教学案3

《直线的参数方程》教学案3教学目标1. 了解直线参数方程的条件及参数的意义.2. 能根据直线的几何条件,写出直线的参数方程及参数的意义.3. 通过观察、探索、发现的创造性过程,培养创新意识.教学重点直线参数方程的定义及方法教学难点选择适当的参数写出曲线的参数方程.教学用具PPT 课件 多媒体教学过程直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),其中参数t 的几何意义是:|t |是直线l 上任一点M (x ,y )到点M 0(x 0,y 0)的距离,即|t |=|M 0M →|.课堂互动1.若直线l 的倾斜角α=0,则直线l 的参数方程是什么? 【提示】 参数方程为⎩⎪⎨⎪⎧x =x 0+t ,y =y 0.(t 为参数)2.如何理解直线参数方程中参数的几何意义?【提示】 过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的长度,即|t |=|M 0M →|.①当t >0时,M 0M →的方向向上; ②当t <0时,M 0M →的方向向下;例题讲解已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t ,(t 为参数).(1)求直线l 的倾斜角;(2)若点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.【思路探究】 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义求得t .【自主解答】 (1)由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.(2)由(1)知,直线l 的单位方向向量e =(cos π6,sin π6)=(32,12). ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4(32,12)=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).规律方法1.一条直线可以由定点M 0(x 0,y 0),倾斜角α(0≤α<π)惟一确定,直线上的动点M (x ,y )的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),这是直线参数方程的标准形式.2.直线参数方程的形式不同,参数t 的几何意义也不同,过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a 、b 为常数,t 为参数).变式训练设直线l 过点P (-3,3),且倾斜角为5π6.(1)写出直线l 的参数方程;(2)设此直线与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数)交于A ,B 两点,求|PA |·|PB |.【解】 (1)直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-3+t cos 56π=-3-32t ,y =3+t sin 56π=3+t 2.(t 为参数)(2)把曲线C 的参数方程中参数θ消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得 4(-3-32t )2+(3+12t )2-16=0. 即13t 2+4(3+123)t +116=0.由t 的几何意义,知 |PA |·|PB |=|t 1·t 2|, 故|PA |·|PB |=|t 1·t 2|=11613.课堂作业1.直线⎩⎪⎨⎪⎧x =-2+t cos 60°,y =3+t sin 60°(t 为参数)的倾斜角α等于( )A .30°B .60°C .-45° D.135°【解析】 由直线的参数方程知倾斜角α等于60°,故选B. 【答案】 B2.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α(α为参数,0≤a <π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)【解析】 直线表示过点(1,-2)的直线. 【答案】 A3.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1C.22 D .-22【解析】 消去参数t ,得方程x +y -1=0, ∴直线l 的斜率k =-1. 【答案】 B4.(2013·濮阳模拟)若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t (t 为参数)与直线4x +ky =1垂直,则常数k =________.【解析】 将⎩⎪⎨⎪⎧x =1-2ty =2+3t化为y =-32x +72,∴斜率k 1=-32,显然k =0时,直线4x +ky =1与上述直线不垂直. ∴k ≠0,从而直线4x +ky =1的斜率k 2=-4k.依题意k 1k 2=-1,即-4k ×(-32)=-1,∴k =-6.【答案】 -6课后作业(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.下列可以作为直线2x -y +1=0的参数方程的是( )A.⎩⎪⎨⎪⎧ x =1+t ,y =3+t (t 为参数)B.⎩⎪⎨⎪⎧x =1-t ,y =5-2t(t 为参数)C.⎩⎪⎨⎪⎧x =-t ,y =1-2t (t 为参数)D.⎩⎪⎨⎪⎧x =2+255t ,y =5+55t (t 为参数)【解析】 题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为2x -y +3=0,故选C.【答案】 C2.(2013·许昌模拟)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-ty =2+t(t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ,即x 2+y 2=x ,即(x -12)2+y 2=14,∴ρ=cos θ所表示的图形是圆.由⎩⎪⎨⎪⎧x =-1-ty =2+t (t 为参数)消参得:x +y =1,表示直线.【答案】 D3.原点到直线⎩⎪⎨⎪⎧x =3+4t y =-32+3t (t 为参数)的距离为( )A .1B .2C .3D .4【解析】 消去t ,得3x -4y -15=0, ∴原点到直线3x -4y -15=0的距离 d =|3×0-4×0-15|32+ -42=3. 【答案】 C4.直线⎩⎪⎨⎪⎧x =1+12ty =-33+32t ,(t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)【解析】 将x =1+t 2,y =-33+32t 代入圆方程,得(1+t 2)2+(-33+32t )2=16,∴t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,∴x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3).【答案】 D二、填空题(每小题5分,共10分)5.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3. 【答案】 36.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数,0≤θ≤π2)和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),则曲线C 1与C 2的交点坐标为________.【解析】 曲线C 1和C 2的普通方程分别为⎩⎪⎨⎪⎧x 2+y 2=5x -y =1(0≤x ≤5,0≤y ≤5)①②联立①②解得⎩⎪⎨⎪⎧x =2,y =1.∴C 1与C 2的交点坐标为(2,1).【答案】 (2,1)三、解答题(每小题10分,共30分)7.化直线l 的参数方程⎩⎨⎧x =-3+ty =1+3t,(t 为参数)为普通方程,并求倾斜角,说明|t |的几何意义.【解】 由⎩⎨⎧x =-3+t ,y =1+3t消去参数t ,得直线l 的普通方程为3x -y +33+1=0.故k =3=tan α,即α=π3.因此直线l 的倾斜角为π3.又⎩⎨⎧x +3=t ,y -1=3t .得(x +3)2+(y -1)2=4t 2,∴|t |= x +3 2+ y -122.故|t |是t 对应点M 到定点M 0(-3,1)的向量M 0M →的模的一半.8.已知曲线C 的极坐标方程是ρ=4cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t +1,y =22t ,(t 为参数)求直线l 与曲线C 相交所成的弦的弦长.【解】 由ρ=4cos θ,得ρ2=4ρcos θ.∴直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.直线l 的参数方程⎩⎪⎨⎪⎧x =22t +1,y =22t .(t 为参数)化为普通方程为x -y -1=0. 曲线C 的圆心(2,0)到直线l 的距离为12=22,所以直线l 与曲线C 相交所成的弦的弦长为24-12=14. 9.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C的普通方程,并求出它们的公共点的坐标.【解】 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2 x -1 ,y 2=2x ,解得公共点的坐标为(2,2),(12,-1).教后反思。

16 直线的参数方程(2)(教师版)

16  直线的参数方程(2)(教师版)

16. 直线的参数方程(2)主备: 审核:学习目标:1.了解直线参数方程的条件及参数的意义;2. 能根据直线的几何条件,写出直线的参数方程. 学习重点:直线参数方程的简单应用,学习难点:直线参数方程中参数意义的理解. 学习过程:一、课前准备:阅读教材3739P P -的内容,仔细体会例2、例3、例4三种题型的解法,并思考下列问题:1.化下列参数方程为普通方程: (1)22()12x tt y t =-⎧⎨=-+⎩为参数,答:10x y +-=.(2)222()21x t t y ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数,答:10x y +-=. (3)1()x t t y t =-⎧⎨=⎩为参数,答:10x y +-=.(4)212()2x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数.答:10x y +-=. 2. 上面所化成的普通方程有上面关系?那些参数方程中的参数有明显的几何意义?答:(2)、(4)的参数有明显的几何意义. 二、典型例题:【例2】经过点(1,2)M 作直线l ,交椭圆22186x y +=于两点A 、B .如果点M 恰好为线段AB 的中点,求直线l 的方程.【解析】设过点(1,2)M 的直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数),代入椭圆方程,得22(sin3)2(3cos 8sin )50t t ααα+++-=,则1AM t =,2MB t =.M 在椭圆内,所以1202t t +=,即3cos 4sin 0αα+=, 所以3tan 4k α==-, 所以直线l 的方程为32(1)4y x -=--,即34110x y +-=.【例3】如图所示,AB 、CD 是双曲线221x y -=的 两条相交弦,交点为P ,两弦AB 、CD 与双曲线实轴长轴的夹角为α、β,且αβ=. 求证:||||||||PA PB PC PD ⋅=⋅.【证明】由已知,βπα=-,设点P 坐标为00(,)x y ,则直线AB 的方程为00cos sin x x t y y t αα⎧⎪⎨⎪⎩=+=+(t 为参数),代入双曲线方程221x y -=并整理,得222220000(cos sin )2(cos sin )(1)0t x y t x y αααα-+-+--=,由于22cos sin 0αα-≠,已知直线AB 与椭圆有两个交点,因此上述方程有个实根,设为1t 、2t ,容易得到 2200121222|1|||||||||||cos sin x y PA PB t t t t αα--⋅=⋅=⋅=-…………① 同理,对于直线CD ,将α换成πα-,即得到220022|1|||||cos ()sin ()x y PC PD παπα--⋅=---2200221||cos sin x y αα--=-…………………② 由①②得,||||||||PA PB PC PD ⋅=⋅.【例4】当前台风中心P 在某海滨城市O 向东400km 处生成,并以30/km h 的速度向西偏北θ(5tan θ=)方向移动. 已知台风中心300km 以内的地方都属于台风侵袭的范围,那么经过多长时间后该城市开始受到侵袭?【解析】取O 为原点,OP 所在的直线为x 轴,建立直角坐标系,则点P 的坐是(400,0). 以O 为圆心,300km 为半径作圆O ,圆O 的方程为 222300x y +=. 当台风中心移动的位置在圆O 内或圆O 上是时,城市O 受到台风侵袭. 设过时间t 后,台风中心(,)M x y ,则由题意得,台风中心M 移动形成的直线l 的方程为40030cos()30sin()x t y t πθπθ⎧⎨⎩=+-=-(t 为参数),即240030()330x t y ⎧⎪⎪⎨⎪⎪⎩=+⨯-=(t 为参数), 化简得40020105x t y t ⎧⎪⎨⎪⎩=-=(t 为参数).当点(40020,105)M t t -在圆O 内或圆O 上时, 有222(300(40020)105)t t +≤-,291607000t t -+≤,解得70910t ≤≤. 因此大约在7.7小时后该城市开始受到台风侵袭,受侵袭的时间大约持续2.2个小时. 三、总结提升:直线的参数方程00x x at y y bt ⎧⎪⎨⎪⎩=+=+(t 为参数),称为直线方程的一般式;只有在221a b +=时,才会变为00cos sin x x t y y t αα⎧⎪⎨⎪⎩=+=+(t 为参数),称为标准式.标准式中的参数t 才有明显的几何意义.我们只需掌握标准式就行了.认真研读教材中的例2、例3、例4和本学案的例题,体会这几种题型的解法. 四、反馈练习:1. 曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是 ( B )A .21(0,)(,0)52、B .11(0,)(,0)52、C .(0,4)(8,0)-、D .5(0,)(8,0)9、 2. 将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为 ( C ) A .2y x =- B .2y x =+C .2(23)y x x =-≤≤D .2(01)y x y =+≤≤3. 直线l 经过点(1,2),倾斜角为34π,则其参数方程可以是 ( D )A .12x t y t =+⎧⎨=+⎩()t 为参数 B .12x ty t =-⎧⎨=-⎩()t 为参数 C .3x t y t =+⎧⎨=⎩()t 为参数 D .3x ty t=-⎧⎨=⎩()t 为参数 4. 直线l :y x =与曲线2y x =交于A 、B 两点,若点M 坐标为(1,1)--,则||||MA MB ⋅= ( C )A .15B .16C .17D .185. 直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为54-. 6. 过点(3,1)M 作直线l 交双曲线2212y x -=于A 、B 两点,若(3,1)M 为线段AB 的中点,求直线l 的方程.【解析】设直线l 的参数方程为3cos 1sin x t y t αα⎧⎨⎩=+=+(t 为参数),代入双曲线方程,得222(2cos sin )(12cos 2sin )150t t αααα-+-+=, 则1AM t =,2MB t =. 因为(3,1)M 为线段AB 的中点,所以1202t t +=, 即12cos 2sin 0αα-=,所以tan 6k α==,所以直线l 的方程为16(3)y x -=-,即6170x y --=.五、学后反思:。

直线的参数方程课时教案(第一课时)

直线的参数方程课时教案(第一课时)

课时教案一、课题直线的参数方程(第一课时,共两课时)二、教学目的1.了解直线参数方程的条件以及参数的几何性质2.能根据直线的几何条件,写出直线的参数方程3.通过观察、探索、发现的过程,发展学生数学核心素养的“知识理解”、“知识迁移”、“知识创新”三级目标。

三、课型与教法新授课引导—发现模式四、教学重点直线参数方程的构建五、教学难点从动点M点的坐标变成直线l的参数方程的转化、t的几何意义、证明直线的参数方程、辨别是否是直线的标准参数方程六、教学过程探究一建立已知直线的参数方程1.复习引入(1)若点是直线l上的两相异点,则直线l的方向向量为,倾斜角为时,直线单位方向向量为;(2)已知两个向量),则共线的充要条件是;(3)如果直线l过定点,且倾斜角为,则直线l的方程为。

2. 讲授新课问题1 如图1,位于原点的机器人以单位速度沿单位方向向量行走时间t到达点M,求M点的坐标。

借助前面准备的知识由三角函数的定义不难得到,写成方程即。

问题2 如图2,如果初始位置不在原点,而在点,其他条件不变,求点M的坐标。

借助前面问题1和坐标的定义,不难得到,写成方程即。

问题3一般地,设直线l过点,且倾斜角为,点为其上任意一点,求M点的坐标。

可以提示学生引入参数t,则学生可类比得到(t为参数),此即为过点且倾斜角为的直线l的参数方程。

问题4 你能写出具体推导过程吗?指导学生利用向量法证明,同时指导学生借助点斜式方程进行证明。

探究二直线参数方程中t的几何意义问题5直线的参数方程(t为参数)中哪些是变量?哪些是常量?很容易由问题1,2,3得出是变量,是常量。

问题6 参数的几何意义是什么?为什么?结合参数方程的推导过程,可以引导学生从,且,得到,也可由。

由此可知|t|表示直线上的动点到定点的距离,即为参数的几何意义。

问题7参数t的取值范围是什么?t的正负与点的位置之间有什么关系?由中的正负可确定和的大小,从而确定的正负与点位置之间的关系,再利用图3可知:当时,点在点的上方;当时,点在点的下方;当时,点与点重合。

人教A版选修4-4 第二讲 第三节 直线的参数方程教案设计

人教A版选修4-4 第二讲 第三节 直线的参数方程教案设计

三、直线的参数方程一、重点难点点拨重点:直线的参数方程难点:应用直线的参数方程去处理解决问题二、知能目标解读1.掌握直线参数方程的标准形式,明确参数的几何意义。

2.能运用直线的参数方程解决某些相关的应用问题(弦长问题、中点问题等)3.通过关于直线和圆锥曲线的综合练习,进一步从中体会到参数方程的方便之处和参数的作用,增强在处理这一类问题中的参数意识。

三、授课内容1.经过点),(000y x P ,倾斜角α的直线l 的参数方程为)t t y y t x x 为参数(sin cos 00⎩⎨⎧+=+=αα 2.直线的参数方程(标准形式)中,||t 表示参数t 对应的动点),(y x M 与直线上的定点),(000y x M 这间的距离,就是有向线段→M M 0相对于→e 的坐标。

①设直线上的任意两点21,P P 对应的参数分别为21,t t ,则||||2121t t P P -=(弦长公式) ②位于直线上的三点21,,P P P 把对应的参数分别为21,,t t t ,若P 是线段21P P 中点,则有221t t t +=,特别,当210,P P P 为的中点时,有021=+t t 3、典例:【例12】已知直线01:=-+y x l 与抛物线2x y =交于B A ,两点,求线段AB 的长和点)2,1(-M 到B A ,两点的距离之积【解析】因为直线l 过定点M ,且l 的倾斜角为43π,所以它的参数方程是)(43sin 243cos 1为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+=+-=ππ 即 )(222221为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+=--= 代入2x y =,得0222=-+t t 得,2,22121-=⋅-=+t t t t由参数的几何意义,得2||||||,10||||2121=⋅=⋅=-=t t MB MA t t AB【例13】.2221x t t x y y =+⎧⎪-=⎨=⎪⎩直线为参数)被双曲线上截得的弦长为。

直线的参数方程教学设计[全文5篇]

直线的参数方程教学设计[全文5篇]

直线的参数方程教学设计[全文5篇]第一篇:直线的参数方程教学设计《直线的参数方程》教学设计教学目标:1.联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.3.通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.教学重点:联系数轴、向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数(数轴上的点坐标)与点在直角坐标系中的坐标之间的联系.教学方式:启发、探究、交流与讨论.教学手段:多媒体课件.教学过程:一、回忆旧知,做好铺垫教师提出问题:1.在平面直角坐标系中,确定一条直线的几何条件是什么?2.根据直线的几何条件,你认为应当怎样选择参数,如何建立直线的参数方程?这些问题先由学生思考,回答,教师补充完善。

【设计意图】引导学生从几何条件思考参数的选择,为学生推导直线的参数方程做好准备.二、直线参数方程探究1.问题:数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题.【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.2.问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?(2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.3.问题(1):当点M在直线L上运动时,点M满足怎样的几何条件?【设计意图】明确参数.问题(2):如何确定直线L的单位方向向量?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.4.问题:如何建立直线的参数方程?(得出直线的参数方程)【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.三、例题讲解例1.(题略)先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解。

选修44参数方程直线的参数方程教案

选修44参数方程直线的参数方程教案
三直线的参数方程
教学目标:掌握直线的参数方程,理解参数t的几何意义;会应用直线的参数方程解决有关线段长度问题及直线与二次曲线相交的弦长、中点、最值等问题。
教学重点、难点:用直线的参数方程解决有关距离问题;参数方法与普通方法之甄别。
直线的参数方程
经过点M0(x0,y0),倾斜角为的直线l的普通方程为
y-y0=tanα(x-x0)
分析:中点问题与弦长有关,考虑用直线的参数方程,并注意有t1+t2=0。
解:设M(x0,y0)为轨迹上任一点,则直线P1P2的方程是 (t是参数),代入双曲线方程得:(2cos2θ−sin2θ)t2+2(2x0cosθ−y0sinθ)t+ (2x02−y02−2) = 0,
由题意t1+t2=0,即2x0cosθ−y0sinθ=0,得 。
例1.已知直线l: x+y-1=0与抛物线y=x2交于A, B两点,求线段AB的长度和点M(-1, 2)到A, B两点的距离之积.
解法一:由 ,得 .
设 , ,由韦达定理得: .

由(*)解得 , .
所以 .


解法二、因为直线 过定点M,且 的倾斜角为 ,所以它的参数方程是
( 为参数),即 ( 为参数).
怎样建立直线l的参数方程呢?
如图,在直线l上任取一点M(x, y),则
直线的方向向量 , ;
,所以存在实数 ,使得 ,即

于是 , ,即 , .
因此,经过定点M0(x0,y0),倾斜角为α的直线的参数方程为
(t为参数).
问题:由 ,直线参数方程中的参数t有什么几何意义?
因为 ,所以 ,由 ,所以 ,因此|t|即为直线上的动点Mቤተ መጻሕፍቲ ባይዱx,y)到定点M0(x0,y0)的距离;

直线的参数方程教案

直线的参数方程教案

直线的参数方程教学目标:1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.教学重点:联系数轴、向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系.教学方式:启发、探究、交流与讨论.教学手段:多媒体课件.教学过程:一、回忆旧知,做好铺垫教师提出问题:1.曲线参数方程的概念及圆与椭圆的参数方程.2.直线的方向向量的概念.3.在平面直角坐标系中,确定一条直线的几何条件是什么4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程.5.如何建立直线的参数方程这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考.【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备.二、直线参数方程探究1.回顾数轴,引出向量数轴是怎样建立的数轴上点的坐标的几何意义是什么教师提问后,让学生思考并回答问题.教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA u u u r 为数轴的单位方向向量,OA u u u r 方向与数轴的正方向一致,且OM tOA =u u u u r u u u r ;②当OM u u u u r 与OA u u u r 方向一致时(即OM u u u u r 的方向与数轴正方向一致时),0t >;当OM u u u u r 与OA u u u r 方向相反时(即OM u u u u r 的方向与数轴正方向相反时),0t <;当M 与O 重合时,0t =; ③||OM t =u u u u r .教师用几何画板软件演示上述过程.【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.2.类比分析,异曲同工问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴(2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系教师提出问题后,引导学生思考并得出以下结论:选取直线l 上的定点0M 为原点,与直线l 平行且方向向上(l 的倾斜角不为0时)或向右(l 的倾斜角为0时)的单位向量e r 确定直线l 的正方向,同时在直线l 上确定进行度量的单位长度,这时直线l 就变成了数轴.于是,直线l 上的点就有了两种坐标(一维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.3. 选好参数,柳暗花明问题(1):当点M 在直线l 上运动时,点M 满足怎样的几何条件让学生充分思考后,教师引导学生得出结论:将直线l 当成数轴后,直线l 上点M 运动就等价于向量0M M u u u u u u r 变化,但无论向量怎样变化,都有0M M te =u u u u u u r r .因此点M 在数轴上的坐标t 决定了点M 的位置,从而可以选择t 作为参数来获取直线l 的参数方程.【设计意图】明确参数.问题(2):如何确定直线l 的单位方向向量e r教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.教师引导学生确定单位方向向量,在此基础上启发学生得出(cos ,sin )e αα=r ,从而明确直线l 的方向向量可以由倾斜角α来确定.当0απ<<时,sin 0α>,所以直线l 的单位方向向量e r 的方向总是向上.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.4. 等价转化,深入探究问题:如果点0M ,M 的坐标分别为00(,)(,)x y x y 、,怎样用参数t 表示,x y教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:因为(cos ,sin )e αα=r ,([0,)απ∈),00000(,)(,)(,)M M x y x y x x y y =-=--u u u u u u r ,0//M M e u u u u u u r r 又,所以存在实数t R ∈,使得0M M te =u u u u u u r r ,即00(,)(cos ,sin )x x y y t αα--=.于是0cos x x t α-=,0sin y y t α-=,即0cos x x t α=+,0sin y y t α=+.因此,经过定点00(,)M x y ,倾斜角为α的直线的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量哪些是常量②参数t 的取值范围是什么③参数t 的几何意义是什么总结如下:①00,x y ,α是常量,,,x y t 是变量;②t R ∈;③由于||1e =r ,且0M M te =u u u u u u r r ,得到0M M t =u u u u u u r ,因此t 表示直线上的动点M 到定点0M 的距离.当0M M u u u u u u r 的方向与数轴(直线)正方向相同时,0t >;当0M M u u u u u u r 的方向与数轴(直线)正方向相反时,0t <;当0t =时,点M 与点0M 重合.【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.三、运用知识,培养能力例1.已知直线:10l x y +-=与抛物线2y x =交于A,B 两点,求线段AB 的长度和点(1,2)M -到A,B 两点的距离之积.先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:解法一:由210x y y x+-=⎧⎨=⎩,得210(*)x x +-=. 设11(,)A x y ,22(,)B x y ,由韦达定理得:121211x x x x +=-⋅=-,.AB ∴===由(*)解得12x x ==123322y y +∴==.所以A B ,.则MA MB ⋅=2===.解法二、因为直线l 过定点M ,且l 的倾斜角为34π,所以它的参数方程是 31cos 432sin 4x t y t ππ⎧=-+⎪⎪⎨⎪=+⎪⎩ (t 为参数),即1222x t y t ⎧=--⎪⎪⎨⎪=+⎪⎩ (t 为参数).把它代入抛物线的方程,得220t +-=,解得1t =,2t =. 由参数t的几何意义得:12AB t t =-122MA MB t t ⋅==.在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.探究:直线 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)与曲线()y f x =交于12,M M 两点,对应的参数分别为12,t t .(1)曲线的弦12M M 的长是多少(2)线段12M M 的中点M 对应的参数t 的值是多少先由学生思考,讨论,最后师生共同得到:12121M M t t =-(), 1222t t t +=() 【设计意图】通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.例2、经过点(2,1)M 作直线l ,交椭圆221164x y +=于A,B 两点.如果点M 恰好为线段AB 的中点,求直线l 的方程.分析:引导学生以M 作为直线l 上的定点写出直线的参数方程,然后与椭圆的方程联立,设A,B 两点对应的参数分别为12,t t ,则由120t t +=求出直线l 的斜率.教师板书,过程如下:解:设过点(2,1)M 的直线l 的参数方程为2cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数), 代入椭圆方程,整理得22(3sin 1)4(cos 2sin )80t ααα+++-=.因为点M 在椭圆内,这个方程必有两个实根,设A,B 两点对应的参数分别为12,t t , 则1224(cos 2sin )3sin 1t t ααα++=-+. 因为点M 为线段AB 的中点,所以1202t t +=,即cos 2sin 0αα+=. 于是直线l 的斜率1tan 2k α==-. 因此,直线l 的方程是11(2)2y x -=--,即240x y +-=. 教师引导学生课下用其他方法解决.思考:例2的解法对一般圆锥曲线适用吗把“中点”改为“三等分点”,直线l 的方程怎样求由学生课下解决.【设计意图】体会直线参数方程在解决弦中点问题时的作用.四、自主解决,深入理解已知过点(2,0)P ,斜率为43的直线和抛物线22y x =相交于A,B 两点,设线段AB 的中点为M ,求点M 的坐标.本题由学生独立完成,教师补充完善.解:设过点(2,0)P 的直线AB 的倾斜角为α,由已知可得:3cos 5α=,4sin 5α=. 所以,直线的参数方程为32545x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入22y x =,整理得2815500t t --=.中点M 的相应参数是1215216t t t +==, 所以点M 的坐标是413(,)164. 【设计意图】注重知识的落实,通过问题的解决,使学生进一步理解所学知识.五、归纳总结,提升认识先让学生从知识、思想方法以及对本节课的感受等方面进行总结.教师在学生总结的基础上再进行概括.1.知识小结本节课联系数轴、向量等知识,推导出了直线的参数方程,并进行了简单应用,体会了直线参数方程在解决有关问题时的作用.2.思想方法小结在研究直线参数方程过程中渗透了运动与变化、类比、数形结合、转化等数学思想.【设计意图】对学习内容有一个整体的认识,培养归纳、概括能力.六、布置作业,巩固提高1. 教材P39—1,3 ;2. 思考题:若直线l 的参数方程为 ⎩⎨⎧+=+=bt y y at x x 00 (b a ,为常数,t 为参数),请思考参数t 的意义.【设计意图】使学生进一步巩固所学知识,加深对知识的理解,为学有余力的学生提供思考的空间.七、板书设计本节课注重知识的产生过程,培养学生综合运用所学知识分析问题和解决问题的能力.在教学过程中渗透运动与变化、数形结合、类比、转化等数学思想,关注学生的参与和知识的落实.本节课选择直线的参数方程的参数是比较困难的,这是因为从确定直线的几何条件较难联想到“距离”.因此在教学中除了复习预备知识以外,还复习了数轴.联系数轴上点的坐标的几何意义,类比得到平面直角坐标系中的任意一条直线都可以当成数轴,这样直线上任意一点就可以用坐标t 表示,因此可以选择坐标t 为直线参数方程中的参数.从而,建立直线的参数方程就转化为建立坐标t 与坐标00,x y 及倾斜角α之间关系的问题.这样设计既注重了知识的产生过程,又使学生深刻理解了参数的几何意义.在教学过程中,注重以教师为主导,学生为主体的教学模式.在实施教学和完成教学目标的过程中,适时将学生分组讨论、师生对话、学生动手、学生归纳小结等方式服务于“参数方程”知识的重点和难点的教学中,充分体现了以人为本,鼓励全体学生参与以及重视学法指导的教学新理念.本节课恰当地利用多媒体辅助教学,增强了教学中的直观性.。

直线方程教案模板doc(共6篇)

直线方程教案模板doc(共6篇)

直线方程教案模板d oc〔共6篇〕教学目标〔1〕掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.〔2〕理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.〔3〕掌握直线方程各种形式之间的互化.〔4〕通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.〔5〕通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.〔6〕进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.教学建议 1.教材分析〔1〕知识结构由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.〔2〕重点、难点分析①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.1 / 5②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.2.教法建议〔1〕教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各局部知识之间过渡要自然流畅,不生硬.〔2〕直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程〞打下根底.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点〔3〕在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.〔4〕教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而两点可以求得斜率,所以点斜式又可推出两点式〔斜截式和截距式仅是它们的特例〕,因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.〔5〕注意正确理解截距的概念,截距不是距离,截距是直线〔也是曲线〕与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数〔或非负实数〕.〔6〕本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适中选择一些有关的问题指导学生练习,培养学生的综合能力.2 / 5〔7〕直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和dc,FKMCKVN其它学科,教师要注意引导,增强学生用数学的意识和能力.〔8〕本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.直线方程的一般形式教学目标:〔1〕掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.〔2〕理解直线与二元一次方程的关系及其证明〔3〕培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:〔一〕引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点〔2,1〕,斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生答复,并纠正学生中不标准的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是〔或其它形式〕,也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.3 / 5肯定学生答复后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次〞.启发:你在想什么〔或你想到了什么〕?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?〞〔二〕本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案〔其它待课下研究〕如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成的形式,准确地说应该是“要么形如这样,要么形如这样的方程〞.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.4 / 5这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如〔其中不同时为0〕的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形〔其中不同时为0〕的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚刚一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回忆上边解决问题的思路,发现原路返回就是非常好的思路,即Ax+By+C=0〔其中A,B不同时为0〕系数-A/B是否为0恰好对应斜率K是否存在,即〔1〕当B不为0时,方程可化为y=-A/B X –C/B这是表示斜率为k、在x轴上的截距为b的直线.〔2〕当B=0时,由于A,B不同时为0,必有A不为0,方程可化为X=-C/A 这表示一条与X 轴垂直的直线.哦干吗r,因此,得到结论:在平面直角坐标系中,任何形如Ax+By+C=0〔其中A,B不同时为0〕的二元一次方程都表示一条直线.为方便,我们把Ax+By+C=0〔其中A,B不同时为0〕称作直线方程的一般式是合理的.5 / 5第2篇:直线方程教案Ⅰ.课题导入[师]同学们,我们前面几节课,我们学习了直线方程的各种形式,以一个方程的解为坐标的点都是某条直线上的点;反之这条直线上的点的坐标都是这个方程的解。

“直线的参数方程”(第一课时)教学设计

“直线的参数方程”(第一课时)教学设计

ANLI POUXI案例剖析117数学学习与研究2019.17“直线的参数方程”(第一课时)教学设计◎王进(山东省聊城市第三中学,山东聊城252000)一、教材分析本课是普通高中课程标准教科书数学(选修4-4)人教A 版第二讲第三节第一课时.参数方程相对普通方程,是曲线的另一种表达形式,它弥补了普通方程表示曲线方程的不足,是“数”与“形”的又一次完美结合.本节是在认识了曲线的参数方程的基础上,进一步探究直线的参数方程.本节课所学内容是前面学习内容的延续,符合数学逻辑,所涉及的研究方法可类比之前研究圆和圆锥曲线的参数方程的方法,具有延续性.从本节课的内容特点分析,学习过程中历经发现问题、提出问题,在讨论和比较中充分体会直线的参数方程在解决直线上两点间距离时的优越性,体会直线的参数方程的应用价值.通过上述过程,学生完善了知识结构,体会到直线的参数方程式参数方程内容的延续、方法的再现,并从中培养学生的探究习惯和使用类比的方法来研究问题,提高应用意识.二、学情分析在必修2已学习了直线的5种方程和圆的两种方程,在选修2-1也已学习了圆、椭圆、双曲线、抛物线的方程,这些都是在直角坐标系中建立的普通方程;在本册第二讲的前两节刚刚学习圆锥曲线的参数方程,会普通方程和参数方程的互化,体验了参数方程在解决问题(如最值问题、定值问题)中的一些应用,对参数方程在求轨迹与解题方面的优越性有了一定的体验.从方法上看,关于参数方程中参数的选择,圆的参数方程中参数是从物理意义引入,再阐明其几何意义,抛物线的参数选择有两个方向,首先在参数方程的引例中物理意义引入,在后面抛物线的参数方程中,又得到了两种几何意义上的参数.直线的参数方程中参数的选定对学生相当困难,虽然可以根据确定直线的几何条件联想到向量,但是,如何建立联系是难点,特别是学生对单位向量不了解.授课对象为山东省聊城第三中学高二下学期学生,学生对平面向量(高一必修四学习过)的知识有所遗忘,但学生的学习习惯较好,课堂所设计的问题基本解决.三、教学目标设计根据内容解析与学情分析,参照《普通高中数学课程标准(实验)》的要求,作为第一课时,确定这节课的教学目标如下.(1)通过确定直线的几何条件,引导学生利用向量工具建立直线的参数方程,培养数学建模的素养;会求解直线上两点间的距离,直线上某些特殊点对应的参数,体会参数方程相对普通方程的优越性,提升数学运算素养;在参数方程推理过程中,提升数学抽象、数学建模的核心素养;(2)体会从特殊到一般,数形结合等数学思想在参数方程中的应用;(3)体会参数在应用的过程中要经历引参、用参、消参,体会参数的“无私奉献的精神”,对学生适当地进行情感态度价值观培养.根据以上背景分析与目标分析,确定本节课的教学重点与教学难点如下.教学重点:直线的参数方程中对参数几何意义的理解以及参数方程的简单应用.教学难点:直线的参数方程中参数的选择、直线的单位方向向量的确定.四、教学设计思路与教法分析按照提出问题—独立思考—探究合作—小组展示—应用回顾的顺序,学习的过程中,体验从特殊到一般,一般到特殊探索、解决问题的途径.在数形结合、转化与化归的过程中,在提出问题、解决问题的过程中,提升学生利用数学知识分析问题、解决问题的能力,提升数学素养,提高应用意识.教学方法:根据新课程理念,坚持“以学生为主体,教师为主导”的原则,结合学生特点,本节主要采用启发学生自主探究和引导小组讨论的教学方法,并借助多媒体辅助教学来提高课堂效率.五、教学过程设计(一)问题引入教师引语:同学们,我们在必修2已经学习了直线的五种方程,在选修2-1也已学习了圆锥曲线的普通方程,在本册前面两节,我们刚刚学过圆、椭圆、双曲线、抛物线的参数方程,体会到了参数方程在解决最值、距离等问题时的优越性,那么直线的参数方程是什么呢?它又会给我们带来哪些惊喜呢?下面我们进入今天的学习.设计意图:联系前面的知识,回忆有关内容,激发学生兴趣,面对解析几何部分学生有些望而生畏,本节又激发了学生学好解析几何的信心.展示本节课的学习目标.问题1(1)在平面直角坐标系中,确定一条直线需要哪几个条件?(2)当已知直线上一个定点(x 0,y 0),倾斜角为α时说出直线的方程.(3)①数乘向量λa 的长度与方向是怎样规定的?②共线向量定理师生活动:教师提出问题,学生思考后回答,引导学生对本源性的知识回顾.第(1)个问题中,学生说两个点,或是一个点和斜率,在此就暴露了学习中的不严谨.紧接着第(2)个问题,学生使用了点斜式方程,但又忽略了斜率不存在的情况,在此纠正错误,并为参数方程中不需讨论倾斜角等不等于90度埋下伏笔;另外,从向量的角度,倾斜角体现了方向,一个点,为直线参数方程的推导中向量这个工具的引入打下基础.第(3)个问题,学生可能不知道和本节课的联系,但在接下来借助向量的运算中推导参数的几何意义提供理论依据,让学生体会基础知识的重要性.设计意图:通过对直线和向量知识的回顾,回归本源,启发知识联想,为利用向量解决参数方程问题做好铺垫.在此体会解析几何研究问题的视角,数与形的结合.(二)新知探究问题2(1)如何利用倾斜角α写出直线l 的单位方向向量e ?并说明e 的方向;(2)如何用e 和M 0的坐标表示直线上任意一点M 的坐标?师生活动:学生阅读教材后思考,然后小组讨论,并将讨论结果展示.第(1)个问题中表示单位方向向量e 时用到了任意角三角函数的定义,这里体现学生的学习基础,并体会知识的联系(本身向量和三角函数就有很紧密的联系),说明e 的方向需要数形结合来看;第(2)个问题是难点,在此需要引入参数,怎么想到设t ,学生在已经阅读完教材后再回答,难度降低,在此用到了共线向量基本定理,又是基础知识的应用,学生进一步体会到基础的重要性.教师板演,推出M 点坐标的表达式.设计意图:学生阅读教材,思考,小组讨论,展示,这些案例剖析ANLI POUXI118数学学习与研究2019.17环节的设计,培养学生独立思考的习惯,交流展示激发学生的参与感,培养学生的交流能力,表达的能力.在这两个问题中用到了任意角三角函数的定义、共线向量基本定理,使学生体会知识的连贯性和基础知识的重要性.展示直线的参数方程.设计意图:学生可以体会到直线的参数方程可以理解为平面上两种不同坐标系下的坐标变换,即平面上同一点的一维坐标t 与二维坐标(x ,y )之间的换算式.问题3(1)我们是否可以根据t 的值来确定向量M 0→ M 的方向呢?(2)直线的参数方程中参数t 的几何意义是什么?范围是什么?师生活动:学生思考三分钟并回答.第(1)(2)两个问题,分别使用数乘向量对方向和大小的规定推导出,基于前面已经回顾过这个知识,学生应该能联想到;设计意图:明确参数决定向量的方向和几何意义,第(1)个问题为下面推导直线上两点间的距离做好铺垫,理解参数中各个量的意义,为正确使用打下基础.(三)典例探究例1(1)若直线的参数方程为x =-1+t sin40ʎ,y =3+t cos40{ʎ(t 为参数),则其倾斜角等于.(2)求经过点M 0(1,2槡3),倾斜角是π3的直线l 的参数方程;并判断点P (2,3),Q (-1,0)是否在直线上?如果在请求出该点对应的参数t ,在下面网格中标出该点,并指出t 的几何意义.师生活动:学生练习,体验写出直线的参数方程的步骤以及关注的问题.设计意图:第(1)个小题使学生加深理解直线的参数方程的特征;第(2)个小题使学生加深对参数t 的几何意义的理解,在图中标出使学生初步理解了参数的作用,为例2的求解作铺垫.思考1通过例题1你的收获有哪些?师生活动:学生思考后回答.设计意图:再次加深对参数t 的几何意义的理解,培养学生思考的习惯,总结归纳的方法.例2已知直线l :x +y -1=0与抛物线y =x 2交于A ,B 两点,求线段的长度和点M (-1,2)到A ,B 两点的距离之积.师生活动:学生练习,引导学生思考在学习本节前,我们已经有方法来求解这个问题了,PPT 中展示:联立方程组使用弦长公式求AB 长度,以及求出A 、B 两点坐标再求距离之积,学生能感受这种方法的麻烦,计算量大;教师在此引导,基于直线参数方程中t 的几何意义表示距离,我们是否能尝试使用直线的参数方程来解决这个问题呢?在此设计了三个问题引导做出例2.(1)如何写出直线l 的参数方程?(2)如何求出交点A ,B 对应的参数t 1,t 2?(3)|AB |,|MA |,|MB |与t 1,t 2有什么关系?学生边说,教师画图板演解题步骤.第(3)问题在前面的铺垫下学生不难得出结果.设计意图:仍然以问题做引导,从中体会参数方程在解决这类距离问题中的优越性,如计算量小等;在第(3)个问题的解答中使用数形结合,共同推导出结果.巩固对直线的参数方程的理解,特别是参数的几何意义的理解,掌握利用直线的参数方程求解直线与圆锥曲线位置关系问题的思路与方法,在此过程中体验直线的参数方程在解题中的优越性.探究与合作直线x =x 0+t cos α,y =y 0+t sin {α(t 为参数)与曲线y =f (x )交于M 1,M 2两点,对应的参数分别和t 1,t 2.曲线的弦M 1M 2的长是多少?师生活动:学生独立思考,小组讨论,小组代表讲解展示.设计意图:依照从特殊到一般的推导的手法,学生不难找到方法,这是利用直线的参数方程求解直线与圆锥曲线相交弦长问题的思路与方法,其实可以推广到直线上任意两点间的距离.学生在黑板上讲解锻炼了其表达的能力,增加了学生的参与度.思考2通过例2你的收获有哪些?师生活动:学生独立思考,回答.设计意图:加深直线的参数方程的应用意识,培养学生思考的习惯,总结归纳的方法.(四)课堂达标1.经过原点,斜率等于-1的直线的参数方程为().A.x =槡22t ,y =槡22{t (t 为参数)B.x =-槡22t ,y =槡22{t(t 为参数)C.x =-槡22t ,y =-槡22{t(t 为参数)D.x =-t ,y =-{t (t 为参数)2.若直线的参数方程为x =2+t sin410ʎ,y =3+t cos410{ʎ(t 为参数),则该直线的倾斜角为().A.410ʎB.50ʎC.40ʎD.130ʎ3.求直线x =2+12t ,y =槡32{t(t 为参数)被双曲线x 2-y 2=1所截得的弦长|AB |.师生活动:学生练习,板演.设计意图:这3个问题是对本节课所学内容的考查,夯实基础.(五)课堂小结(1)通过本节课的学习,你对直线的参数方程有哪些认识?(2)本节用到的数学思想方法有哪些?师生活动:学生回答,教师补充.设计意图:培养学生总结归纳的习惯,数学思想方法(本节主要用到是数形结合、从特殊到一般、转化等数学思想方法)的总结能使学生体会方法的普遍性和应用性,体会数学是普通的,是简单的.(六)课后作业教材39页习题2.31.2预习教材37页至39页例2、例3、例4六、教学反思优点:学生在课堂的参与度很高,充分调动了学生积极性.会求解直线上两点间的距离,直线上某些特殊点对应的参数,体会参数方程相对普通方程的优越性,提升数学运算素养;在参数方程推理过程中,提升数学抽象、数学建模的核心素养;体会从特殊到一般,数形结合等数学思想在参数方程中的应用;体会参数在应用的过程中要经历引参、用参、消参,体会参数的“无私奉献的精神”,对学生适当地进行情感态度价值观培养.不足:(1)现代教学工具使用不足,比如,在研究t 的几何意义时,如果使用几何画板进行动态展示,然学生先体会t 取特殊值1,2,-1,-2等时对应的几何意义,再进行归纳,学生可能更容易接受.(2)在作业布置中,本节没有涉及直线的标准参数方程和直线的非标准参数方程的对比,而这恰是学生在以后做题时的一个易错点,所以可以布置一个探究性问题,探究非标准直线的参数方程,提高解题能力.。

直线的参数方程教学设计

直线的参数方程教学设计

2.1 直线的参数方程(第一课时)教学设计【附教学反思】九江三中吴丛新教学目标:通过探究直线的参数方程的过程,使学生体会参数t的含义,并会利用参数t的几何意义解决有关弦长的问题,加深对参数方程的理解。

教学重点:直线参数方程的推导,参数t的几何意义的理解。

教学难点:理解和书写与直线正方向同向的单位向量,及参数t的几何意义的应用。

教学方法:问题教学,启发式教学。

教学用具:多媒体辅助教学。

教学环节:一:复习引入复习前一节曲线与参数方程中参数方程的概念,特别强调引入参数的意义。

复习直线的普通方程的形式,特别强调点斜式。

【设计意图】:复习参数的意义为即将建立直线的参数方程中引入参数t做铺垫,复习点斜式为后面消参做准备。

二:直线的参数方程的推导采用两种方法推导直线的参数方程,以加深对直线参数方程参数t的几何意义的理解。

(一)利用直角三角形知识推导【问题设置】直线l的正方向是什么?有向线段PM的数量是什么?如何利用直角三角形的知识求出动点M的坐标?【设计意图】直线的正方向和有向线段的数量是两个全新的概念,北师大版教材正是基于这两个概念才能给出直线参数方程中参数t的几何意义,对t的几何意义的理解是本节的难点,这里需做好铺垫,强化对有向线段的数量的正负取值的理解。

(二)利用平面向量共线定理推导【问题设置】直线的方向单位向量是什么?你能利用向量共线定理求出点M的坐标吗?【设计意图】在利用直角三角形知识推导出参数方程后,学生对参数t的理解很可能会停留在两点的距离上,这里要引导学生理解参数t 取负值的情况。

对于参数t的几何意义的阐释,人教版很好地利用了向量工具(共线定理),正因于此,所以本节又将人教版中的推导方法引入了进来,以加深学生对参数t的几何意义的理解。

【教学反思】上课时直接给出了参数t的设法,没有引导学生自己去设参数,其实只需引导学生思考,随着点M的运动PM在变化。

这样就会使参数t的引入显得自然。

另外,讲解向量法推导耗费不少时间,导致后面的时间很紧凑,牺牲了学生演板时间,有点得不偿失。

高中数学直线的参数方程优秀教案

高中数学直线的参数方程优秀教案

三 直线的参数方程学习目标:1.掌握直线的参数方程及参数的几何意义.(重点、难点)2.能用直线的参数方程解决简单问题.(重点、易错点)教材整理 直线的参数方程 阅读教材P 35~P 39,完成以下问题.经过点M 0(x 0,y 0),倾斜角为α⎝ ⎛⎭⎪⎫α≠π2的直线l 的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),其中参数t 的几何意义是:|t |是直线l 上任一点M (x ,y )到定点M 0(x 0,y 0)的距离,即|t |=|M 0M —→|.曲线⎩⎨⎧x =-2+5t y =1-2t (t 为参数)与坐标轴的交点是( )A.⎝ ⎛⎭⎪⎫0,25、⎝ ⎛⎭⎪⎫12,0 B.⎝ ⎛⎭⎪⎫0,15、⎝ ⎛⎭⎪⎫12,0 C .(0,-4)、(8,0) D.⎝ ⎛⎭⎪⎫0,59、(8,0) [解析] 当x =0时,t =25,而y =1-2t ,即y =15,得与y 轴的交点为⎝ ⎛⎭⎪⎫0,15;当y =0时,t =12,而x =-2+5t ,即x =12,得与x 轴的交点为⎝ ⎛⎭⎪⎫12,0.[答案] B直线参数方程的简单应用【例1】 直线的参数方程为⎩⎨⎧x =1+2t ,y =2+t (t 为参数),则该直线被圆x 2+y 2=9截得的弦长是多少?[思路探究] 考虑参数方程标准形式中参数t 的几何意义,所以首先要把原参数方程转化为标准形式⎩⎪⎨⎪⎧x =1+25t ′,y =2+15t ′,再把此式代入圆的方程,整理得到一个关于t 的一元二次方程,弦长即为方程两根之差的绝对值.[自主解答] 将参数方程⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数)转化为直线参数方程的标准形式为⎩⎪⎨⎪⎧x =1+25t ′,y =2+15t ′(t ′为参数),代入圆方程x 2+y 2=9,得⎝⎛⎭⎪⎫1+25 t ′2+⎝ ⎛⎭⎪⎫2+15 t ′2=9, 整理,有5t ′2+8t ′-45=0. 由根与系数的关系,t ′1+t ′2=-85, t ′1·t ′2t ′的几何意义. |t ′1-t 2′|=(t ′1+t ′2)2-4t ′1t ′2=1255.故直线被圆截得的弦长为1255.1.在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.此题易错的地方是:将题目所给参数方程直接代入圆的方程求解,无视了参数t 的几何意义.2.根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: (1)直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; (2)定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;(3)设弦M 1M 2中点为M ,则点M 对应的参数值t M=t 1+t 22(由此可求|M 1M 2|及中点坐标).1.在极坐标系中,圆心C ⎝ ⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程; (2)假设直线⎩⎪⎨⎪⎧x =-1+32ty =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.[解] (1)由得圆心C ⎝ ⎛⎭⎪⎫3cos π6,3sin π6,半径为1,圆的方程为⎝ ⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1, 即x 2+y 2-33x -3y +8=0. (2)由⎩⎪⎨⎪⎧x =-1+32t y =12t (t 为参数)得直线的直角坐标系方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3.参数方程与极坐标的综合问题【例2】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,假设点P 的坐标为(3,5),求|P A |+|PB |. [思路探究] (1)利用公式可求.(2)可考虑将参数方程、极坐标方程化为普通方程,求交点A 、B 的坐标,也可考虑利用t 的几何意义求解.[自主解答] (1)由ρ=25sin θ, 得ρ2=25ρsin θ,∴x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一 直线l 的普通方程为y =-x +3+ 5.与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0, 解得⎩⎪⎨⎪⎧ x =1y =2+5或⎩⎪⎨⎪⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|P A |+|PB |=8+2=3 2.法二 将l 的参数方程代入x 2+(y -5)2=5,得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,(*) 由于Δ=(32)2-4×4=2>0.故可设t 1,t 2是(*)式的两个实根, ∴t 1+t 2=32,且t 1t 2=4, ∴t 1>0,t 2>0.又直线l 过点P (3,5),∴由t 的几何意义,得|P A |+|PB |=|t 1|+|t 2|=3 2.1.第(2)问中,法二主要运用直线参数方程中参数t 的几何意义,简化了计算.2.此题将所给的方程化为考生所熟悉的普通方程,然后去解决问题,这是考生在解决参数方程和极坐标方程相互交织问题时的一个重要的思路.2.曲线C 1的参数方程是⎩⎨⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. [解] (1)由可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3,B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2,即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =(2cos φ-1)2+(3-3sin φ)2+(-3-2cos φ)2+(1-3sin φ)2+(-1-2cos φ)2+(-3-3sin φ)2+(3-2cos φ)2+(-1-3sin φ)2=16cos 2φ+36sin 2φ+16=32+20sin 2φ.∵0≤sin 2φ≤1,∴S 的取值范围是[32,52].直线的参数方程[探究问题1.假设直线l 的倾斜角α=0,则直线l 的参数方程是什么? [提示] 参数方程为⎩⎪⎨⎪⎧x =x 0+t ,y =y 0(t 为参数).2.如何理解直线参数方程中参数的几何意义?[提示] 过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的长度,即|t |=|M 0M →|.①当t >0时,M 0M →的方向向上; ②当t <0时,M 0M →的方向向下; ③当t =0时,点M 与点M 0重合.【例3】直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t ,(t 为参数).(1)求直线l 的倾斜角;(2)假设点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.[思路探究] 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义求得t .[自主解答] (1)由于直线l : ⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sinπ6(t 为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.(2)由(1)知,直线l 的单位方向向量 e =⎝ ⎛⎭⎪⎫cos π6,sin π6=⎝ ⎛⎭⎪⎫32,12. ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4⎝ ⎛⎭⎪⎫32,12=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).1.一条直线可以由定点M 0(x 0,y 0),倾斜角α(0≤α<π)惟一确定,直线上的动点M (x ,y )的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),这是直线参数方程的标准形式.2.直线参数方程的形式不同,参数t 的几何意义也不同,过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎨⎧x =x 0+at ,y =y 0+bt(a 、b 为常数,t 为参数).3.设直线l 过点P (-3,3),且倾斜角为5π6. (1)写出直线l的参数方程;(2)设此直线与曲线C:⎩⎨⎧x =2cos θ,y =4sin θ(θ为参数)交于A ,B 两点,求|P A |·|PB |.[解] (1)直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-3+t cos 5π6=-3-32t ,y =3+t sin 5π6=3+t 2(t 为参数).(2)把曲线C 的参数方程中参数θ消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得 4⎝⎛⎭⎪⎫-3-32t 2+⎝ ⎛⎭⎪⎫3+12t 2-16=0,即13t 2+4(3+123)t +116=0. 由t 的几何意义, 知|P A |·|PB |=|t 1·t 2|, 故|P A |·|PB |=|t 1·t 2|=11613.1.直线⎩⎨⎧x =-2+t cos 60°,y =3+t sin 60°(t 为参数)的倾斜角α等于( )A .30°B .60°C .-45°D .135°[解析] 由直线的参数方程知倾斜角α等于60°,应选B. [答案] B2.直线⎩⎨⎧x =1+t cos αy =-2+t sin α(α为参数,0≤a <π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)[解析] 直线表示过点(1,-2)的直线. [答案] A3.直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22ty =2+22t(t 为参数),则直线l 的斜率为( )A .1B .-1 C.22 D .-22 [解析] 消去参数t ,得方程x +y -1=0, ∴直线l 的斜率k =-1. [答案] B4.假设直线⎩⎨⎧x =1-2ty =2+3t (t 为参数)与直线4x +ky =1垂直,则常数k =________.[解析] 将⎩⎪⎨⎪⎧x =1-2t y =2+3t 化为y =-32x +72,∴斜率k 1=-32,显然k =0时,直线4x +ky =1与上述直线不垂直, ∴k ≠0,从而直线4x +ky =1的斜率k 2=-4k .依题意k 1k 2=-1,即-4k ×⎝ ⎛⎭⎪⎫-32=-1,∴k =-6. [答案] -65.化直线l 的参数方程⎩⎨⎧x =-3+t ,y =1+3t (t 为参数)为普通方程,并求倾斜角,说明|t |的几何意义.[解] 由⎩⎪⎨⎪⎧x =-3+t ,y =1+3t 消去参数t ,得直线l 的普通方程为3x -y +33+1=0. 故k =3=tan α,即α=π3, 因此直线l 的倾斜角为π3.又⎩⎪⎨⎪⎧x +3=t ,y -1=3t ,得(x +3)2+(y -1)2=4t 2, ∴|t |=(x +3)2+(y -1)22.故|t |是t 对应点M 到定点M 0(-3,1)的向量M 0M →的模的一半.。

直线的参数方程教学设计

直线的参数方程教学设计

《直线的参数方程》教学设计【教学目标】1.知识与技能:掌握直线参数方程的形式,会将一般形式转化成标准形式,提升学生数学运算的数学素养;理解并会应用参数的几何意义解决有关的问题。

2.过程与方法:通过参数方程的推导过程学会直线普通方程与参数方程之间互化的方法;通过参数几何意义的讨论,树立数形结合的思想,提升学生数据分析能力和数学建模能力。

3.情感态度与价值观:在参数方程的推导过程中,培养学生逻辑思维的严谨性提升学生逻辑推理的数学素养;在小组讨论和合作交流中,提升学习数学的兴趣.【教学思想】人本教育【课程资源】白板 课助手【教学内容】选修4-4 直线的参数方程 第一课时【教学重点、难点】教学重点:直线参数方程的标准形式及其应用;教学难点:对直线参数方程标准形式中的参数的几何意义的理解.【教法学法与工具】采用启发学生自主探究和引导学生小组讨论的方法,并借助多媒体辅助教学来提高课堂效率。

同时在探究问题时留给学生足够的时间,以利于开放学生的思维。

【教学过程安排】整个教学过程设计为如下教学环节:(一)追根溯源 温故知新;(二)问题驱动;(三)概念形成;(四)合作探究;(五)思维升华;(六)知识应用;(七)课堂小结;(八)布置作业(一)追根溯源 温故知新提出问题:你有哪些方法表示一条直线?设计意图:通过回顾必修二和必修四中直线方程的研究方法,提出问题,以激发学生的求知欲,也为这节课做好知识准备。

(二)问题驱动探究一:设质点从点),(000y x M 出发,沿着与x 轴正方向成α角的方向匀速直线运动,其速率为0v 你能建立质点运动的轨迹的参数方程吗?)0(sin cos 0000≥⎩⎨⎧+=+=t tv y y tv x x αα设计意图:探究一,以学生现有知识轻而易举就能解决,而且能很清楚的知道,此tv的物理意义,从而为后面研究直线参数方程的标准形式中的参数的时t的物理意义和几何意义奠定基础。

如果忽略上面方程中t的物理意义,允许其取负值,那么这个方程就是直线的一种参数方程形式。

直线的参数方程教案

直线的参数方程教案

直线的参数方程教学目标:1.了解直线参数方程的条件及参数的意义2.能根据直线的几何条件,写出直线的参数方程及参数的意义3.通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:联系数轴、向量等知识,写出直线的参数方程。

教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系。

教学方式:启发、探究、交流与讨论. 教学过程:一、回忆旧知,做好铺垫在平面直角坐标系中,确定一条直线的几何条件是什么?根据直线的几何条件,你认为用哪个几何条件来建立参数方程比较好? 一个定点和倾斜角可惟一确定一条直线00tan ()y y x x α-=- ①根据直线的这个几何条件,你认为应当怎样选择参数? 定点和斜率。

定点和直线的方向向量 二、直线的参数方程的探究 1.回顾数轴,引出向量数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题。

教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M的坐标为t ,那么①OA 为数轴的单位方向向量,OA方向与数轴的正方向一致,且OM tOA = ;②当OM 与OA 方向一致时,0t >;当OM 与OA方向相反时,0t <;当M 与O 重合时,0t =;③||OM t =。

教师用几何画板软件演示上述过程。

【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备。

2.类比分析,异曲同工问题:如果把平面直角坐标系中的一条直线作为数轴,那么直线上任意一点就有两种坐标。

怎样选去单位长度和方向才有利于建立这两种坐标之间的关系?教师提出问题后,引导学生思考并得出以下结论:选取直线l 上的定点0M 为原点,与直线l 平行且方向向上(l 的倾斜角不为0时)或向右(l 的倾斜角为0时)的单位向量e确定直线l 的正方向,同时在直线l 上进行度量的单位长度,这时直线l 就变成了数轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.
4. 等价转化,深入探究
问题:如果点 ,M的坐标分别为 ,怎样用参数 表示 ?
教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:
因为 ,( ), ,
,所以存在实数 ,使得 ,即
【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.
三、运用知识,培养能力
练习
例1.已知直线 与抛物线 交于A,B两点,求线段AB的长度和点 到A,B两点的距离之积.
先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:
解法一:由 ,得 .

于是 , ,
即 , .
因此,经过定点 ,倾斜角为 的直线的参数方程为
( 为参数).
教师提出如下问题让学生加强认识:
①直线的参数方程中哪些是变量?哪些是常量?
②参数 的取值范围是什么?
③参数 的几何意义是什么?
总结如下:① , 是常量, 是变量;
② ;
③由于 ,且 ,得到 ,因此 表示直线上的动点M到定点 的距离.当 的方向与数轴(直线)正方向相同时, ;当 的方向与数轴(直线)正方向相反时, ;当 时,点M与点 重合.
2、直线参数方程探究
1.回顾数轴,引出向量
数轴是怎样建立的?数轴上点的坐标的几何意义是什么?
教师提问后,让学生思考并回答问题.
教师引导学生明确:如果数轴原点为O,数1所对应的点为A,数轴上点M的坐标为 ,那么:
① 为数轴的单位方向向量, 方向与数轴的正方向一致,且 ;②当 与 方向一致时(即 的方向与数轴正方向一致时), ;
直线的参数方程
教学目标:
1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.
2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.
3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研
2.直线的方向向量的概念.
3.在平面直角坐标系中,确定一条直线的几何条件是什么?直线的方程有几种形式?
4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程.
5.如何建立直线的参数方程?
这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考.
【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备.
【设计意图】明确参数.
问题(2):如何确定直线 的单位方向向量 ?
教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.
教师引导学生确定单位方向向量,在此基础上启发学生得出 .
的科学精神、严谨的科学态度.
教学重点:联系数轴、向量等知识,写出直线的参数方程.
教学难点:通过向量法,建立参数 (数轴上的点坐标)与点在直角坐标系中的坐标 之间的联系.
教学方式:启发、探究、交流与讨论.
教学手段:多媒体课件.
教学过程:
一、回忆旧知,做好铺垫
教师提出问题:
1.圆,椭圆,双曲线,抛物线的参数方程.
【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.
探究:直线 ( 为参数)与曲线 交于 两点,对应的参数分别为 .
(1)曲线的弦 的长是多少?
(2)线段 的中点M对应的参数 的值是多少?
先由学生思考,讨论,最后师生共同得到:

【设计意图】通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.
【设计意图】体会直线参数方程在解决弦中点问题时的作用.
四、课堂练习
2.已知过点 ,斜率为 的直线和抛物线 相交于A,B两点,设线段AB的中点为M,求点M的坐标.
解:设过点 的直线AB的倾斜角为 ,由已知可得: , .
所以,直线应参数是 ,
所以点M的坐标是 .
【设计意图】注重知识的落实,通过问题的解决,使学生进一步理解所学知识.
设 , ,由韦达定理得: .

由(*)解得 ,

所以 .


解法二、因为直线 过定点M,且 的倾斜角为 ,所以它的参数方程是
( 为参数), 即 ( 为参数).
把它代入抛物线的方程,得 ,
解得 , .
由参数 的几何意义得: ,

在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.
【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.
3. 选好参数
问题(1):当点M在直线 上运动时,点M满足怎样的几何条件?
让学生充分思考后,教师引导学生得出结论:将直线 当成数轴后,直线 上点M运动就等价于向量 变化,但无论向量怎样变化,都有 .因此点M在数轴上的坐标 决定了点M的位置,从而可以选择 作为参数来获取直线 的参数方程.
当 与 方向相反时(即 的方向与数轴正方向相反时), ;
当M与O重合时, ;
③ .教师用几何画板软件演示上述过程.
【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.
2.类比分析,异曲同工
问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?
(2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?
教师提出问题后,引导学生思考并得出以下结论:选取直线 上的定点 为原点,与直线 平行且方向向上( 的倾斜角不为0时)或向右( 的倾斜角为0时)的单位向量 确定直线 的正方向,同时在直线 上确定进行度量的单位长度,这时直线 就变成了数轴.于是,直线 上的点就有了两种坐标(一维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.
相关文档
最新文档