哈工程气液两相流第6章
第6章 水平气液两相管流解读
水平气液两相管流
在油气开采过程中,油、气混合物沿油气混输管道 从油井井口到联合站的流动,属于水平管或接近水平管 中的气液两相流动。当油井见水后,其流动属于油、气、 水混合物的多相流动。实践表明,多相流动的压中损失 比单相流动时大得多,在类似的流下,前者可达后者的 5~10倍。 当然,在石油工业中,水平多相流更多地表现为集 输管线中油气水的混合流动。
第一节 流动型态
一般可以将水平管中气液两相的流动型态大致分为七种。 如果管道中液体的流量不变,而气体的流量由小到大,则 其发生的顺序是:
1.泡状流 气体量很少,气体以气泡的
形式在管道中与液体一同作等速流动。
2 .团状流
随着气体量的增多,气泡 合并成为较大的气团。气团在管道中 与液体一同流动。
流动型态
Bl 、 B g 、n 及 m 一常数。
g ——气相的粘度;
l vl Dl Re l l
Ql l Dl Al
l
Gl
l
l
l
4
Dl2
Dl 4Gl Dl l
洛克哈特—马蒂内利方法
整理前式,按液相计算的 两相流动压降为:
L vl2 p l l Dl 2
Gl 2 Dl l Bl L 4 p . n 2 4Gl Dl D l l l
Q G Gl vl l l Al Al l D 2 l l 4
vg Qg Ag Gg Ag g
考虑到两相相对运 动及各自流动的几 何形态特点,引进 了校正系数 和
Gg
2 Dg g
4
Gl
Gg
——液相的质量流量; ——气相的质量流量。
哈工程两相流第1章解读
课程重点
熟练掌握两相流基本参数的定义,表达式及计算方法。 掌握绝热与非绝热垂直与水平管内各种流型的基本特征, 能用流型图判别流型,了解流型过渡的判别条件。 对截面含气率的三类计算方法有明确的认识,掌握用漂 移流模型计算截面含气率的方法,了解欠热沸腾区截面 含气率的计算过程。 掌握用均相流模型及分相流模型计算直管内的摩擦压降、 重位压降及加速度压降的方法。了解影响摩擦压降的主 要因素。 能计算热平衡条件下受热及不受热流道的两相总压降。 能分别用三个模型计算长孔道内临界质量流速,掌握短 孔道内临界流的特征及临界质量流速的计算。
V V V J Jg J f A A A
式中,Jg为气相折算速度,表示两相介质中气相单独流 过同一通道时的速度,m/s.
Jf为液相折算速度,表示两相介质中液相单独流
V V Jg W A A
Байду номын сангаас
W
Jg
过同一通道时的速度,m/s.
V V J f 1 W 1 A A
W
1
Jf
讨论
当气液两相无相对运动时
S 1, W W W J W
当气液两相存在相对运动,且 W W ,则
W J W
3.漂移速度和漂移通量 漂移速度:各相真实速度与两相混合平均速度J的差值。 气相漂移速度: Wgm W J 液相漂移速度: Wfm W J 漂移通量:各相相对于两相混合平均速度J运动的截面 所流过的体积通量。 气相漂移通量:
G M A
每一相的质量流速与总质量流速的关系
M M G G G (1 x )G xG A A
哈工程气液两相流第5章
3. 按均相流模型法计算得到的试验段内摩擦阻力压降
p p f p f 2 17 3.14 20.14 kPa
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
lo G 2 D 2 lo
2 L lo Pf lo lo
2 2.求 lo dPf 3.求 dz
2.非绝热
x1 x2 均匀加热 x 2
dPf 2 lo dz lo
L 1 正弦加热 x xdz o L
三.前苏联锅炉水动力计算标准方法
dPf Pf dz
2 go
GD 0.3164
x 1 x 1
0.25
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
二.采用平均粘度计算摩阻系数法
单相水的摩阻系数一般按布拉修斯(Blasius) 公式计算 0.25
lo 0.3164 Re
0.25 f
GD 0.3164
对于两相流体,两相摩阻系数:
0.3164 Re
0.25
GD 0.3164
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
5.2 均相流模型的摩擦压降计算
一.基本关系式
摩擦压力梯度
第六章 脱硫塔设计
第六章脱硫塔设计现代化的烟气脱硫脱硫塔的设计必须满足以下几个准则:(1)低能耗,与低“液气”比有关;(2)低压降,与脱硫塔内部的优化设计有关;(3)高流速,与“投资”和“运行费用”的优化有关;(4)高SO2去除率、低的设备/系统维护率,与化学反应行为的优化有关;(5)高“液滴”分离率,避免下游设备垢污沉积和腐蚀;(6)低成本。
脱硫塔内的流体力学特性为复杂的气液二相流,这种复杂的逆流两相流给放大准则和测量带来很大的难度。
几乎每套装置都需度身定制,对一些特殊环节不进行验证就很难保证系统具有高度可靠性、经济性和一次投入成功率。
但是,FGD装置庞大,一般小型试验很难解决问题,大型试验又使得一般工程在财力和时间上无法接受。
早期,需要模拟实际工况的几何尺寸和流动条件才能初步确定放大准则,然后对放大准则进行判读并将其应用于实际工况。
近年来,随着计算流体力学、化学反应动力学等领域的发展,对脱硫塔设计技术的研究更加深入。
例如,对脱硫塔进行CFD模拟,在工作站上可以对不同的FGD设计进行测试并优化,这可能是了解真实流动状态和FGD脱硫效率的唯一途径。
此外,脱硫塔为薄壁结构,塔体上分布各种类型的加强筋,矩形开孔尺寸大、塔内件复杂,有时塔体外形不规则,依靠手工对喷淋塔进行流场和力学计算是非常困难的,使得人力计算很难进行。
目前,大多采用现代流场分析软件和力学分析软件(如FLUENT6.0和ANSYS9.0)进行流场分析和力学分析。
脱硫塔的流场分析和力学分析是脱硫塔优化设计的基础。
第一节脱硫塔结构设计脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计,是取得脱硫塔最优化性能的重要先决条件。
需要指出的是,精准的设计应在两相流和传质以及力学分析的基础上,结合实践经验进行。
一、脱硫塔结构定性设计1.塔的总体布置如图6-1所示,一般塔底液面高度h1=6 m~15m;最低喷淋层离入口顶端高度h2=1.2~4m;最高喷淋层离入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m;除雾器离最近(最高层)喷淋层距离应≥1.2 m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m。
流体输配管网1—6章答案
第一章1-1 认真观察1~3个不同类型的流体输配管网,绘制出管网系统轴测图。
结合第1章学习的知识,回答以下问题:(1)该管网的作用是什么?(2)该管网中流动的流体是液体还是气体?还是水蒸气?是单一的一种流体还是两种流体共同流动?或者是在某些地方是单一流体,而其他地方有两种流体共同流动的情况?如果有两种流体,请说明管网不同位置的流体种类、哪种流体是主要的。
(3)该管网中工作的流体是在管网中周而复始地循环工作,还是从某个(某些)地方进入该管网,又从其他地方流出管网?(4)该管网中的流体与大气相通吗?在什么位置相通?(5)该管网中的哪些位置设有阀门?它们各起什么作用?(6)该管网中设有风机(或水泵)吗?有几台?它们的作用是什么?如果有多台,请分析它们之间是一种什么样的工作关系(并联还是串联)?为什么要让它们按照这种关系共同工作?(7)该管网与你所了解的其他管网(或其他同学绘制的管网)之间有哪些共同点?哪些不同点?答:选取教材中3个系统图分析如下表:图号图1-1-2 图1-2-14(a)图1-3-14(b)问(1)输配空气输配生活给水生活污水、废水排放问(2)气体液体液体、气体多相流,液体为主问(3)从一个地方流入管网,其他地方流出管网从一个地方流入管网,其他地方流出管网从一个地方流入管网,其他地方流出管网问(4)入口及出口均与大气相通末端水龙头与大气相通顶端通气帽与大气相通问(5)通常在风机进出口附近及各送风口处设置阀门,用于调节总送风量及各送风口风量各立管底部、水泵进出口及整个管网最低处设有阀门,便于调节各管段流量和检修时关断或排出管网内存水无阀门问(6)1台风机,为输送空气提供动力1台水泵,为管网内生活给水提供动力无风机、无水泵问(7)与燃气管网相比,流体介质均为气体,但管网中设施不同。
与消防给水管网相比,流体介质均为液体,但生活给水管网中末端为水龙头,消防给水管网末端为消火栓。
与气力输送系统相比,都是多相流管网,但流体介质的种类及性质不同。
气液两相流.pdf
第一种方式主要有电容式和压电式压力传感器,电子设备将两压力传感器输入的电信号
相减即可换算得两测压点之间的压降。适用于需要快速时间响应的场合,但是有明显的缺点,
将两个独立测出的电信号再进行相减会引起误差增大。使用此法时应对两个压力传感器进行
校准,力求使输出信号能较精确地变换成所需测定的压降。第二种方式主要有磁阻式差压传
当复杂的问题,
。在单相流中,经过一段距离之后,就会建立一个稳定的速度场。但对于两
相流,例如蒸汽和水,则很难建立一个稳定的流动,因为在管道流动中有压降产生,由于此
压降作用会产生液体的蒸发,所以在研究气液两相流时必须考虑两相间的传热与传质问题。
两相流学科还处于半经验半理论阶段,对于两相流的流动和传热规律进行研究时,除了
∆ = ∆ℎ + ∆ + ∆
(2.5)
式中∆ℎ 为位能损失,∆ 为加速度损失,∆ℎ 为根据平均空隙率而由∆ℎ = [ +
(1 − ) × ]确定的值(H为测定区间的高度)。在两相流中,直接测定的值是∆ ,而摩
擦损失∆ 是要从式(2.5)算出的值。所以,若∆ 的定义不同,∆ 的值当然也于差压传感器传递
压降时,膜片位移很小,因而导压管中流体流动量较小时,气泡不易进入导压管,测量结果
更精确。当应用差压传感器测量压降时,需用导压管将测压点和差压传感器连接,此时导压
管中也要全部充满液体。
2.3 两相流摩擦损失的计算
两相流的全压损失∆ 被定义为由下列诸要素组成:
从上面的方程式可知,为了从差压计得到压降,确定取压管中流体密度 是十分重要的,
这意味着取压管中的流体必须为单相液体或气体。因此在测量两相流压降时,需要一个装置
第6章—自然循环原理及计算
在自然循环锅炉的水冷壁中,在非正常运行状态下一旦出现第二 类传热恶化,虽然开始时壁温并不太高,但含盐量较高的炉水水 滴润湿管壁时,盐分沉积在管壁上,也会造成传热恶化。 膜态沸腾
当水冷壁管受热时,而管中心的水不断地向壁面补充,这时的管 内沸腾被称为核态沸腾。 如果管外的热负荷很高,汽泡就会在管子内壁面上聚集起来,形 成完整稳定的气膜,热量通过气膜层传到液体再产生沸腾蒸发, 此时管子壁面得不到水膜的直接冷却,就会导致管壁超温,这种
Pmc=
L
2 hu
d2
hu
式中ωhu——汽水混合物流速,m/s; ρhu——汽水混合物密度,kg/m3; Ψ——两相流体摩擦阻力修正系数。
Ψ值由试验确定,国内采用的方法是:
30
(1) ρω=1000kg/(m2.h),
(1 )(1000 1)
1
1
(2) ρω<1000kg/(m2.h),
S=1+0.4+2 (1- p )
o
plj
S的物理意义比较清楚,当ω〃>ω',S>1,为汽
水混合物向上流动工况;当ω〃<ω',S<1,为混
合物向下流动工况;当ω〃=ω',S=1,为均相流
动工况,即
29
四、两相流体的流动阻力
为了简便计算两相流体流动阻力,可采用单相流体流动阻力计算 公式的形式,带入均匀混合的汽水混合物的流速和密度,然后用 修正系数考虑汽液相对速度和流型对流动阻力的影响。两相流动 的摩擦阻力计算公式为:
3、总压差
P2=P0+ ρssgh- △Pss
下降管侧压差:
Yxj=P1-P0=ρxjgh-△Pxj ,Pa 上升管侧压差:
Yss=P2-P0=ρhugh+△Pss ,Pa
第6章 水平气液两相管流.
l
Dg
—两相流动中,液相的沿程阻力系数;
g —两相流动中,气相的沿程阻力系数;
Dl —单相液流的水力相当直径; vl —液相的实际速度;
L—管路的长度;
—单相气流的水力相当直径;
v g —气相的实际速度;
l —液相的密度;
g
—气相的密度。
洛克哈特—马蒂内利方法
液相和气相的实际速度,由以下两式计算:
3 .层状流 气体量再增多,气团连成一
片。气相与液相分成具有光滑界面的 气体层和液体层
4.波状流 气体量进一步增多,流速提
高,在气液界面上引起波浪。
流动型态
5.冲击流 又称段塞流,气体流速更大
时,波浪加剧。波浪的顶部不时可高
达管壁的上部。此时,低速的波浪将
阻挡高速气流的通过,然后又被气流 吹开和带走一小部分。被带走的液体,
5 n 2
l
p l2psl
2 l
—分液相折算系数。
洛克哈特—马蒂内利方法
同理
p m2 D D psg g
5 m 2 g
或
m2 D p 2 D psg g
5 m 2
g
所以
2 p g psg
Bl 、 B g 、n 及 m 一常数。
g ——气相的粘度;
l vl Dl Re l l
Ql l Dl Al
l
Gl
l
l
l
4
Dl2
Dl 4Gl Dl l
洛克哈特—马蒂内利方法
整理前式,按液相计算的 两相流动压降为:
L vl2 p l l Dl 2
化工原理第六章第六节 板式塔
2013-1-7
2.塔板上的液面落差
液面落差:塔板进出口清液层高度差 减少液面落差的措施: 多溢流。
2013-1-7
当液体横向流过塔板时,为克服板上的摩擦阻力和板
上部件(如泡罩、浮阀等)的局部阻力,需要一定的液位
差,则在板上形成由液体进入板面到离开板面的液面落差。 液面落差也是影响板式塔操作特性的重要因素,液面落差 将导致气流分布不均,从而造成漏液现象,使塔板的效率 下降。因此,在塔板设计中应尽量减小液面落差。
2013-1-7
3.筛孔塔板
2013-1-7
筛孔塔板简称筛板,其结构如图所示。塔板上开有许多均
匀的小孔,孔径一般为3~8mm。筛孔在塔板上为正三角形排
列。塔板上设置溢流堰,使板上能保持一定厚度的液层。 操作时,气体经筛孔分散成小股气流,鼓泡通过液层, 气液间密切接触而进行传热和传质。在正常的操作条件下, 通过筛孔上升的气流,应能阻止液体经筛孔向下泄漏。 筛板的优点是结构简单、造价低,板上液面落差小,气 体压降低,生产能力大,传质效率高。其缺点是筛孔易堵塞, 不宜处理易结焦、粘度大的物料。 应予指出,筛板塔的设计和操作精度要求较高,过去工业 上应用较为谨慎。近年来,由于设计和控制水平的不断提高, 可使筛板塔的操作非常精确,故应用日趋广泛。
2013-1-7
奥康内尔收集了
几十个工业塔的塔板
效率数据,认为对于 蒸馏塔,可用相对挥 发度与进料液体黏度 的乘积αμL作为参数来
表示全塔效率,关联
曲线见图6-56。
图6-56 精馏塔效率关联曲线
2013-1-7
(二)单板效率(莫弗里板效率)
单板效率又称莫弗里(Murphree)板效率。它用汽相(或液相)经过 一实际塔板时组成变化与经过一理论板时组成变化的比值来表示。
气液两相流动
第五章
第二节
2.2 基本方程
气液两相流动
气液两相流动基本方程式
⎧分相流动模型 基本流动模型 ⎨ ⎩均相流动模型
一元稳定流动 基本假设 圆管截面压力均匀分布 界面有质量交换 质量守恒 方程内容 动量守恒 能量守恒
第五章
第二节
2.2 基本方程
气液两相流动
气液两相流动基本方程式
气液两相流体在倾斜管中作分相流动时流体微元段示意图
QL
第五章
第二节
2.1 基本参数
气液两相流动
气液两相流动基本方程式
6.体积含气率 β 和体积含液率 (1− β )
β = QG / Q = QG / ( QG + QL )
(1 -β ) = QL / Q = QL / ( QG +QL )
用质量含气率表示为:
β = x / [x + (1 - x ) ρG /ρL ]
第五章
第二节
2.1 基本参数
气液两相流动
气液两相流动基本方程式
1.截面含气率及截面含液率(又称真实含气率及真实含液率)
α = AG / A
1 − α = AL / A
2.质量流量,气相质量流量及液相质量流量
W = WG + WL
第五章
第二节
2.1 基本参数
气液两相流动
气液两相流动基本方程式
3.质量含气率 x 及质量含液率 (1-x)
12.气液两相流体平均流速
vm = Q / A
第五章
第二节
2.1 基本参数
气液两相流动
气液两相流动基本方程式
13. 循环速度
υC = (WG + WL ) /( Aρ L ) = J G ρG / ρ L + J L
第六章 气固流态化基础
床内传热、传质效率较高,相间交换系数高;
Wen & Yu研究后发现:
1 s
3 mf
14
1 mf
2 s 3 mf
11
umf——起始流化速度(或最小流化速度/临界流化速度) (minimum fluidization velocity)
其余经验关联式参考《流态化工程原理》相关内容
3.颗粒性质对流化行为的影响
气 固 两 相 流 多 媒 体 课 件
(1)湍动流态化的形成 气体速度增加 气泡破裂速度 大于聚并速度 床层膨胀 床内气泡减小
湍动流态化
气泡边界模糊
(2)湍动流态化内的压力波动特征
鼓泡
流化床 湍动 流化床
气 泡 增 大 气 泡 减 小
u=0.061m/s
u=0.111m/s
速 度 增 加
u=0.224m/s u=0.479m/s u=0.599m/s u=0.738m/s
D类颗粒:通常为过粗颗粒,一般 粒径在600μm以上,流化时极易 产生大气泡或节涌,操作不稳定。
密 度 差
B A
D
C 平均粒径
4.气固流态化中各种流型特征
气 固 两 相 流 多 媒 体 课 件
u、ε增加
固 定 床
散 式 床
鼓 泡 床
节 涌 床 聚式流态化
湍 流 床
快 速 床
气 力 输 送
6.3 气固密相流化床 气 固 两 相 流 多 媒 体 课 件
2.床层压降与气体速度的关系、起始流化速度
气 固 两 相 流 多 媒 体 课 件
床层压降与气体速度的关系 由Ergun公式得到:
Байду номын сангаас
第6章 油气两相渗流(溶解气驱动)
C( pe
g (
)Krg pe )
Rs ( pe ) ga Kro Bo ( pe )o ( pe )
2 pe
K
t
Rs ( pe ) ga
Bo ( pe )
Soe
C( pe )(1
Soe ) 22
第四节 混气液体的不稳定渗流
一、基本微分方程的简化 两式相除可得:
C( p)(So )
第三节 混气液体的稳定渗流
三、稳定试井 溶解气驱方式下的指示曲线,如右图。
根据直线的斜率可以求出采油指数:
J0
q0 H
直线段服从达西线性渗流定律,可得:
则可得渗透率为:
2πKh J0 ln re
rw
K
J0
ln
re rw
2πh
指示曲线
20
第四节 混气液体的不稳定渗流
一、基本微分方程的简化
边界压力≈地层平均压力 边界处的饱和度值≈地层平均饱和度值 油相基本微分方程:
2
第一节 混气液体渗流的物理过程
溶解气驱开采的油藏,混气液体渗流的能量来源于均匀分布于 全油藏的溶解气体,因而一般采用均匀的井网。所以说在混气 液体渗流时,关键是研究清楚一口井的情况。
溶解气驱压力传播示意图
溶解气驱单元体图
气体膨胀所释放的弹性能主要消耗在克服阻力转换为流体的动能。
3
第一节 混气液体渗流的物理过程
Bo ( p)
So
12
第三节 混气液体的稳定渗流
一、赫氏函数 混气液体稳定渗流的基本微分方程:
o
(
Kro p)Bo
(
p)
p
0
方程中渗透率、粘度、体积系数都随压力变化,为方便方程求解,
M-6 第六章 油水两相渗流理论基础
第六章 油水两相渗流理论基础油气运移理论认为储层原为水所饱和,而油是在后来的某一时间才运移来的。
迄今为止,人们还没有发现孔隙空间中绝对不含水的油气藏。
地层固有水饱和度称为原生水或间隙水饱和度。
仅这些水的存在,除了减少储存烃类物质的孔隙空间外,也构成了孔隙空间中的多相(至少两相)流体体系。
另外,诸多大油区成功经验表明,起源于19世纪下叶的注水采油能够显著提高原油最终采收率,这一技术在20世纪40年代之后蓬勃发展,由注水所引起的多相渗流问题一直被国内外研究者重视,并相继取得了一系列成果。
在理论上,Richards (1931)最先开始了未饱和土壤中毛管束气—液两相流动的研究,之后Wyckoff 和Botset (1936)在研究未饱和土壤中气—液两相渗流时,首先提出了相对渗透率的概念。
Muskat 和Merese (1937)运用相对渗透率的概念先将Darcy 定律推广到了多相流体渗流之中。
诚如Scheidegger (1972)所说,Darcy 定律的这种推广只能有条件的成立,即相对渗透率不受渗流系统的压力和速度影响,而只是流体饱和度的单值函数(Muskat 假设)。
Leverett (1939,1941)、Leverett 和Lewis (1941)、Buckley 和Leverett (1942)相继完成了孔隙介质二相驱替机理。
关于二相或者三相流动的细观研究成果几乎都是基于Leverett 等人的理论推广而进行的。
在宏观渗流方面,主要贡献者有Perrine (1956)、Martin(1959) 、Weller(1966)、Raghavan (1976)、Aanonsen (1985)、Chen (1987)、Al-Khalifah (1987)、B φe (1989)、Camacho-V 和Standing (1991)、Thompson (1995)等,主要成果有P-M 近似模型、拟压力模型、拟压力拟时间模型及压力平方模型等。
第6章 多组分多级分离的严格计算 化学分离工程
H (Heat Balance Equation) ——热量衡算方程
对于第j级的MESH方程:
7
对第j级: 共有(2C+3)个方程 (1)物料衡算方程(M-eq.) C个 (6-1)
GiM , j = L j -1 xi , j -1 V j 1 yi , j 1 Fj zi , j - ( L j U j ) xi , j - (V j Wj ) yi , j = 0
RETURN
16
6.1平衡级的理论模型
3、同时校正法:先将MESH方程用泰勒级数展开, 并取其线性项,然后用NewtonRaphson法联解。 适用过程:(1)宽沸程的精馏过程; (2)非理想性较强的精馏过程; 如:萃取精馏、共沸精馏 (3)有化学反应的分离过程; 如:反应精馏和催化精馏等 按解决问题的策略不同分为:NC-SC法和GS-SC法 见6.3内容
三对角 泡点法(BP法)—窄沸程 (分块求解法) 矩阵法 流率加和法(SR法)—宽沸程 同时校正法 Naphthali-Sandholm(NC-SC)法
(同时求解) Goldstein-Standfield(GS-SC)法
GO
ROSE松弛法
14
6.1平衡级的理论模型
1、逐级计算法:将每一级的M和E方程组合为一组, 运用试差的方法,按级求解,得到组成断面。常 用的两种方法: (A)流量平衡法:(Lewis-Matheson法) 特点:交替使用相平衡和物料平衡方程进行逐板 计算类似于二元精馏的图解法。 属于设计型计算。(表6-1) (B)比流量法(Thiele-Geddes法) 特点:以比流量的形式建立M和E联立的工作方程 (li/di),从塔顶到进料板,从塔釜到进料 板逐级进行计算。 属于操作型计算。 (表6-1) RETURN 15
气液两相流讲稿
1~2气液两相流动参数 一、流量
G G g Gl
G —两相混合物的质量流量,kg/s;
g
G —气相的质量流量,kg/s;
Gl — 液相的质量流量,kg/s;
Q Qg Ql Q — 两相混合物的体积流量,m3/s; Q g —气相的体积流量m3/s; Q —液相的体积流量m3/s. l
• 2、两相界面之间存在相互作用力
• 力平衡:气液处于平衡,整个两相区流体只 与外界物体和进出的界面发生力的作用。 • 能量平衡:整体界面上存在能量交换,两相 界之间也存在能量交换,必然也伴随有机械能 的损失。两相流机械能的损失大于单相流机械 能的损失。
• 3、气液两相的分布状况(即各项呈分散或 密集及程度)多种多样,气液两相的分布状 况称为流动形态或流型。 • 单一气或液(层流、紊流)流层之间的关 系, • 气液两相: 在水平管或倾斜管中的流型有七种, 在垂直管中的流动形态有四种。
2.滑动比
• 2.滑动比
•
气相实际速度与液相实际速度的比值 称为滑动比,即:
s
vg vl
四、含气率和含液率
• 单位时间内流过过流断面的流体中气相流 体介质所占的份额叫含气率; • 单位时间内流过过流断面的流体中液相流 体介质所占的份额叫含液率。 • 1.质量含气率和质量含液率 Gg 含气率: x G g
2~2 均相流动模型
• 均相流动模型简称均流模型,它是把气 液两相混合物看成均质介质,其流动的物理 参数取两相介质相应参数的平均值.因此可 以按照单相介质来处理均流模型的流体动 力学问题。 • 假设 • (1) v v g vl 0
Hg
n
s 1
(2)两相介质已达到热力学平衡状态 压力、密度等互为单值函数。此条件在 等温流动中是成立的,在受热的不等温 稳定流动中是基本成立的,在变工况的 不稳定流动中则是近似的。
气液两相流 整理
第一章概论相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开两相流动的处理方法:双流体瞬态模拟方法和精确描述物理现象的稳态机理模型是多相管流研究的主要方法目前研究存在的问题:1、多相流问题未得到解析解;2、油气水三相流的研究不够深入;3、水平井段变质量流动研究较少;4、缺乏向下流动的综合机理模型;5、缺乏专用研究仪器气液两相流的分类:1、细分散体系:细小的液滴或气泡均匀分散在连续相中2、粗分散体系:较大的气泡或液滴分散在连续相中3、混合流动型:两相均非连续相4、分层流动:两相均为连续相气液两相流的基本特征:1、体系中存在相界面:两相之间也存在力的作用,出现质量和能量的交换时伴随着机械能的损失2、两相的分布情况多种多样:两相流动中两相介质的分布称为流型3、两相流动中存在滑脱现象:相间速度的差异称为滑脱,滑脱将产生附加的能量损失4、沿程流体体积流量有很大变化,质量流量不变气液两相流研究方法:1、经验方法:从气液两相流动的物理概念出发,或者使用因次分析法,或者根据流动的基本微分方程式,得到反映某一特定的两相流动过程的一些无因次参数,然后依据实验数据整理出描述这一流动过程的经验关系式。
优点:使用方便,在一定条件下能取得好的结果缺点:使用有局限性,且很难从其中得出更深层次的关系2、半经验方法:根据所研究的气液两相流动过程的特点,采用适当的假设和简化,再从两相流动的基本方程式出发,求得描述这一流动过程的函数关系式,最后用实验方法确定出函数关系式中的经验系数。
优点:有一定的理论基础,应用广泛缺点:存在简化和假设,具有不准确性3、理论分析方法:针对各种流动过程的特点,应用流体力学方法对其流动特性进行分析,进而建立起描述这一流动过程的解析关系式。
优点:以理论分析为基础,可以得到解析关系式缺点:建立关系式困难,求解复杂研究气液两相流应考虑的几个问题:1、不能简单地用层流或紊流来描述气液两相流2、水平或倾斜流动是轴不对称的3、由于相界面的存在增加了研究的复杂性4、总能量方程中应考虑与表面形成的能量问题5、多相流动中各相的温度、组分的浓度都不是均匀的,相之间有传热和传质6、各相流速不同,出现滑脱问题,是多相流研究的核心与重点流动型态:相流动中两相介质的分布状况称为流型或两相流动结构流型图:描述流型变化及其界限的图。
第六章 气液固三相反应器和反应器分析
(5)均相副反应量越大。
2.气-液-固悬浮三相反应器 固体在气液混合物中呈悬浮状态,这样操作状态的反应器为气-液-固 悬浮反应器。气-液-固悬浮反应器可以按有无机械搅拌、流体流向、颗粒
运动状态等进行分类。大体可以分为:
(1)机械搅拌的气-液-固悬浮反应器; (2)不带机械搅拌的鼓泡三相淤浆反应器; (3)不带机械搅拌的两流体并流向上的流化床反应器;
效率因子低下; (4)当催化剂由于积炭,中毒而失活时,更换催化剂不方便。
图7.1(b)适应于当气相反应物浓度较低,而又要求气相组分达到
较高转化率时的情况,逆流操作有利于增大过程的推动力。但同时
会增加气相流动阻力,当气液两相的流速较大时,还可能出现液泛。
图7.1(c)为气液并流向上的填料鼓泡塔反应器,持液量大,液相 和气相在反应器中混合好,液固间的传热性能好,适用于反应热效
7.2 气-液-固反应的宏观动力学
7.2.1 过程分析 气液固催化反应过程是传质与反应诸过程共同作用,互相影响的三 相反应过程,由多个步骤组成的过程。对于组分通过气液相的传递过程, 本节采用双膜模型,设气相反应组分A与液相反应组分B,在固体催化剂 作用下,反应如下:
A( g ) bB 产物
7.1.3 气-液-固反应过程研究所涉及的模型和参数
气液固反应过程,同样涉及到化学动力学,各相的流动
与混合状况,相间的质量、热量、动量传递等。由于相的增
加,物料流动与混合、质量、热量、力量传递过程要比两相 复杂,它涉及更多的参数。
1.流动模型及相关参数 (1)反应器的流动模型决定了三相间的传递特性,决定
1
(7.10)
1 1 RQ (cQs cQLi ) k a k a Qs p QL K LSQ (cQs cQLi ) qk p (1 f ) cAs
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P Pfi Pgi Pai Pci
i 1 i 1
1 273 t
4
液体体积膨胀系数:
tg v 1 y vt t vt
水蒸汽(实际气体)和高压下理想气体:同液体
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
P △
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
6.4 两相流通过孔板的压降
一.孔板的功用
1.测量流量和干度; 2.作为增加流动均匀性和稳定性的阻力件。
詹姆斯(James)修正后的公式
4 Wo2 1 ' / '' 1 x1.5 1 d / D pTk 2 2 ' y CA
詹姆斯的实验参数范围如下: P=0.5~1.87MPa; d=14.2~16.8mm; x=0.01~0.56; D=20.05mm
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
6.1 概述
一.产生局部阻力的原因
1.局部截面变化或流向变化,引起附面层脱离,并形 成涡流区。 2.产生流型的变化和滑动比变化,引起动量变化,增 加局部压降。 以阀门为例 L 1 2 L
6.5 弯头
两相流通过弯头的局部压降由两部分组成: 1) 在弯头内部发生,由于两相流体流经弯头时 发生涡流和流场变化引起的,与单相流类似; 2) 两相流体流经弯头后发生分离作用,使滑动 比发生变化,引起动量变化产生压降。
'' 2 pw 1 1 ' 1 x 1 x x pwo S lo
Chisholm根据实验数据,提出计算滑速比变化关系式
1.1 1 S 2 R/D
适用条件: 1)90o弯头; 2)R/D=1~5.02
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
闸 阀:C=0.5; 截止阀:C=1.3; 调节阀:C与开度有关。
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
本章小结
1.两相流产生局部压降的原因? 2.孔板的作用? 3.两相流通过弯头的局部阻力有哪几部分组成? 4.孔板、弯头、阀门的压降计算。 5.管系阻力计算。
6.7 阀门的局部压降
G2 pS s 2 ' ' 1 x '' 1
ቤተ መጻሕፍቲ ባይዱ
s 为两相流体通过阀门时得局部阻力系数; 式中,
s Cso
其中, o为单相流体通过阀门得局部阻力系数; Cs 为校正系数,可按下式计算
' '' x 1 x 1 '' 1 ' Cs 1 C ' 1 x '' 1
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
第六章 两相流局部压降计算
本章主要内容:
1. 局部阻力产生的原因 2. 两相流通过孔板、弯头、阀门的压降计算
d 1 2 Wo v D vm v 2 P 1 x 1 P PTk o o lo 2 2 yCA v v
C—孔板流量系数,由实验确定; 16.5 10 6 1 o ψ—孔板热膨胀系数,取决于孔板材料;不锈钢: C 6 1 TA2: 8.6 10 oC ;钛合金:9.4 106 1 o ; C y—单相流体膨胀系数; 理想气体: y
喉部断面
压力能 变化 动能变化 单相流体通过孔板时的流动特征
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
二.两相流通过锐边孔板的压降计算
1.均相模型法
实验工质为汽水混合物。
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
2. 奇斯霍姆计算法 基本假设: 1) 两相流体通过孔板为不可压缩流体; 2) 忽略上游动量(与Ao处相比); 3) 流体通过孔板时不发生相变,x=const; 4) 与两相交界面上的剪切力相比,流体与壁面 的剪切力可以忽略。
P 1P 2
d 1 2 j v f D P P 液相单独流过孔板时的压降: 1 2 o 2 yCA2
P1 P2 o
1
K 1 2 X X
4
Generated by Foxit PDF Creator © Foxit Software For evaluation only.