初一数学代数式的值练习题
初一数学代数式的值及整式
初一数学代数式的值及整式例题解析题型一求代数式的值【例1】当,时,求代数式的值.【例2】已知,,求代数式的值.【例3】若,互为相反数,,互为倒数,则代数式的值是()A. B. C. D.【例4】某百货商场经销一种儿童服装,每件售价50元,每天可以销售80件,每件可盈利10元,为了迎接六一国际儿童节,商场决定采取适当降价措施,扩大销售量,让利消费者.经市场调查发现:每件童装每降价1元,平均每天就可多销售10件.求:(1)当每件降价()元时,每天该种服装的营业额是多少元?(2)当时,每天的营业额是多少元.【练习】1. 当时,代数式的值是()A. B. C. D.2. 已知,,则代数式的值为()A. B. C. D.3. 下列用具体数值代替代数式中的字母,其中正确的是()A.当时,B.当时,C.当时,D.当时,4. 当时,下列代数式中,值最大的是()A. B. C. D.5. 若,,则的值为()A. B. C. D.6. 如果时,代数式的值是5,那么当时,代数式的值是 .7. 根据如图所示的程序,计算当输入的值为3时,输出的结果 .8. 若代数式的值是5,则代数式的值是 .9. 已知代数式的值为6,则代数式的值为()A. B. C. D.10. 已知,则代数式的值为()A. B. C. D.11. 若代数式的值为8,则代数式的值为()A. B. C. D.12. 若,则的值为()A. B. C. D.13. 定义一种运算“”,其规则为.根据这个规则,计算的值是()A. B. C. D.14. 在数,,,,中任取三个数相乘,设最大的积是,最小的积是.(1)求,的值;(2)若,求的值.15. 如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为的正方形.(1)用含a、b、x的式子表示剩余纸片的面积;(2)当,且剪去部分正方形边长为3时,求剩余纸片的面积.16. 如图所示,某长方形广场的四角都有一块半径相同的四分之一圆形花园,若圆形花园的半径为m,长方形的长为m,宽为m.(1)请用代数式表示广场空地的面积;(2)若长方形长为300m ,宽为200m ,圆形花园的半径为10m ,求广场空地的面积(结果保留π).知识点二 单项式1.定义:像xy m b a -,,2122等,都是数字与字母的,这样的代数式叫做单项式.注意:(1)单独的数字或字母也是单项式; (2)单项式分母中不能含有字母. 2.单项式的系数: ; 3.单项式的次数:;注意:(1)圆周率π是常数;(2)若单项式的系数是-1或1,通常省略1,例xy m -,2,若单项式的指数是1 ,通常省略不写;(3)单项式的系数包括前面的符号; (4)单项式的次数只与字母的指数有关.题型一 单项式【例1】下列整式中,单项式是( ) A.3a +1B.2x -yC.0.1D.21+x【例2】|2|--b axy 是关于y x ,的单项式,其系数为2,次数为3,求b a ,的值.【练习】1. 指出下列各单项式的系数和次数:a z xy aba xy 8,,2,5,,43242-π2. 下列单项式次数为3的是( ) A.3abc B.2×3×4 C.41x 3y D.52x3. 单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 4. 下列说法中,正确的是( ) A.单项式一定是含字母的式子 B.单项式a 没有系数 C.-y 的次数为0D.单项式y x 32π-的系数是-2π,次数是45. 单项式: 3234y x -的系数是 ,次数是 ;6.220053xy 是 次单项式;7. 当a =____________时,整式22-+a x 是单项式.8. 如果整式(m -2n )x 2y m+n-5是关于x 和y 的五次单项式,则m+n .9. 观察下列单项式,探究其规律:,...11,9,7,5,3,65432x x x x x x 按照上述规律,第2016个单项式是( ) A.20162016x B.20164031x C.20164029x D.20154031x知识点三 多项式 1. 定义:几个的和叫做多项式;2. 多项式的项:指多项式中的每个;常数项:; 多项式的项数: ; 多项式的次数:;注意:(1)多项式的每一项包括它前面的符号; (2)多项式分母中不含字母;知识点四 整式和统称为整式;注意:判断整式的依据是分母是否含有字母,整式的分母不能含有字母;题型 整式的相关计算 【例1】已知多项式2325432+-+-x xy y x ,这个多项式有几项,分别是什么,一次项系数是什么,常数项是什么?【例2】如果关于x 的多项式1)1(5)1(234-+-+--x b x x a x 不含3x 项和x 项,求b a ,的值.【例3】已知ABCD 是长方形,以DC 为直径的圆弧与AB 只有一个交点,且AD=a 。
初一数学代数式求值
初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。
解析:把x = 1 代入式子,得到2×1 + 3 = 5 。
2. 题目:若y = -2 ,求3y²- 4 的值。
解析:将y = -2 代入,3×(-2)²- 4 = 8 。
3. 题目:当a = 5 时,求6a - 1 的值。
解析:把a = 5 代入,6×5 - 1 = 29 。
4. 题目:已知b = 4 ,求7b + 2 的值。
解析:因为b = 4 ,所以7×4 + 2 = 30 。
5. 题目:若c = 0 ,求8c - 5 的值。
解析:由于c = 0 ,所以8×0 - 5 = -5 。
6. 题目:当d = -3 时,求5d + 7 的值。
解析:把d = -3 代入,5×(-3) + 7 = -8 。
7. 题目:已知e = 2 ,求9e - 6 的值。
解析:将e = 2 代入,9×2 - 6 = 12 。
8. 题目:若f = -1 ,求10f + 8 的值。
解析:把f = -1 代入,10×(-1) + 8 = -2 。
9. 题目:当g = 3 时,求4g - 9 的值。
解析:把g = 3 代入,4×3 - 9 = 3 。
10. 题目:已知h = 5 ,求6h - 10 的值。
解析:因为h = 5 ,所以6×5 - 10 = 20 。
11. 题目:若i = 0 ,求7i - 3 的值。
解析:由于i = 0 ,所以7×0 - 3 = -3 。
12. 题目:当j = -2 时,求8j + 5 的值。
解析:把j = -2 代入,8×(-2) + 5 = -11 。
13. 题目:已知k = 1 ,求5k - 7 的值。
解析:将k = 1 代入,5×1 - 7 = -2 。
14. 题目:若l = -3 ,求6l + 4 的值。
初一数学代数式的值练习题精选
初一数学代数式的值练习题精选1.化简代数式322(2x-1+x)-x-1,可以先将括号内的项合并得到322(3x-1)-x-1,再将常数项合并得到966x-325.2.代数式(a+b)2-(a-b)2可以展开得到4ab,代入a=-2、b=-3得到结果12.3.将2(x-y)2+3x-3y+1展开得到2x2-7xy+6y2+3x+1,代入x-y=3得到2y2+15.4.将x(2x-y+3z)展开得到2x3-xy+3xz的值,代入x=7、y=4、z=0得到126.5.将3a-a-a+1化简得到-a-1,代入a=-3得到结果2.6.将b-4ac代入a=2、b=-3、c=4得到-59.7.代数式(1/2-x-y)+5ab可以化简得到(5/2)-x-y+5ab,但没有给出具体的求值。
8.将3x-1+2y+3化简得到3x+2y+2,代入3x-2y得到-x+2.9.将2a+3a+1=6代入得到a=1,代入6a+9a+5得到35.10.将x=-2、y=-5代入得到-9/8,将x=2、y=5代入得到23/8.11.将x=2代入4x2-2xy+2y2得到20-4y+2y2,y的绝对值最小为0,代入得到20.12.将x+3=5-y化简得到y=2-x,代入a/b=b/a得到a=-1,b=-1,代入得到-5/2.13.将2x2+3x+5=6代入得到x=-1或x=5/2,代入6x2+9x-3得到33/2或-3/2.14.将2x-y=5化简得到y=2x-5,代入2y-4x+5得到-3x+5,没有给出具体的求值。
15.将x=11/2代入得到121/4.16.将a=4、b=12代入得到44.17.将x=1、y=-6代入得到(1)37,(2)49,(3)49.18.用代数式10a+(a+5)表示这个两位数,当a=3时得到35.19.用代数式100a+b表示这个四位数,没有给出具体的求值。
20.将x=1、y=-1代入得到-1/2.。
初一数学代数式的值练习题
初一代数式的值一、选择题(每小题4分,共40分)1. 某班的男生人数比女生人数的多16人,若男生人数是a,则女生人数为()A. a+16B. a-16C. 2(a+16)D. 2(a-16)2. 火车从甲地开往乙地,每小时行v千米,则t小时可到达,若每小时行x千米,•则可提前()小时到达.A. tB.vt-xC. t-vt/xD.t-x3. 原产量n千克增产20%之后的产量应为()A.(1-20%)n千克B.(1+20%)n千克C. n+20%千克D. n×20%千克*4. 若x-1=y-2=z-3=t+4,则x,y,z,t这四个数中最大的是()A. xB. yC. zD. t5. 甲乙两人的年龄和等于甲乙两人年龄差的3倍,甲x岁,乙y岁,则他们的年龄和如何用年龄差表示()A.(x+3y)B.(x-y)C. 3(x-y)D. 3(x+y)6. 用代数式表示:“x的2倍与y的和的平方”是()A.2x+yB.2x+y^2C.(2x+y)^2D.(2x^2)+y7. 三个连续的奇数,若中间一个为2n+1,则最小的,最大的分别是A. 2n-1 ,2n+1B. 2n+1 ,2n+3C. 2n-1 ,2n+3D. 2n-1 ,3n+18. 当a= ,b=-6时,代数式的值是14的是()A.(4a+5)(b-4);B.(2a+1)(1-b);C.(2a+1)(b-1);D.(4a+5)(b+4);.9. 当x=3时,代数式px2+qx+1的值为2002,则当x=-3时,代数式px2-qx+1的值为()A. 2000B. 2002C. -2000D. 200110. 若a是一个两位数,b是一个一位数,如果把b放在a左边,组成一个三位数,则这个三位数可表示为()A. baB. b+aC. 10b+aD. 100b+a二、填空题(每题4分,共24分)11. 一个正方体边长为a,则它的表面积是_______.12. 鸡,兔同笼,有鸡a只,兔b只,则共有头_______个,脚_______只.13. 当a=2,b=1,c=-3时,代数式ab+ca 的值为14. 代数式2x2+3x+7的值为12,则代数式4x2+6x-10=___________.15. 已知a+b =3,则0.1(a+b) 的值等于________三、解答题(共36分)16.(本题8分)某地区夏季高山上的温度从山脚处开始,每升高100米降低0.7℃,如果山脚温度是28℃,那么山上500米处的温度为多少?山上x米处的温度呢?17.(本题8分)当a=5,b=-2时,求下列代数式的值:(1)(a+2b)(a-2b)(2)a^2+ab ;(3)a^2-2b^2(4)a2+2ab+b2.18.(本题12分)20-(x+y)^2是有最大值,还是有最小值?这个值是多少?这时x与y的关系如何?。
初一数学-代数式练习题
初一数学代数式练习题一、填空题1.小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a厘米,两个月不理发,她的头发长为厘米.3.妈妈买了一箱饮料共a瓶,小丁每天喝1瓶,天后喝完.4.代数式(x+y)(x-y)的意义是.5.小明有m张邮票,小亮有n张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有张邮票.6、化简:a+(2b—3c—4d)=;a—(—2b—3c+4d)=;3x—[5x—2(2x-1)]=;4x2—[6x—(5x—8)—x2]=。
7、把多项式x5-(-4x4y+5xy J-6(-x3尸+x2户)+。
3y5去括号后按字母x的降幂排列为。
8、某三角形第一条边长(2a-b)厘米,第二条边比第一条边长(a+b)厘米,第三条边比第一条边的2倍少b厘米,那么这个三角形的周长是厘米。
9、(河北省中考题)若m、n互为倒数,则mn2-(n-1)的值为。
二、判断题1.3x+4-5是代数式.()2.1+2-3+4是代数式.3.m是代数式,999不是代数式.4.x>y是代数式.5.1+1=2不是代数式.三、选择题1.下列不是代数式的是()A.(x+y)(x-y)C.m+n2.代数式a2+b2的意义是()A.a与b的和的平方C.a与b的平方和3.如果a是整数,则下面永远有意义的是A.1B.2a2D.1a—1十位比个位大1,这个两位数是(A.a(a+1)B.(a+1)aC.10(a+1)aD.10(a+1)+a5、下列各式去括号正确的是()A、4a—(3b—2c—d)=4a—3b—2c—dB、—(x—y)=—x—yC、(3a—5b)+(2m—n)=3a—5b—2m+nD、—(x—y)—(1—x2+x3)=—x+y—1+x2—x36、化简一{[一(2x—y)]}的结果是()A、2x—yB、2x+yC、—2x+yD、—2x—y7、下列去括号中错误的是()A、—2x2—(x+2y—5z)=—2x2—x—2y+5zB、5a2+(—3a—b)—(2c+3d)=5a2+3a—b—2c—3dC、2x2—3(x—y)=2x2—3x+3y ()()()()B.c=0D.999n+99mB.a+b的平方D.以上都不对()aC.1a24.一个两位数,个位是a,D、—(x—2y)—(—x2+2y2)=—x+2y+x2—2y28、将(2m—3)—(n—2m)去括号合并同类项是(A、4m—n—3B、—3—nC、—3+nD、4m—3+n9、下列各式中,错误的式子的个数有()①a—(c-b)=a一b一c②(x2+y)-2(x-y2)=x2+y-2x+y2③一a+b+x-y=一(a+b)一(一x+y)④-3(x-y)+(x-y)=一2x+2yA、1个B、2个C、3个D、4个10、下列各题去括号所得结果正确的是()A、xx-(-y+2z)=X2-x+y+2zB、xje-(-2+3y-1)=x+2x-3y+1C、3x-[5x-(x-1)]=3x-5x-x+1D、(%-1)一(%2-2)=x-1一%2-211、化简2-[2(x+3y)-3(x-2的结果是().A.x+2;B.x-12y+2;C.-5x+12y+2;D.2-5x.12、(湖北咸宁中考题)化简小-(歌-用的结果为()A、BC、13、(江西省中考题)化简2a+(2a-1)的结果是()A、-4a-1B、4a-1C、1D、-1四、化简:1、2a-3b+[4a-(3a-b)];、23b-2c-[-4a+(c+3b!l+c.3、a-(a-3b+4c)+3(-c+2b) 、43x2-2xy+7)-(-4x2+5xy+6)5、2x2-{-3x+6+[4x2-(2x2-3x+2)]} 、a60,b<0,|6-5b|-|3a-2b|-|6b-1|1,c.c 3、,“8c. 3x 2-(3xx +3yy -、2)+%xx 3yy^ 7、1<a<3,|1-a|+|3-a|+|a -5|五、化简求值:1、(广西柳州中考题)先化简,再求值:3(x -1)-(x -5),其中x =22、 3x 3-[xx +(62-7x )]-2(X 3- x 2-4x ),其中x =-1。
初一数学代数式的值试题
初一数学代数式的值试题1.(2014•湘西州)已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3【答案】A【解析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.点评:本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.2.(2014•海口一模)当x=﹣1时,代数式x2﹣2x+1的值是()A.0B.﹣2C.﹣1D.4【答案】D【解析】直接把x=﹣1代入计算即可.解:当x=﹣1,原式=(﹣1)2﹣2×(﹣1)+1=1+2+1=4.故选D.点评:本题考查了代数式求值:把满足条件的字母的值代入代数式中进行计算得到对应的代数式的值.3.(2014•广东模拟)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1B.1C.2D.3【答案】D【解析】把(m﹣n)看作一个整体并直接代入代数式进行计算即可得解.解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n),=(﹣1)2﹣2×(﹣1),=1+2,=3.故选D.点评:本题考查了代数式求值,整体思想的利用是解题的关键.4.(2014•如东县模拟)若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11B.6C.7D.8【答案】C【解析】已知等式左边利用完全平方公式展开求出x2﹣2x的值,原式变形后将x2﹣2x的值代入计算即可求出值.解:∵(x﹣1)2=x2﹣2x+1=2,即x2﹣2x=1,∴原式=2(x2﹣2x)+5=2+5=7.故选C点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.(2014•保亭县模拟)当x=﹣2时,代数式x2﹣2x+1的值是()A.1B.﹣1C.6D.9【答案】D【解析】将x=﹣2代入计算即可求出代数式的值.解:当x=﹣2时,原式=4+4+1=9,故选D点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.(2013•威海)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是()A.3B.2C.1D.﹣1【答案】A【解析】所求式子后两项提取﹣2变形后,将m﹣n的值代入计算即可求出值.解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=1+2=3.故选:A.点评:此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.7.(2013•济南)已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【答案】B【解析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.点评:此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.8.(2013•怀化)已知m=1,n=0,则代数式m+n的值为()A.﹣1B.1C.﹣2D.2【答案】B【解析】把m、n的值代入代数式进行计算即可得解.解:当m=1,n=0时,m+n=1+0=1.故选B.点评:本题考查了代数式求值,把m、n的值代入即可,比较简单.9.(2013•海港区二模)如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,…,则第2013此输出的结果为()A.1B.2C.4D.8【答案】A【解析】把x=64代入程序中计算,以此类推得到一般性规律,即可确定出第2013次输出的结果.解:把x=64代入得:×64=32,把x=32代入得:×32=16,把x=16代入得:×16=8,把x=8代入得:×8=4,把x=4代入得:×4=2,把x=2代入得:×2=1,把x=1代入得:1+3=4,以此类推,∵(2013﹣3)÷3=670,∴第2013次输出的结果为1,故选A.点评:此题考查了代数式求值,弄清题中的程序框图是解本题的关键.10.(2013•怀集县二模)当x=2时,代数式的值是()A.﹣1B.0C.1D.1【答案】B【解析】把x=2代入代数式进行计算即可得解.解:x=2时,(﹣1)(x2﹣2x+1)=(﹣1)(12﹣2+1)=0.故选B.点评:本题考查了代数式求值,是基础题,准确计算是解题的关键.。
初一下册代数式练习题及答案
初一下册代数式练习题及答案一.选择题1.下列各式子中,符合代数式书写要求的是12ab22x?3千米ab?31ab ?2.下列各式不是同类项的是ab 与3ab x与2x22121ab与?3ab ab与4ba63.下列各式正确的是3a?b?3ab 3x?4?27x?2??2x?2?3x??.单项式?2ab的次数是1 - 5.一个两三位数,a表示百位数,b表示十位数,c表示个位数,那么这个两位数可表示为 a?b?c abc10abc100a?10b?c6.在排成每行七天的日历表中取下一个3?3方块。
若所有日期数之和为189,则n的值为:21 11 1.若k为自然数,22k?pp1xy与?xk?3y3是同类项,则满足条件的k值有21个2个 3个无数个8.长方形的一边长等于3a?2b,另一边比它小a?b,那么这个长方形的周长是10a?6b 7a+3b 10a+10b 12a+8b.代数式a?3a?7a?7与3?2a?3a?a的和是奇数偶数 5的倍数无法确定 10.如果A是三次多项式,B是三次多项式,那么A+B一定是六次多项式次数不高于3的整式三次多项式次数不低于3的整式二.填空题。
11.实数a?a?0?的相反数的倒数是 12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是。
13.单项式??r的系数是。
2322314.多项式a?21a?1的最高次项是15.一年期的存款的年利率为p%,利息个人所得税的税率为20%。
某人存入的本金为a元,则到期支出时实得本利和为元。
16.2a?4b?3与a?b的2倍是17.已知多项式ax?bx?cx?9,当x??1时,多项式的值为17。
则该多项式当x?1时的值是。
18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克。
为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是元/千克。
初一上册数学代数式求值试题
初一上册数学代数式求值试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为( )A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为( )A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为( )A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是( )A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为( )A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x ﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( )A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是( )A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是( )A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为( )A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式 ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是( )A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4= a﹣3b+4=7,解得 a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。
2023-2024年初一年级数学求解代数式的值,例题、习题附加答案
求代数式的值练习目的:能用具体的数值代替代数式中的字母,求出代数式的值。
什么是代数式的值:通常我们将代数式中的字母用具体指代的数字代替,并按照代数式的运算法则运算出具体的数值结果,就成作为代数式的值。
例1学校为了开展校体育活动,需要购进一批篮球,要求每班能分配2个,学校后备余留15个。
那么学校需要购进多少个篮球?解:设前学校共有n个班级,那么学校需要购进的篮球总数为:n.2+15假设,现在学校有20个班级(即20n),那么篮球总数=就是:2=+20⨯.2+15n=5515进一步假设,现在学校有班级25个(即25n),那么篮=球总数就是:+⨯+2==n.651515225由例题可以看出,当n取值不同是,代数式15n的计算2+结果也不同。
当20=n时,n的值是55;当25=n时,代数式152+代数式15n的值是65.2+例2当375===,z ,y x 时,求代数式z)y x x(462-+的值. 解:z)y x x(462-+=)(3476525⨯-⨯+⨯⨯=12)42(105-+⨯=405⨯=200.例3根据下面a,b 的值,求代数式ab a -2的值: (1)205==,b a ;(2)24==,b a .解:(1)当205==,b a 时,代数式ab a -2的值为: a b a -2=52052-=425-=21. (2)当24==,b a 时,代数式ab a -2的值为: a b a -2=4242-=2116-=2115. 练一练:1、求下列代数式的值.(1)当2=x 时,求代数式12-x 的值. 解:当2=x 时,求代数式12-x 的值为:12-x =122-=3.(2)当3143==,y x 时,求代数式y)x(x -的值. 解:当3143==,y x 时,求代数式y)x(x -的值为: y)x(x -=)(314343-⨯=12543⨯=165. 2、当213==,b a 时,求下列代数式的值.(1)(b a +)2;(2)(b a -)2. 解:(1)当213==,b a 时,代数式(b a +)2的值为: (b a +)2=(3+21)2=2)27(=449. (2)当213==,b a 时,代数式(b a -)2的值为: (b a -)2=(213-)2=2)25(=425. 3、当25==,y x 时,求代数式yx y x 4354--的值. 解:当25==,y x 时,求代数式y x y x 4354--的值为: y x y x 4354--=24532554⨯-⨯⨯-⨯=8151020--=710. 4、当2085===c ,b a ,时,求下列代数式的值:(1)b )a)(c (c c --+;(2)b a a c +-.解:(1)当2085===c ,b a ,时,代数式b )a)(c (c c --+的值为:b )a)(c (c c --+=)820()520(20-⨯-+=20+1215⨯=20+180=200. (2)当2085===c ,b a ,时,代数式ba a c +-的值为:b a ac +-=85520+-=1315.。
初一数学七年级代数式的值练习题
初一数学七年级代数式的值练习题数学七年级代数式的值练习题一、判别题1、独自一个数如- 不是代数式( )2、s=r2是一个代数式( )3、当a是一个整数时,总有意义( )4、代数式的值不能大于15、x与y的平方和与x、y的和的平方的差为(x+y)2-(x2+y2)6、某工厂第一个月消费a件产品,第二个月增产x%,两个月共消费a+ax%二、填空:1、设甲数为x,乙数比甲数的3倍多2,那么乙数为2、设甲数为a,乙数为b,那么它们的倒数和为3、能被3和4整除的自然数可表示为4、a是一个两位数,b是一位数,假设把a放在b的左边,那么所在的三位数是5、一项工程甲独做需x天完成,乙独做需y天完成,甲先做2天,乙再参与做a天,这时完成的工程为6、一辆汽车从甲地动身,先以a千米/时速度走了m小时,又以b千米/时的速度走了n小时抵达乙地,那么汽车由甲地到乙地的平均速度为千米/时7、一件商品,每件本钱a元,将本钱添加25%定出价钱,后因仓库积压调作,按价钱的92%出售,每件还能盈利8、有一列数:1,2,3,4,5,6,,当按顺序从第2个数数到第6个数时共数了个数;当按顺序从第m个数数到第n个数(nm)时共数了个数。
9、某项工程,甲独自做需a天完成,乙独自做需b天完成,那么(1)甲每天完成工程的(2)乙每天完成工程的(3)甲、乙合做4天完成工程的(4)甲做3天,乙做5天完成工程的(5)甲、乙合做天,才干完成全部工程。
三、选择题:1、以下代数式中符号代数式书写要求的有( )① ②abc2 ③ ④ ⑤2(a+b) ⑥ah2A、1个B、2个C、3个D、4个2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为( )A、 B、 C、 D、3、矩形的周长为s,假定它的长为a,那么宽为( )A、s-aB、s-2aC、D、4、当a=8,b=4,代数式的值是( )A、62B、63C、126D、10225、假定代数式2y+3y+7的值为8,那么代数式4y2+6y-9的值是( )A、13B、-2C、17D、-76、假定a、b互为相反数,p、q互为倒数,m的相对值为5,那么代数式的值是( )A、-6B、-5C、-4D、0四、求代数式的值1、当a=7,b=9求值①4a+b ② ③ ④2、当时求代数式(ab+c)(2ac-b)的值。
初一数学整体代入法求代数式的值经典例题
初一数学整体代入法求代数式的值专项训练1、若m n 、互为相反数,则5m+5n-5的值是2、已知b a 、互为相反数,c d 、互为倒数,则代数式2()3a b cd +-的值为3、已知2x-y=3,则1-4x+2y=例3、 若m 2-2m= 1,求代数式2m 2-4m+2011的值.例4、已知2x-3y-4=0,求代数式(2x-3y )—4x+6y-7的值?5、当13b a +=,则代数式212(1))1b b a a++-+(的值为 例6、已知2135b a +=-,求代数式2(2)333(2)b a a b +---+的值7、已知14a b a b -=+,求代数式2()3()a b a b a b a b -+-+-的值8、当2a b +=时,求代数式2()2()3a b a b +-++的值。
9、当4,1a b ab +==时,求代数式232a ab b ++的值。
例10、若3a b ab -=,求代数式222a b ab a b ab---+的值。
11、当110,5x y xy +=-=时,求7157x xy y -+的值。
12、若2232x y +-的值为6,求28125x y ++的值。
13、已知代数式23x x ++的值为7,求代数式2223x x +-的值 。
例14、若1x =时,代数式34ax bx ++的值为5,则当1x =-时,代数式34ax bx ++的值为多少?15、已知y ax bx =++33,当x =3时y =-7,则求x =-3时,y 的值。
16、若-2x =时,代数式535ax bx cx ++-的值为9,则2x =时,代数式53+7ax bx cx ++的值是多少?。
初一数学代数式的值练习试题二
初一数学代数式的值练习试题二篇4:代数式的值的同步试题代数式的值的同步试题代数式的值的同步试题代数式的值同步训练试题(含答案)随堂检测1、当a=2,b=1,c=3时,的值是。
2、当a= , b= 时,代数式(a-b)2的值为。
3、如果代数式2a+5的值为5,则代数式a2+2的值为。
4、如果代数式3a2+2a-5的值为10,那么3a2+2a= 。
5、某电视机厂接到一批订货,每天生产m台,计划需a天完成任务,现在为了适应市场需求,要提前3天交货,用代数式表示实际每天应多生产多少台电视机。
并求当m=1000,a=28时,每天多生产的台数。
典例分析例:(1)a、b互为倒数,x、y互为相反数,且y0,则(a+b)(x+y)-ab- 的值为。
(2)若,求的值。
(3)如图:正方形的边长为 a。
①用代数式表示阴影的面积;②若 a=2cm 时,求阴影的面积(结果保留)。
解:(1)0(2) =3 5 +3=(3)① ;②当a=2时,上式=2- 。
答:阴影部分的面积为(2- )cm2。
评析:(1)解决本例的关键是:由a、b互为倒数得ab=1,由x、y互为相反数得x+y=0和(2)本例采用的是整体代入的数学思想;(3)本例主要是用规则图形的面积去解决不规则图形面积的求解问题。
课下作业●拓展提高1、填表x -4 -3 -2 -1 0 1 2 3 42x+52(x+5)(1)随着x值的逐渐增大,两个代数式的值怎样变化?(2)当代数式2x+5的值为25时,代数式2(x+5)的值是多少?2、已知代数式的值是8,那么代数式的值是( )A、37B、25C、32D、03、已知,代数式的值为( )A、6B、C、13D、4、小明在计算41+N时,误将+看成-,结果得12,则41+N= 。
5、已知:a+b=4,ab=1,求 2a+3ab+2b 的值。
6、当x=3时,代数式px3+qx+1的值为。
求:当x=-3时,代数式px3+qx+1的'值为多少?●体验中考1、(福建漳州中考题)若,则的值是_______________。
初一数学整式加减代数式求值问题专题训练(附答案)
初一数学整式加减代数式求值问题专题训练(附答案)一.选择题(共15小题)1.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,12.按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.64.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±75.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.76.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3B.x=﹣4,y=﹣2C.x=2,y=4D.x=4,y=2 7.当x=﹣1时,代数式3x+1的值是()A.﹣1B.﹣2C.4D.﹣48.已知a2﹣3a﹣7=0,则3a2﹣9a﹣1的值为()A.18B.19C.20D.219.已知a+b=,则代数式2a+2b﹣3的值是()A.2B.﹣2C.﹣4D.﹣310.已知1﹣a2+2a=0,则的值为()A.B.C.1D.511.按如图所示的程序计算,若开始输入n的值为1,则最后输出的结果是()A.3B.15C.42D.6312.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3B.6C.4D.213.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3B.﹣2C.0D.714.已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202115.按如图所示的运算程序,能使输出的结果为3的是()A.x=1,y=2B.x=﹣2,y=﹣2C.x=3,y=1D.x=﹣1,y=﹣1二.填空题(共16小题)16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.17.若a﹣2b=3,则9﹣2a+4b的值为.18.已知4a+3b=1,则整式8a+6b﹣3的值为.19.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.20.设﹣1≤x≤2,则|x﹣2|﹣|x|+|x+2|的最大值与最小值之差为.21.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.22.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.23.当代数式x2+3x+5的值等于7时,代数式3x2+9x﹣2的值是.24.当x=3时,代数式px3+qx+1的值为2019,则当x=﹣3时,代数式px3+qx+1的值是.25.已知x2+2x﹣1=0,则3x2+6x﹣2=.26.若x2+x﹣1=0,则x3+2x2+3=.27.已知a﹣b=2,那么2a﹣2b+5=.28.若x+y=10,xy=1,则x3y+xy3的值是.29.已知代数式x+2y的值是3,则代数式2x+4y+1的值是.30.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.31.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.三.解答题(共9小题)32.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,其中,四个角部分是半径为(a﹣b)米的四个大小相同的扇形,中间部分是边长为(a+b)米的正方形.(1)用含a、b的式子表示需要硬化部分的面积;(2)若a=30,b=10,求出硬化部分的面积(结果保留π的形式).33.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.34.已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?35.当x=2时,式子x2+(c+1)x+c的值是﹣9,当x=﹣3时,求这个式子的值.36.先阅读下面例题的解题过程,再解决后面的题目.例:已知9﹣6y﹣4y2=7,求2y2+3y+7的值.解:由9﹣6y﹣4y2=7,得﹣6y﹣4y2=7﹣9,即6y+4y2=2,所以2y2+3y=1,所以2y2+3y+7=8.题目:已知代数式14x+5﹣21x2的值是﹣2,求6x2﹣4x+5的值.37.如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x米的两条互相垂直的小路,余下的部分作为耕地,如果将两条小路铺上地砖,选用地砖的价格是每平米a元,(1)求买地砖至少需要多少元?(用含a,x的式子表示)(2)计算a=40,x=2时,地砖的费用.38.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?39.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.40.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一.选择题(共15小题)1.解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选:D.2.解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.4.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.5.解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.6.解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.7.解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.8.解:∵a2﹣3a﹣7=0,∴a2﹣3a=7,则原式=3(a2﹣3a)﹣1=21﹣1=20,故选:C.9.解:∵2a+2b﹣3=2(a+b)﹣3,∴将a+b=代入得:2×﹣3=﹣210.解:∵1﹣a2+2a=0,∴a2﹣2a=1,∴=(a2﹣2a)+=×1+=,故选:A.11.解:把n=1代入得:n(n+1)=2<15,把n=2代入得:n(n+1)=6<15,那n=6代入得:n(n+1)=42>15,则最后输出的结果为42,故选:C.12.解:根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵(2017﹣2)÷6=335…5,则第2017次输出的结果为2,故选:D.13.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.14.解:∵x﹣2y=2,∴原式=3(x﹣2y)+2014=3×2+2014=2020,故选:C.15.解:A、把x=1,y=2代入得:1+4=5,不符合题意;B、把x=﹣2,y=﹣2代入得:4+4=8,不符合题意;C、把x=3,y=1代入得:9+2=11,不符合题意;D、把x=﹣1,y=﹣1代入得:1+2=3,符合题意,故选:D.二.填空题(共16小题)16.解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,故答案为:4.17.解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.18.解:∵4a+3b=1,∴8a+6b﹣3=2(4a+3b)﹣3=2×1﹣3=﹣1;故答案为:﹣1.19.解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.20.解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:121.解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.22.解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.23.解:∵x2+3x+5=7,即x2+3x=2,∴原式=3(x2+3x)﹣2=6﹣2=4.故答案为:4.24.解:∵x=3时,代数式px3+qx+1的值为2019,∴27p+3q+1=2019,∴27p+3q=2018,∴﹣27p﹣3q=﹣2018,∴当x=﹣3时,px3+qx+1=﹣27p﹣3q+1=﹣2018+1=﹣2017.故答案为:﹣201725.解:∵x2+2x﹣1=0,∴x2+2x=1,∴3x2+6x﹣2=3(x2+2x)﹣2=3×1﹣2=1.故答案为:1.26.解:由x2+x﹣1=0得x2+x=1,所以x3+2x2+3=x3+x2+x2+3=x(x2+x)+x2+3=x+x2+3=1+3=4.故答案为:4.27.解:∵a﹣b=2,∴原式=2(a﹣b)+5=4+5=9,故答案为:928.解:x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.29.解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故答案为:7.30.解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.31.解:∵2x2﹣3x=﹣1,∴6x﹣4x2+3=﹣2(2x2﹣3x)+3=﹣2×(﹣1)+3=2+3=5.故答案为:5.三.解答题(共9小题)32.解:(1)需要硬化部分的面积=(3a+b)(2a+b)﹣(a+b)2﹣π(a﹣b)2;(2)当a=30,b=10,硬化部分的面积=(90+10)×(60+10)﹣402﹣π×202=(5400﹣400π)平方米.33.解:(1)大小两个正方形的边长分别为a、b,∴阴影部分的面积为:S=a2+b2﹣a2﹣(a+b)b=a2+b2﹣ab;(2)∵a=6,b=4,∴S=a2+b2﹣ab=×62+×42﹣×6×4=18+8﹣12=14.所以阴影部分的面积是14.34.解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的倒数等于它本身,∴m=±1,①当a+b=0;cd=1;m=1时,∴=+0×1﹣|1|=1﹣1=0;②当a+b=0;cd=1;m=﹣1时,原式=+0×(﹣1)﹣|﹣1|=﹣1﹣1=﹣2.故原式的值有两个0或﹣2.35.解:把x=2代入代数式得:4+(c+1)×2+c=﹣9,解得:c=﹣5,把c=﹣5代入得到关于x的二次三项式为:x2﹣4x﹣5.把x=﹣3代入二次三项式得:(﹣3)2﹣4×(﹣3)﹣5=9+12﹣5=16.当x=﹣3时,代数式的值为16.36.解:∵14x+5﹣21x2的值是﹣2,∴14x﹣21x2=﹣7,即2x﹣3x2=﹣1,∴3x2﹣2x=1,则6x2﹣4x+5=2×(3x2﹣2x)+5=7.37.解:(1)依题意,得32x+(20﹣x)x=32x+20x﹣x2=52x﹣x2(平方米),所以买地砖至少需要(52x﹣x2)a元;(2)当a=40,x=2时,(52x﹣x2)a=(52×2﹣22)×40=4000(元).所以当a=40,x=2时,地砖的费用是4000元.38.解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.39.解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.40.解:(1)当x=100时,方案一:100×200=20000(元);方案二:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,方案一:100×200+80(x﹣100)=80x+12000;方案二:(100×200+80x)×80%=64x+16000,答:方案一、方案二的费用为:(80x+12000)、(64x+16000)元;(3)当x=300时,①按方案一购买:100×200+80×200=36000(元);②按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),36000>35200>32800,则先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省。
初一:代数式的求值专题
代数式的求值类型一、利用分类讨论方法【例1】已知|[ =7,间=12,求代数式x+y的值.变式练习:1、已知|乂-1|=2,|丫|=3,且乂与丫互为相反数,求3 X 2 7y . 4 y的值2、|x|=4,|y|=6,求代数式|x+y|的值3、已知凶=1,| y = 1,求代数式x 2—2町+ y 2的值;类型二、利用数形结合的思想方法【例】有理数a, b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — | 1 一c] 的值.变式练习:1、有理数a, b, c在数轴上对应点如图所示,化简|b+a| + |a+c| + |c-b|I 111rC B0 A2、已知a, b, c在数轴上的位置如图所示,化简|a| + |c-b| + |a-c| + |b-a|a 0 c b题型三、利用非负数的性质【例 D 已知(a—3)2+|—b+5 | + | c — 2 |=0.计算 2a+b+c 的值.【例2】若实数a、b满足a2b2+a2+b2-4ab+1=0,求b + a之值。
a b变式练习:1、已知:|3x-5| + |2y+8|=0 求x+y2、若205x|2x-7| 与30x| 2y-8 |互为相反数,求xy+x题型四、利用新定义【例1】用“★”定义新运算:对于任意实数a, b,都有a*b=b2+i.例如,7*4 = 42+1 = 17, 那么5*3=;当川为实数时,m*(m*2)=.变式练习:1、定义新运算为a4b =( a + 1 )刊,求的值。
6A ( 3A4 )2、假定m^n表示m的3倍减去n的2倍,即mOn=3m-2n o (2)已知乂。
(4。
1) =7,求x的值。
3、规定a * b = 1 - -, a **b = 2-1, 则(6 * 8)**(8 * 6)的值为; b a题型五、巧用变形降次【例】已知X2 —x—1 = 0,试求代数式一X3+2X+2008的值.变式练习:设m 2 + m — 1 = 0,则U m 3 + 2 m 2 +1997 =题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入,,求代数式的值。
初一数学代数式的值试题
初一数学代数式的值试题1.已知a+3b=2,则2a+6b+3的值是________.【答案】7【解析】本题考查了求代数式的值将a+3b=2整体代入代数式即可求出代数式2a+6b+3的值.当a+3b=2时,2a+6b+3=2(a+3b)+3=4+3=7.思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.2.当a=,b=2时,求下列代数式的值.(1)(a+b)2-(a-b)2;(2)a2+2ab+b2.【答案】(1)4 (2)【解析】本题考查了求代数式的值将a=,b=2直接代入这两个代数式即可求出代数式的值.当a=,b=2时:(1);(2)思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.3.已知代数式:①a2-2ab+b2;②(a-b)2.(1)当a=5,b=3时,分别求代数式①和②的值;(2)观察(1)中所求的两个代数式的值,探索代数式a2-2ab+b2和(a-b)2有何数量关系,并把探索的结果写出来;(3)利用你探索出的规律,求128.52-2×128.5×28.5+28.52的值.【答案】(1)4,4;(2)a2-2ab+b2=(a-b)2;(3)10000.【解析】本题考查了求代数式的值(1)把a=5,b=3时,分别代入代数式①和②的求值;(2)由(1)得到a2-2ab+b2=(a-b)2;(3)利用(2)得到的等式把所给的式子整理为差的完全的平方的形式.(1)当a=5,b=3时,a2-2ab+b2=52-2×5×3+32=25-30+9=4,(a-b)2=(5-3)2=4;(2)可以发现a2-2ab+b2=(a-b)2;(3)128.52-2×128.5×28.5+28.52=(128.5-28.5)2=1002=10000.思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.4.如图,试用字母a、b表示阴影部分的面积,并求出当a=12cm,b=4cm时阴影部分的面积.【答案】,【解析】本题考查了列代数式,并根据已知求代数式的值由图可知,阴影部分的面积=矩形面积-半圆的面积,即可列出代数式,再把a=12cm,b=4cm代入计算即可。
初中数学代数式求值专题训练及答案
初中数学代数式求值专题训练及答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值。
2、已知:2023(1+3x)=1,求代数式7+6x 的值。
3、已知a a =3243,求代数式2 +3 +4 的值。
4、若x 2+xy +y 2=2xy +y 2=3,求代数式(x+1)(y-2)+3的值。
5、已知(x+13)2=2023,求代数式(x -27)(x+53)的值。
6、已知x +2y=12,求代数式x 2-4y 2+48y 的值。
7、已知x 2-3x +1=0,求代数式x 2+1 2的值。
8、已知x 2-4x +1=0,求代数式x 4-56x +2024的值。
9、已知x+1 =3,y+1 =1,z+1 ==3,求代数式x yz 的值。
10、已知x 4+x 2+1=0,求代数式x 3+1的值。
11、已知x=1,求代数式(x+2)(2x+1)-x 2+6的值。
12、若x>y>0,x 2+y 2=5xy,求代数式2− 2 的值。
13、已知2x 2+10=(x+2)(x+3),求代数式3x+6的值。
14、已知x=8−215,求代数式x+1 的值。
15、已知x=2,求代数式7x 2+(2x+3)(x-2)+12的值。
参考答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值解:因为2x+3y+z=1------①2x+y+3z=3-------②①+②,得4x+4y+4z=4即:x+y+z=1-----------③①-③,得x+2y=0故:代数式x+2y 的值是02、已知:2023(1+3x)=1,求代数式7+6x 的值。
因为,要使得2023(1+3x)=1成立,所以1+3x=0,即:x=-13所以:7+3x =7+6×(-13)=5故:代数式7+6x 的值是53、已知a a =3243,求代数式2+3 +4 的值。
解:a a =3243=34*81=(34)81=8181所以:a=812 +3 +4 =281+381+484=9+333+3=12+333故:代数式2 +3 +4 的值是12+3334、若x2+xy+y2=2xy+y2=3,求代数式(x+1)(y-2)+3的值。