换热器计算说明书

合集下载

换热器、热网加热器计算示例

换热器、热网加热器计算示例

管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。

u型管换热器设计说明书(1)

u型管换热器设计说明书(1)
由于垫片宽度为 3mm,则开槽取 4mm。壳程侧隔板槽深 4mm,管程隔板 槽深 4mm。
圆整为 24mm
(4).管板直径
根据容器法兰相关参数需要,取管板直径 D=473mm
考虑到金属的热膨胀尺寸,可由微小负偏差,但不允许有正偏
差。
(5).管板连接设计
由之前热力计算部分以确定布管方式选用正方形排布,布管限定
t 189 MPa
焊接接头系数取 0.85
8
0.5 400
0.623mm
2 189 0.85 0.5 0.5
又封头厚度因与筒体厚度相同以减少焊接所产生的应力,最终取封
头厚度为 8mm
2. 管箱短节设计:
管箱深
(1)管箱短节厚度设计:
度 300mm
管箱短节厚度与筒体厚度相同, 8mm
11
由 NB/T47020—47027-2012 查得长颈对焊法兰如下图所示: 其中:
D=565m m
L=26mm 螺栓 M24 C=26mm
(2)由上述数据可得 (3)预紧状态下的法兰力矩按下式计算:
12
(4)由机械设计手册查得 M20 的小径为 由此可得实际使用的螺栓总面积
(5)操作状态的法兰力矩计算: 作用于法兰内径截面上内压引起的轴向力 由下式计算:
,允许正偏差为,负偏差为 0,
即管孔为
(4) 折流板的固定
拉杆直
折流板的固定一般采用拉杆与定距管等原件与管板固定,其固 径
定形式由一下几种:
12mm
a. 采用全焊接法,拉杆一段插入管板并与管板固定,
拉杆长
每块折流板与拉杆焊接固定。

b. 拉杆一段用螺纹拧入管板,每块折流板之间用定距
8000mm

(完整word版)热管换热器设计计算及设计说明书

(完整word版)热管换热器设计计算及设计说明书

热管换热器设计计算及设计说明书第一章热管及热管换热器的概述热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。

具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。

将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。

热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。

随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中.热管气—气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。

热管气-气换热器是目前应用最广泛的一种气—气换热器.我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。

大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气—气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。

据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。

如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6].利用热管气—气换热器代替传统的管壳式气—气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气—气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低. 1。

1 热管及其应用热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。

管壳式换热器传热计算示例终 用于合并

管壳式换热器传热计算示例终 用于合并

Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:

换热站计算说明书

换热站计算说明书

换热站计算说明书The Standardization Office was revised on the afternoon of December 13, 2020河北建筑工程学院毕业设计计算说明书系别:能环学院专业:建筑环境与设备工程班级:建环 121姓名:任少朋学号: 2012305127起迄日期:16年02月21日 ~ 16年06月15日设计(论文)地点:河北建筑工程学院指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日摘要随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。

本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。

本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。

供热区域总建筑面积:110000m2,总热负荷:约6400kw。

本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。

除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。

本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。

在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。

关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器目录摘要 (1)第一章设计概况 (4)1.1设计题目 (4)1.2设计原始资料 (4)1.2.1 设计地区气象资料 (4)1.2.2 设计参数资料 (4)第二章换热站方案的确定 (5)2.1换热站位置的确定 (5)2.2换热站建筑平面图的确定 (5)2.3换热站方案确定 (5)2.4供热管道的平面布置类型 (5)2.5管道的布置和敷设 (6)2.6换热站负荷的计算 (6)第三章换热站设备的选取 (7)3.1换热器简介 (7)3.1.1换热器概述 (7)3.1.2换热器的分类 (7)3.2换热器的选取 (9)3.2.1换热器类型的选取 (9)3.2.2换热器选型计算 (9)3.3换热站内管道的水力计算 (10)3.4循环水泵的选择 (11)3.4.1循环水泵需满足的条件 (11)3.4.2循环水泵选择 (11)3.5补水泵的选择 (12)3.5.1补水泵需该满足的条件 (12)3.5.2补水泵的选择 (12)3.6补水箱的选择 (14)3.7除污器的选择 (14)3.8钠离子交换器的选择 (14)3.9分集水器的选择 (15)第四章设备管道的防腐保温 (15)4.1 保温材料的选择原则及保温结构 (15)4.2保温材料选材计算 (16)第五章质调节 (17)参考文献 (22)致谢 (22)第一章设计概况1.1设计题目张家口市桥西区集中供热工程M13号热力站工艺设计二次网改造及供热系统运行模式分析1.2 设计原始资料1.2.1 设计地区气象资料1、建筑物修建地区:河北省长张家口市2、该工程的供热区域总建筑面积:110000m2,供需范围有十六中学校区、市检察院办公区和住宅区等,供热半径:500m,最大建筑高度:36m。

U型管换热器设计说明书

U型管换热器设计说明书
(1)管板形式选择: 管板形式选择 a 型:管板通过垫片与壳体法兰和管箱法兰连接。管板
形式如下图:
(2)管板计算 按照 GB151——1999 管壳式换热器中 a 型连接方式管板的计算步骤进行下
列计算。 a)根据布管尺寸计算
在布管区围,因设置隔板槽和拉杆结构的需要,而未能被换 热管支撑的面积, 对于正方形排布
煤油在管中的流速为 0.8~1,取管程流体流速
常用换热管为

选用外径
管程流体体积流量可由煤油的要求流量的出:
n=20 N=4
换热管。
L=8m
取管数 由换热面积确定管程数和管长: 由于是 U 型管换热器,由 GB151-1999 管壳式换热器查得有 2,4 两种管程可 选。 初选管程为 4
考虑到常用管为 9m 管,为生产加工方便,选用单程管长 8m 又考虑到单程管长 8m 会使得换热器较长,在选取换热器壳体径时,尽量选取 较大的,以保证安全,因此换热器部空间较大,故选用较为宽松的正方形排 布。 换热管材料 由于管程压力大于 0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。
折流板间 距 200mm
计算压力
圆筒径由选定的圆筒公称直径得 设计温度下的圆筒材料的许用应力由选定的材料 Q345R 从 GB150.2 中查得
焊接接头系数
由于壳程流体为水,不会产生较严重的腐蚀,选取腐蚀 yu 量 又由于 Q345R 在公称直径为 400mm 是可选取得最小厚度为 8mm,则选择圆 筒厚度为 8mm 折流板间距: 折流板间距一般不小于圆筒径的五分之一且不小于 50mm;因此取折流板间 距为 200mm 核算传热系数: 由 GB151—1999 管壳式换热器得到包括污垢在的,以换热管外表面积为基准 的总传热系数 K 的计算公式:

换热器设计型计算

换热器设计型计算

换热器的设计型计算Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)Q=KA ∆t m 2211221A A A 1αλδα++=m A K(无相变传热过程,Re>104,Pr>0.7, bd PrRe .,.80210230λαα=()()12211221t T t T t T tT t m -----=∆ln 1、 设计型计算的命题给定生产任务:q m1,T 1→T 2(or q m2,t 1→t 2)选择工艺条件:t 1,t 2计算目的:换热器传热面积A 及其它有关尺寸(管子规格,根数);qm2特点:结果的非唯一性。

2、 计算公式: 质量衡算:p V N nu d q ⋅⋅=24π热量衡算:Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)传热速率式:Q=KA ∆t m3、 计算方法:1)计算换热器的热流量)(2111T T Cp q Q m -=2)作出适当的选择并计算平均推动力m t ∆),,,,(2121流向t t T T f t m =∆∴必须选择A 、流向(逆流.并流.复杂流动方式)B 、选择冷却介质出口温度3)计算冷热流体与管壁的对流体给热系数和总传热系数必须选择:A 、冷,热流体各走管内还是管外B 、选择适当的流速C 、选择适当的污垢热阻4)由传热基本方程m t KA Q ∆=计算传热面积关键是:条件参数的选择!4、 条件参数的选择选择的原则:技术可行,经济合理1) t 1:决定于工艺需要,现实条件,经济性。

温度要求不很低,以水为冷却剂时,应以夏季水温为设计温度更安全。

2)t 2:技术:理论上t2可选范围经济性:q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)t 2越大,q m2消耗越少,↓1122p m p m C q C q⇒经常性操作费用少但∆t m ↓,同时q m2↓可能导致K ↓则mt K Q A ∆⋅=↑⇒设备投资费用大 ∴有经济优化问题。

换热器选型计算书

换热器选型计算书

换热器选型计算书一,低区地板热辐射采暖系统换热器选型计算㈠.已知条件:1、一次热媒:110~80℃热水2、二次热媒:45~55℃热水。

3、换热面积:11000㎡。

㈡.换热量计算:Q=11000 ×45(w/m2)=495kw。

㈢.一次循环水流量计算V=Q/﹝ρ×C×(t2﹣t1)×β﹞=49500/﹝1000×1×(110﹣80)×1.163﹞=14.2m3/h㈣.二次循环水流量计算V=Q/﹝ρ×C×(t2-t1)×β﹞=495000/﹝1000×1×(55﹣45)×1.163﹞=42.3 m3/h㈤.水水热交换器面积计算1、对数平均温差计算:Δtd=110﹣55=55℃Δtx=80-45=35℃Δtp=(Δtd-Δtx)/In(Δtd/Δtx)=(55-35)/In(55/35)=44.25℃.2、换热面积计算Q=K×F×Δtp×β1F=Q/(K×Δtp×β)1=495000/(2000×44.25×0.7)=8m2㈥.设备选择:换热器型号为:LBH325—1.6—8—SS—2—25,两台。

二、水泵选择(注:一次水泵由110/80℃集中供热中心配置)(一)二次循环水泵选择选用KQL80/160—7.5/2型水泵两台,变频,一用一备。

参数:流量50m3/h扬程32m,电机功率:7.5kw。

(二)定压水泵选择ΔV=42.6×4%=1.71m3/h选用KQL40/185—3/2型水泵两台,一用一备。

参数:流量5.9m3/h扬程44m,电机功率:3kw。

三、定压罐选择选用Φ1400定压罐1个。

调节容积为:1m3/h。

定压水泵启动的时间:60×1/1.71=35分钟。

四、补水泵选择选用1个2 m3的水箱。

换热器压力计算书

换热器压力计算书

Pw
2 D
e
0
[ ] t e 1 .0 )
2 ( 1 0 . 075 ) 107 57 ( 1 0 . 075 5 . 35 MPa
表 1 外径和壁厚允许偏差
单位为毫米
钢管种类、代号
钢管公称尺寸 外径(D) ≤140 >140 ≤3 壁厚(S) >3~4 >4~5 >5 6~30 外径(D)
换热器压力计算书
一、设计压力下最大允许工作压力的计算公式:
Pw
2 D
e
0
[ ] t e
P w ——最大允许工作压力(MPa) ;
e δ e ——钢管的有效厚度(mm) ,δ =δ n -C 1 -C 2;
δ n ——钢管的名义厚度(mm) ; C 1 ——钢管的厚度负偏差(mm); C 2 ——腐蚀厚度(mm) ;
%S %S
38mm 的冷拔(轧)热交换器用钢管的壁厚允许偏
差可按±10%S 交货; 外径大于 38mm 的冷拔(轧)热交换器用钢管的壁厚允许偏差可按±11%S 交货。
查 NB/T 47019.1—2011 表 2 得钢管壁厚允许偏差± 7.5%S,即负偏差为 7.5%S=0.075mm; 则 C1=0.075mm。 3) C2=0(不锈钢取腐蚀裕量为 0mm) ; 4) [σ]t查不锈钢钢管《GB150-2011》55 页表 8;
则[σ] =107MPa。
t
5)D0=55mm; 6)代入公式:
[σ]t——设计温度下钢管的允许应力 (MPa) ; 不锈钢钢管查 《GB150.2—2011》
55 页表 8;
Ф——焊接接头系数,无缝钢管取Ф=1;
D 0 ——钢管的外直径(mm) ;

板式换热器选型计算书

板式换热器选型计算书

板式换热器选型计算书板式换热器选型计算2、选型公式热负荷计算公式为Q=cmΔt,其中Q表示热负荷(kcal/h),c表示介质比热(Kcal/ Kg.℃),m表示介质质量流量(Kg/h),Δt表示介质进出口温差(℃)。

水的比热为1.0 ___℃。

换热面积计算公式为A=Q/K.Δt,其中A表示换热面积(m2),K表示传热系数(Kcal/ m2.℃),Δt表示对数平均温差。

板间流速计算公式为V=q/ASn(T2’T1’)/(T2-T1),其中V表示板间流速(m/s),q表示体积流量,A和___表示单通道截面积,n表示流道数。

3、选型实例一(水-水)假设需要将水从20℃加热到70℃,流量为10m3/h。

根据公式Q=cmΔt,可以计算出热负荷Q=1.0×10^3×(70-20)×10=5×10^5kcal/h。

根据公式K=175,Δt=50,可以计算出换热面积A=5×10^5/175×50=114.3m2.根据公式V=q/ASn(T2’T1’)/(T2-T1),可以计算出板间流速V=10×10^3/114.3×2×(70-20)/(70-20)=0.48m/s。

因此,可以选择BR0.5型号的板式换热器。

4、选型实例二(汽-水)假设需要将汽水混合物从100℃冷却至50℃,流量为10m3/h。

根据公式Q=cmΔt,可以计算出热负荷Q=0.5×10^3×(100-50)×10=2.5×10^5kcal/h。

根据公式K=1300,Δt=50,可以计算出换热面积A=2.5×10^5/1300×50=38.5m2.根据公式V=q/ASn(T2’T1’)/(T2-T1),可以计算出板间流速V=10×10^3/38.5×2×(100-50)/(100-50)=1.04m/s。

管壳式换热器传热计算示例(终)

管壳式换热器传热计算示例(终)

管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。

2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。

改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2;过冷水的粘度μ1=0.3704×10-6 Pa·s。

过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s=0.032m(按GB151,取1.25d0);管束中心排管的管数按4.3.1.1所给的公式确定:取20根;壳体径:m 取Di=0.7m;长径比:布管示意图l/D i=3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高:折流板间距:m折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:m/s ;壳程质量流速:kg m 2/s ;壳程当量直径:m ;壳程雷诺数:; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数:;管沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图 3-34)管束压降(公式3-129):Pa;取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。

换热器课程设计计算书

换热器课程设计计算书

《化工设备设计基础》课程设计计算说明书学生姓名:学号:所在学院:专业:设计题目:指导教师:2012 年月日目录一.设计任务书 (2)二.设计参数与结构简图 (4)三.设备的总体及结构设计 (5)四.强度计算 (9)五.设计小结 (15)六.参考文献 (15)一、设计任务书1、设计题目设计题目:(题号3)尾气冷却器(F=19m2)设计2、设计任务设计参数:2.1设备的总体设计1、按照设备条件设计要求,确定设备型式(卧式、立式);2、根据换热面积、换热管长度和直径,确定换热管数目;3、根据设备直径和换热管直径,确定拉杆数目和直径;4、根据管板直径,确定折流板的形状和尺寸;根据换热管直径,确定折流板间距;5、根据介质特性,确定筒体、管箱、法兰、管板、换热管等材料。

2.2设备的机械强度设计计算1、筒体的强度计算;2、封头的强度计算;3、开孔补强计算;按等面积补强法进行计算。

补强圈或加强管补强也尽可能采用标准件。

4、法兰的选型或设计;根据公称直径、公称压力确定标准设备法兰,同样根据公称直径、公称压力选用管道法兰标准(HG),确定法兰尺寸。

5.水压试验应力校核。

2.3换热器装配图绘制(1)完成换热设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。

(2)编写技术要求、技术特性表、管口表、明细表和标题栏。

3、参考资料:[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003.[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].[3] GB150.1~150.4-2011.钢制压力容器[S].[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.[5] GB151-1999 《管壳式换热器》[S].4、文献查阅要求设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。

5、设计成果1、提交设计说明书一份。

2、提交换热器装配图一张(A1)。

浮头式换热器计算说明书

浮头式换热器计算说明书

课程设计题目:浮头式换热器院系:机械工程学院专业:过程装备与控制工程班级:1003班学生姓名:尹以龙指导教师:***目录第一部分任务书 (1)第二部分计算说明书 (2)1.传热工艺计算 (2)1.1.原始数据 (2)1.2.定性温度及物性参数 (3)1.3.传热量和冷水流量 (3)1.4.有效平均温度 (3)1.5.管程传热面积计算 (4)1.6.结构初步设计 (4)1.7.壳程换热系数计算 (5)1.8.总传热系数计算 (6)1.9.结构初步设计 (7)1.10.壳程换热系数计算 (7)1.11.总传热系数计算 (8)1.12.核算管程压强降 (8)1.13.核算壳程压强降 (9)2.强度计算 (11)2.1.换热管材料及规格的选择和根数的确定 (11)2.2.确定筒体内径 (11)2.3.确定筒体壁厚 (12)2.3.1.筒体液压试验 (13)2.4.管箱封头厚度计算 (13)2.5.浮头侧封头厚度计算 (14)2.6.设备法兰的选择 (15)2.6.1.管箱侧法兰的选择 (15)2.6.2.浮头侧法兰的选择 (16)2.6.3.壳体上与浮头侧连接的法兰 (17)2.6.4.接管法兰的选择 (17)2.7.管板的设计 (18)2.8.钩圈式浮头 (22)2.8.1浮头法兰的计算 (24)2.8.2管程压力作用下浮头盖的设计 (28)2.9.浮动管板 (29)2.10.钩圈的选择 (30)2.11.折流板的选择 (31)2.12.拉杆和定距管的确定 (32)2.13.防冲板 (32)2.14.管箱短节壁厚的计算 (32)2.15.筒体、管箱的耐压试验的校核计算 (33)2.16.接管及开孔补强 (33)2.16.1 a,b孔的补强 (33)2.16.2 d,h孔的补强 (35)2.17. 支座择及应力校核 (37)2.17.1 支座的选择 (37)2.17.2 支座的应力校核 (38)2.18. 整体尺寸布局 (40)第一部分任务书一、设计题目设计题目:用水冷却煤油产品的浮头式换热器的设计二、设计条件(1)使煤油从180℃冷却到40℃,压力1.0MPa;(2)冷却剂为水,水压力为0.5MPa。

板式换热器计算书excel__概述说明以及解释

板式换热器计算书excel__概述说明以及解释

板式换热器计算书excel 概述说明以及解释1. 引言1.1 概述板式换热器是一种常见且重要的热交换设备,广泛应用于化工、电力、制药等领域。

它通过将冷却介质和加热介质分别流动在板间的通道中,实现热量的传递。

而为了准确计算板式换热器的性能指标以及设计参数,使用excel来编制计算书已成为一种常用的方法。

本文旨在概述和解释“板式换热器计算书excel”的相关内容。

首先,我们将简要介绍板式换热器计算书excel的基本信息和用途。

随后,会详细说明计算方法以及excel模板的使用说明。

1.2 文章结构文章分为五个主要部分:引言、板式换热器计算书excel、概述说明、解释和结论。

在引言部分,我们将对板式换热器计算书excel的重要性进行阐述,并指出本文具体内容安排。

1.3 目的本文旨在帮助读者更好地理解和应用板式换热器计算书excel,在实际工程中准确地预测和评估板式换热器的效果,并为优化设计提供参考。

通过对概述说明和解释的阐述,读者将能够深入了解板式换热器的工作原理、计算公式和参数,以及不同类型板式换热器的特点和应用领域。

同时,本文还将提供一些常见问题解答、流程图解析和实际应用案例分析,帮助读者更好地掌握计算方法。

通过对结论部分的总结回顾,我们将评价并展望板式换热器计算书excel的优势和局限,并探讨未来该计算方法的发展趋势以及可能应用场景。

这些内容旨在为读者提供更为全面和深入的信息,使其能够在实践中灵活运用板式换热器计算书excel,并做出准确可靠且经济高效的决策。

2. 板式换热器计算书excel:2.1 简介:板式换热器是一种常用于加热和冷却过程中的设备,它通过板与板之间的热交换来实现传热的效果。

而为了方便进行板式换热器的计算和设计,可以使用Excel 软件来创建一个计算书。

这个计算书可以包含各种计算公式和参数,并能提供快速准确的计算结果。

本节将简要介绍这种基于Excel的板式换热器计算书。

2.2 计算方法:在板式换热器的计算中,需要考虑众多参数和公式,如流体温度、流量、传热系数、压降等。

ggh换热器计算书

ggh换热器计算书

标题:ggh换热器计算书一、设备概述本设备为一款ggh(管壳式)换热器,用于在一定温度和压力条件下,对两种流体进行热交换。

设备的主要组成部分包括:壳体、管板、传热管、隔板、密封垫等。

二、设计参数1. 设备型号:GGH-250/400,表示为管壳式换热器,规格为250mm内径×400mm高。

2. 工作压力:设备的工作压力为15bar。

3. 工作温度:设备的工作温度范围为-5℃~+50℃,可根据实际需要调整。

4. 传热面积:设备总传热面积为6m2。

5. 流体物性:流体A为水,流体B为油,其物理性质分别如下:流体A密度为1kg/L,黏度为0.01Pa·s;流体B密度为0.8kg/L,黏度为0.3Pa·s。

三、计算过程1. 传热面积计算:根据设备规格和流体性质,选用适宜的传热面积。

本次设计选取总传热面积为6m2。

2. 传热系数计算:根据流体性质和设备规格,选择适宜的传热系数,以确保换热效果良好。

本次设计选取传热系数为6000W/(m2·℃)。

3. 确定传热系数后,根据传热公式(Q=KAΔT),可计算出所需的换热面积。

其中,Q为换热量,K为传热系数,A为传热面积,ΔT为冷热流体的温差。

4. 根据实际需要,对设备进行优化设计,包括隔板、密封垫等部件的选型和布局。

四、结果分析经过计算和优化,本次设计的ggh换热器满足工作条件和性能要求,能够实现良好的热交换效果。

预计设备的换热效率较高,使用寿命较长。

五、结论本次设计的ggh换热器满足设计参数和工作条件要求,具有良好的换热效果和稳定性。

建议在实际使用中注意维护保养,确保设备的正常运行。

如有任何疑问或建议,请及时联系我们。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林大学
《热交换器原理与设计》
课程设计说明书
题目:乙醇管壳式换热器设计
姓名李权
学号 ********
专业能源与动力工程(热能)
指导教师黄海珍沈淳
2016年10
目录
第1章设计任务书 (3)
第2章计算过程表格 (4)
第3章传热管布置排列草图 ................... 错误!未定义书签。

3.1管路安排.................................. 1错误!未定义书签。

3.2流型安排.................................. 1错误!未定义书签。

第4章总结............................................... 错误!未定义书签。

第5章参考文献. (14)
第一章设计任务书
题目17
对固定管板的乙醇管壳式换热器进行传热计算、结构计算、和阻力计算。

在该换热器中,要求:
乙醇进出口温度为 25°C、45°C
乙醇流量:2.5kg/s
热水的进出口水温为55°C、50°C
乙醇和热水的工作表压力均为0.3MPa。

具体要求:
1、设计任务说明
本次课程设计是一次虚拟设计,主要目的是为了完成一次完整的换热器热力计算和流阻计算。

学生应根据给定的课程设计题目,在指定的设计时间内独立完成全部设计任务,并提交换热器结构总图A0图纸一张,设计计算说明书1份。

2、设计要求
(1)计算说明书要求
计算说明书应包含完整的传热计算及流阻计算,参数选取及结构设计合理,计算正确,并附上结构简图。

热力计算建议采用电子表格计算。

计算说明书内容依次为:封面,目录,主要符号说明,设计说明书,设计方案介绍,热力计算及流阻计算表,主要结构尺寸及计算结果汇总表,总结,参考文献。

(2)图纸绘制要求
图纸绘制需符合机械制图规范,手绘或机绘人选。

手绘图至少需要两个视图表达换热器结构,机绘需用三维图形软件绘制,并投影二维结构图,同时提交三维电子版及二维打印版图纸文件。

要求图面结构参数及计算说明书相符。

第二章计算过程表格
表1.1 计算表格
第三章传热管的布置排列草图
3.1管路安排
本次设计是由水与乙醇进换热,考虑到乙醇的粘度较水高,流量较水小,沸点较水低,且水为热流体,于是水走管程,而乙醇走壳程。

3.2换热器流型设计
结合换热器的长径比(热力计算中求出),换热器流型选为<1-2>型。

第4章总结
这次固定管板式换热器毕业设计课题是在黄海珍老师和沈淳老师共同的悉
心指导下完成的。

在指导设计过程中,两位老师严谨的教学态度、细心的点拨与讲解,都让我受益非常多。

通过查看相关标准,进行设计计算和设计绘图。

通过对标准的使用对标准更加熟悉了。

通过标准与教材的同步使用,使理论知识与设计应用联系在一起。

对标准的认识和理解更加深刻。

设计图纸是通过Auto Cad 绘图的。

通过对软件的应用,更加熟悉了Auto Cad中的常用工具和常用技巧。

同时也深深的感受到了二维设计的抽象。

在此对指导老师和在设计过程中给予帮助的同学们表示衷心的感谢。

第5章参考文献
【1】史美中,王中铮. 《换热器原理与设计》第五版[M].南京:东南大学出版社, 2014.
【2】GB 150-2011《压力容器》标准释义[S].
【3】JB/T4701-2000 甲型平焊法兰标准[S].
【4】JB-T4712-2007鞍式支座标准[S].。

相关文档
最新文档