第七章窄带随机过程
4.3 窄带随机过程的基本特点
1 j = [ S X (ω + ω0 ) + S X (ω ω0 )] + [ S X (ω + ω0 ) S X (ω ω0 )] 2 2
S X (ω ) = j sgn( ω ) S X (ω )
AC (t)与AS (t)的互相关函数是奇函数
当τ = 0时, 有 : RAC AS (0) = 0
在同一时刻 AC (t)与AS (t)之间是正交的 , .
16
RAC AS (τ ) = RAS AC (τ ) SAC AS (ω) = SAS AC (ω) = FT[RAC AS (τ )]
RAC AS (τ ) = RX (τ ) sin( ω0τ ) + RX (τ ) cos(ω0τ )
1 SAC (ω) = SAS (ω) = {SX (ω +ω0 )[1+ sgn( ω +ω0 )] 2 + SX (ω ω0 )[1sgn( ω ω0 )]}
10
ω
SX (ω ω0 ) + SX (ω +ω0 )
1 ω 2
偶函数
11
ω SX (ω +ω0 ) + SX (ω ω0 ) ω < SAC (ω) = SAS (ω) = 2 0 其它
8
E[ AC (t)] = E[ AS (t)] = 0
AC (t)和AS (t)都是平稳过程
RAC (τ ) = RAS (τ ) = RX (τ ) cos(ω0τ ) + RX (τ ) sin( ω0τ )
窄带过程产生及随机信号功率谱仿真
一、模拟产生一个窄带随机过程。
首先产生两个相互独立的随机过程Ac(t)和As(t),用两个正交载波进行调制得到窄带过程。
绘出其波形、相关函数及功率谱(1000数据点)。
(陈超然)程序代码:clear all;clc;N=1000;X1 =0.2*randn(1,N);X2 =0.2*randn(1,N);fs=200;t =-0.5:1/N:(0.5-1/N);A=[1 -0.9];B=1;Xc=filter(B,A,X1);Xs=filter(B,A,X2);for n=1:NY(n)=Xc(n)*cos(2*pi*fs*t(n))- Xs(n)*sin(2*pi*fs*t(n));end[R,lags]= xcorr(Y,N);%计算序列的自相关NFFT=2^nextpow2(N); %求得最接近总点数的2^n,这里是1024Pxx=abs(fft(R,NFFT)/N); %对自相关函数进行fft变换f=fs*linspace(0,1,NFFT);figure(1)n=1:N;plot(t(n),Y(n));title('输出波形');figure(2)plot(lags,R);title('自相关函数');figure(3);plot(f,Pxx);%绘制功率谱曲线title('功率谱密度');运行结果输出波形相关函数功率谱密度二、如果信号X(t)的表达式为:X (t) = sin c(100t) cos(2p *200t)1、绘出信号及其幅度频谱曲线;2、当中心频率向左搬移f0=200Hz时,求出其低通等效信号,并绘出其幅度频谱、信号的同相、正交分量及包络;3、当中心频率向左搬移f0=100Hz时,求出其低通等效信号,并绘出其幅度频谱、信号的同相、正交分量及包络。
(郭静)程序代码:clcclearN=512;fs=N/0.5;%%%%%%%%%%%%%%%%%%%%%%%%%信号的产生及可视化%%%%%%%%%%%%%%%%%%%%%%%%%%t=-0.25:0.5/N:(0.25-0.5/N);for n=1:NX(n)=sinc(100*t(n))*cos(2*pi*200*t(n));h_t(n)=1/(pi*t(n));endn=1:N;figure(1)plot(t(n),X(n));grid;axis([-0.15 0.15 -1 1]);title('信号曲线');Xw=abs(fft(X,N)); %fft变化,除以信号的点数看原信号的幅值f=fs*linspace(0,1,N);%频率轴的产生figure(2)plot(f,Xw)title('信号幅频曲线') axis([0 1024 0 6])运行结果-0.1-0.050.050.10.15-1-0.8-0.6-0.4-0.200.20.40.60.81信号曲线01002003004005006007008009001000123456信号幅频特性%%%%%%%%%%%%%%%%%%%%%%%%%频率左移100%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for n=1:NXc_1(n)=sinc(100*t(n))*cos(2*pi*100*t(n)); %信号频率左移100Ac_1(n)=sinc(100*t(n));endAs_1=hilbert(Ac_1); %信号的hilbert变换for n=1:NXs_1(n)=As_1(n)*sin(2*pi*100*t(n));endX_hil_1=hilbert(Xc_1);X_1_hil_fft=abs(fft(X_hil_1,N)); %信号的fft变换for n=1:NX_1_enve(n)=sqrt(Ac_1(n)^2+As_1(n)^2); %求信号的包络endfigure(3)subplot(221)plot(f,X_1_hil_fft)axis([0 512 0 12]);title('信号频率左移100hilbert变换的频谱')subplot(222)plot(t,Xc_1)title('f0=100低通等效同相分量')axis([-0.15 0.15 -0.6 1]);subplot(223)plot(t,Xs_1)axis([-0.15 0.15 -0.6 1]);title('f0=100低通等效正交分量')subplot(224)plot(t,X_1_enve)axis([-0.15 0.15 0 1.5]);title('f0=100低通等效包络')运行结果:%%%%%%%%%%%%%%%%%%%%%%%%%信号频率左移200%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for n=1:NXc_2(n)=sinc(100*t(n))*cos(2*pi*0*t(n));Ac_2(n)=sinc(100*t(n)); endAs_2=hilbert(Ac_2); for n=1:NXs_2(n)=As_2(n)*sin(2*pi*0*t(n)); endX_hil_2=hilbert(Xc_2);X_2_hil_fft=abs(fft(Xc_2,N)); for n=1:NX_2_enve(n)=sqrt(Ac_2(n)^2+As_2(n)^2); end figure(4) subplot(221) plot(f,X_2_hil_fft) axis([0 512 0 12]);title('信号频率左移200hilbert 变换的频谱') subplot(222) plot(t,Xc_2)title('f0=200低通等效同相分量') axis([-0.15 0.15 -0.6 1]); subplot(223) plot(t,Xs_2)axis([-0.15 0.15 -0.6 1]); title('f0=200低通等效正交分量') subplot(224) plot(t,X_2_enve)hilbert 变换后信号左移100的频谱f0=100低通等效同相分量f0=100低通等效正交分量f0=100低通等效包络axis([-0.15 0.15 0 1.5]); title('f0=200低通等效包络')运行结果:hilbert 变换后信号左移200的频谱f0=200低通等效同相分量f0=200低通等效正交分量f0=200低通等效包络。
六.窄带随机过程
(2)
ˆ x(t ) 的希尔伯特变换为 x(t )
ˆ H [ x(t )] x(t )
两次希尔伯特变换相当于连续两次 900 相移,结果 正好是 1800反相
9 2013-7-21
1.2 希尔伯特变换性质(3)
(3)
y(t ) v(t ) * x(t ) 的希尔伯特变换为
ˆ ˆ ˆ y (t ) v (t ) * x (t ) v (t ) * x (t )
1 x (t ) d
反变换
ˆ x( ) ˆ x(t ) H [ x(t )] d t ˆ 1 x(t ) d
1
1
ˆ 1 x(t ) d
5
2013-7-21
CZ1Z2 E (Z1 mZ1 )* (Z2 mZ2 )
15 2013-7-21
1.3 复随机过程
若X与Y分别是实随机变量,定义
Z (t ) X (t ) jY (t )
为复随机变量 均值: 方差:
mZ (t ) mX (t ) jmY (t )
DZ (t ) DX (t ) DY (t )
H ( )
一个典型的确定性窄带信号可表示为 窄带系统
白噪声
X (t )
Y (t )
x 系统示意图 或宽带噪声 ( t ) a ( t ) cos[ 0 t ( t )]
x(t ) y(t ) a(t ) ——幅度调制或包络调制信号
窄带噪声
0
窄带系统传递函数
(t ) ——相位调制信号
1.1 希尔伯特变换
窄带随机过程的两种表达式
窄带随机过程的两种表达式
随机过程是有关概率的一个抽象概念,它指的是一系列随机变化的事件序列,可以通过某种数学形式来描述。
窄带随机过程是指在一定的时间和频率内的随机过程,它是不断变换的快速信号序列,可以被压缩表示为一维或二维的图像。
窄带随机过程的表达式可以主要分为两类:
一、谱密度函数表示法
谱密度函数可以定义为:S(f),是指窄带随机过程中,每一种频率f处的功率谱密度,即根据频率f得到每一次过程的变化情况,它可以用来预测窄带随机过程所属的分布,如正态分布、均方差和偏差等。
举例来说,以正态分布为例,谱密度函数S(f)的表达式可以表示为:S(f) = σ^2 / (2πf^2)
其中,σ代表窄带随机过程的均方差,f为频率。
二、功率谱密度函数表示法
功率谱密度函数可以定义为:P(f),是指窄带随机过程中,随机变量的模方差的函数,它可以用来描述窄带随机过程的功率谱特性,估计窄带
随机信号的能量。
举例来说,功率谱密度函数P(f)的表达式可以表示为:
P(f) = 2πf^2σ^2
其中,σ代表函数的模方差,f为频率。
总的来说,窄带随机过程的两种表达式主要是谱密度函数表达法和功率谱密度函数表达法,它们各有特点,可以根据不同的窄带随机信号类型选择不同的表达方式,以达到最佳的谱性能效果。
随机过程2016_7
ˆ (t ) cos t b(t ) X (t )sin 0t X 0
称此为莱斯表达式。
0
(或0 )
单边带输出
0
一、 希尔伯特变换
4、实现
(2)相移法(难点在移相网络)
调制信号
V0 sin t
v1 =V0 sin t sin 0t 平衡 调幅器A
V0 sin 0 t
载波 振荡器 合并网络
v3
调制信号90度 移相网络
载波90度 移相网络
V0 cos 0 t
t
频率近似为 fc (b)
四、窄带随机过程的表示方式
1、准正弦振荡表达式
窄带随机过程还可以表示为三角函数形式:
X (t ) A(t ) cos(0t (t ))
式中,0 是窄带过程的中心频率或称载波频率。
四、窄带随机过程的表示方式
2、莱斯表达式
任何一个实平稳窄带随机过程 X (t )都可以表 示为: X (t ) a(t ) cos 0t b(t )sin 0t
平衡 v2 =V0 cos t cos 0t 调幅器B
二、 解析过程
1、定义
(t ) 给定任实随机过程X (t ) ,定义复随机过程X
(t ) X (t ) jX ˆ (t ) X
1 X ( ) ˆ X (t ) H [ X (t )] d t
一、 希尔伯特变换
3、性质
(4)设a(t ) 为低频信号,其傅里叶变换为 A( ) 且 A( ) 0( 2) ,则当0 2 有
窄带随机过程的模拟与分析
实验报告实验题目:窄带随机过程的模拟窄带随机过程的模拟一、实验目的(1)了解具有任意功率谱(低频)的正态随机过程的模拟; (2)了解窄带随机过程的模拟方法。
二、实验原理(1)任意功率谱的正态随机过程的模拟假定需要产生一个持续时间为d T 的高斯随机过程的一个样本()X t ,要求功率谱满足()X G f 。
为此,可以先将()X t 进行周期延拓,得到一个周期信号,然后对周期信号进行傅里叶级数展开。
即0201()()j f k k k dXt X e f T π∞=-∞==∑由于傅里叶级数是k X 的线性组合,所以,如果k X 是零均值的高斯随机变量,那么()X t 也是零均值高斯过程,如果{}()Xt 是两两正交的序列,则周期信号的功率谱为线谱。
即 2220()()(())kk k X k G f g f kf gE X δ∞=-∞=- =∑通过选择k g 就可以得到期望的功率谱。
假定()X G f 是带限的,即()0()X G f f B = >那么,{}2k g 只有有限项,共21M +项,与此对应的傅里叶级数也是21M +项。
因此,只需产生21M +个互相正交的零均值高斯随机变量{}11,,,,M M M M X X X X --+- 。
然后据此构造时域样本函数即可,有02()[]()Mj f k i t k k MX i X i t X e π∆=-=∆=∑其中t ∆为任意小的时间间隔。
(2)窄带随机过程的模拟对于窄带系统,当系统输入白噪声或宽带噪声时,输出可以表示为0()()cos[()]Y t A t t t ω=+Φ其中0ω为中心频率,()A t 和()t Φ是满变化的随机过程,对上式展开得00()()cos ()sin c s Y t A t t A t t ωω=-其中,()()cos (),()()sin ()c s A t A t t A t A t t =Φ=Φ,是慢变化的随机过程,分别称为窄带随机过程的同向分量和正交分量。
6.窄带随机过程的产生 - 随机信号分析实验报告
计算机与信息工程学院综合性实验报告一、实验目的1、基于随机过程的莱斯表达式产生窄带随机过程。
2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、概率密度函数、相关函数及功率谱密度等。
3、掌握窄带随机过程的分析方法。
二、实验仪器或设备1、一台计算机2、MATLAB r2013a 三、实验内容及实验原理基于随机过程的莱斯表达式00()()cos ()sin y t a t t b t t ωω=- (3.1)实验过程框图如下:理想低通滤波器如图所示:图1 理想低通滤波器()20AH ∆ω⎧ω≤⎪ω=⎨⎪⎩其它(3.2) 设白噪声的物理谱0=X G N ω(),则系统输出的物理谱为 220=()=20Y X N AG H G ∆ω⎧0≤ω≤⎪ωωω⎨⎪⎩()()其它(3.3) 输出的自相关函数为:01()()cos 2Y Y R G d τωωτωπ∞=⎰ /221cos 2N A d ωωτωπ∆=⎰ (3.4) 20sin 242N A ωτωωτπ∆∆=⋅∆ 可知输出的自相关函数()Y R τ是一个振荡函数。
计算高斯白噪声x(t)、限带白噪声()a t 、()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密度图形。
四、MATLAB 实验程序function random(p,R,C) %产生一个p 个点的随机过程%--------------------------高斯窄带随机过程代码--------------------------% n=1:p;w=linspace(-pi,pi,p); wn=1/2*pi*R*C;[b,a]=butter(1,wn,'low'); %产生低通滤波器Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器y_at=at.*cos(w.*n); %产生随机过程a(t)y_bt=at.*sin(w.*n); %产生随机过程b(t)yt=y_at-y_bt; %产生一个p个点的高斯窄带随机过程subplot(211)plot(yt)title('高斯窄带随机过程y(t)')subplot(212)pdf_ft=ksdensity(yt) ;plot(pdf_ft)title('y(t)的概率密度图')disp('均值如下')E_Xt=mean(y_at)E_at=mean(y_at)E_bt=mean(y_bt)E_ft=mean(yt)%-----------------------自相关函数代码如下--------------------------% figure(2)R_Xt=xcorr(Xt); %高斯白噪声X(t)的自相关函数R_at=xcorr(at); %限带白噪声的自相关函数R_y_at=xcorr(y_at); %随机过程a(t).coswt的自相关函数R_y_bt=xcorr(y_bt); %随机过程b(t).coswt的自相关函数R_ft=xcorr(yt);subplot(2,2,1);plot(R_Xt);title('高斯白噪声的自相关函数R_Xt'); %并绘制图形subplot(2,2,2)plot(R_at);title('限带白噪声的自相关函数R_a_bx'); %并绘制图形subplot(2,2,3)plot(R_y_bt);title('随机过程b(t)的自相关函数R_y_bt');subplot(2,2,4)plot(R_ft);title('高斯窄带随机过程y(t)的自相关函数R_yt');%------------------------功率谱密度代码如下---------------------------% figure(3)subplot(1,2,1)periodogram(Xt);title('高斯白噪声功率谱密度S_Xt');subplot(1,2,2)periodogram(at);title('限带白噪声功率谱密度S_a_bt');figure(4)subplot(3,1,1)periodogram(y_at);title('随机过程a(t).coswt概率密度概率密度S_y_at');subplot(3,1,2)periodogram(y_bt);title('随机过程b(t).sinwt功率谱密度S_y_bt');subplot(3,1,3);periodogram(yt);title('高斯窄带随机过程y(t)的功率谱密度S_yt');五、实验结果将上述random 函数放在Path 中后,在Commaod Window 中输入:random(1000,10,0.001)时,输出结果如下:01002003004005006007008009001000-0.50.5高斯窄带随机过程y(t)0102030405060708090100246y(t)的概率密度图0500100015002000-50005001000高斯白噪声的自相关函数R X t 0500100015002000-101020限带白噪声的自相关函数R ab x 0500100015002000-50510随机过程b(t)的自相关函数R yb t 0500100015002000-101020高斯窄带随机过程y(t)的自相关函数R y t00.51-40-30-20-10010Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )高斯白噪声功率谱密度S X t 00.51-80-60-40-200Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )限带白噪声功率谱密度S ab t0.10.20.30.40.50.60.70.80.91-80-60-40-200Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )随机过程a(t).coswt 概率密度概率密度S ya t00.10.20.30.40.50.60.70.80.91-60-40-200Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )随机过程b(t).sinwt 功率谱密度S yb t0.10.20.30.40.50.60.70.80.91-50-40-30-20-10Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )高斯窄带随机过程y(t)的功率谱密度S y t在Commaod Window 中输出的结果如下:E_Xt = 0.0020 E_at= 0.0020 E_bt= -0.0020 E_ft = 0.0040六、实验结果分析:1、由于高斯白噪声Xt是标准正态的,所以均值趋近于零,而at,bt是由Xt通过一个线性系统(低通滤波器)得到的,所以输出均值不变,仍为零,从程序运行结果可以看出,Xt,at,bt均值都趋近于零。
窄带随机过程
0 为高频载波。
窄带随机过程----- 若一个随机过程的功率谱密度,只分布在高频载波
ω0 附近的一个较窄的频率范围∆ω内,且满足ω0>>∆ω 时,则称该过程为窄带随机过程。记为:Z( t ) 。
例:图6.1为以窄带随机过程的功率谱密度函数
GZ(ω)
0
0
0
0
问题: 对应于功率谱密度GZ (ω)的窄带随机过程Z(t)的表达 式为何?即如何 Gz ( ) Z(t ) 。
t t
称为Hilbert变换。
Hilbert 变换与反变换:
sˆ(t) H[s(t)] 1 s( ) d
t
s(t) H 1[sˆ(t)] 1 sˆ( ) d sˆ(t) * 1
t
1
全通滤
| H( )|
波器
H ( )
0
90
1
0
f
0
f
0
90
表达式(二): Z(t) X (t)cos 0t Y (t)sin0t
其中:
X (t ) B(t )cos (t ) Y (t ) B(t )sin(t )
B(t ) X 2 (t ) Y 2 (t ), tan (t) Y (t) / X (t)
由于 cos 0t 与sin0t 正交,故称 X( t )-----Z( t )的同相分量, Y( t )-----Z( t )的正交分量。
窄带随机过程的定义 解析信号与希尔伯特变换 窄带随机过程的性质 窄带高斯随机过程Z(t)的高斯分布 余弦波加窄带高斯过程
§6.1 窄带随机过程的定义
窄带系统---------很多无线电系统的通频带 是比较窄的,
它们远小于其中心频率 ,0 这种系统只允许输入信号靠近
窄带随机过程ppt课件
表达式(二): Z(t) X (t)cos 0t Y (t)sin0t
其中:
X (t ) B(t )cos (t ) Y (t ) B(t )sin(t )
B(t ) X 2 (t ) Y 2 (t ), tan (t) Y (t) / X (t)
由于 cos 0t 与 sin0t正交,故称 X( t )-----Z( t )的同相分量, Y( t )-----Z( t )的正交分量。
Fourier 变换
S ()
时域复信号。
问题:如何由给定的时域实信号构造对应的时域复信号?
10
2.解析信号的构造
对给定的时域实信号s(t),设构造的时域复信号为
z(t) s(t) jsˆ(t)
其中,sˆ(t ) 为一由s(t)构造的信号,其构造方法可为,
s( t )
h( t )
ˆs( t )
即, z(t ) s(t ) js(t ) h(t)
引入表达式 2 的目的是将Z( t )分解成两个相互正交的分量,
以便于分别分析。 6
表达式 1 和表达式 2 两者间的几何关系: 表达式1:Z(t) B(t)cos[0t (t)], B(t) 0 表达式2:Z(t ) X (t )cos 0t Y (t )sin0t
B( t ) Y(t )
令 0
RZ (0) RX (0) RY (0)
即: X(t),Y(t),Z(t) 的平均功率相同
∵ 前面假设窄带平稳随机过程的均值为零, ∴
2 Z
2 X
2 Y
24
性质性质4证明:
Z (t) X (t) cos0t Y (t) sin 0t Z (t) X (t) sin 0t Y (t) cos0t
6.窄带与正弦波加窄带随机过程
于是, 由式(3.5 - 9)及式(3.5 - 10)得到
Rsc(0)=Rcs(0)=0
(3.5 - 15)
于是,由式(3.5 - 9)及式(3.5 - 10)得到
Rξ(0)=Rc(0)=Rs(0)
(3.5 - 16)
即σ2ξ=σ2c=σ2s
(3.5 - 17)
பைடு நூலகம்
这表明ξ(t)、ξc(t)和ξs(t)具有相同的平均功率或方差(因
3.5 窄带随机过程
•窄带过程: 随机过程通过以fc为中心频率的窄带系统的输出. •窄带系统: 是指其通带宽度Δf<<fc,且fc远离零频率的系统。 •窄带随机过程 实际中,大多数通信系统都是窄带型的,通 过窄带系统的信号或噪声必是窄带的,如果这时的信号或噪 声又是随机的,则称它们为窄带随机过程. •窄带噪声的波形:
再取使cosωct=0的所有t
(3.5 - 9)
Rξ(τ)=Rs(τ)cosωcτ+Rsc(τ)sinωcτ (3.5 - 10)
其中应有
Rs(t, t+τ)=Rs(τ) Rsc(t, t+τ)=Rsc(τ)
由以上的数学期望和自相关函数分析可知, 如果窄带过 程ξ(t)是平稳的,则ξc(t)与ξs(t)也必将是平稳的。
由式(3.5 - 1)至(3.5 - 4)看出,ξ(t)的统计特性可由aξ(t), φξ(t)或ξc(t),ξs(t))的统计特性确定。反之,如果已知ξ(t)的统计 特性则可确定aξ(t),φξ(t)以及ξc(t),ξs(t)的统计特性。
3.5.1 窄带过程的同相和正交分量的统计特性
设窄带过程ξ(t)是平稳高斯窄带过程,且均值为零, 方差 为σ2。下面将证明它的同相分量ξc(t)和正交分量ξs(t)也是零均 值的平稳高斯过程,而且与ξ(t)具有相同的方差。
窄带随机过程2
信息与通信工程学院 叶方
Review
希尔伯特变换 实信号、复信号、解析信号 解析过程及其性质
例题解析
设低频信号a(t)的频谱为:
A(ω ), A(ω ) = 0,
证明当ω 0〉 ω 2时, ∆
| ) cos ω0t ] = a (t ) sin ω0t H [a (t ) sin ω0t ] = − a(t ) cos ω0t
S ab (ω ) = − jLP[ S X (ω + ω0 ) − S X (ω − ω0 )]
S a (ω ) = Sb (ω ) = LOWPASS [ S X (ω + ω0 ) + S X (ω − ω0 )]
准正弦表示
X (t ) = A(t ) cos[ω0t + ϕ (t )]
= A(t ) cosϕ (t ) cosω0t − A(t ) sin ϕ (t ) sin ω0t
= a (t ) cos ω0t − b(t ) sin ω0t
其中:
a(t ) = A(t ) cos ϕ (t )
b (t ) = A(t ) sin ϕ (t )
A(t ) = a 2 (t ) + b 2 (t )
ϕ (t ) = tg
−1
b (t ) a (t )
偶函数的希尔伯特变换是奇函数 奇函数的希尔伯特变换是偶函数
窄带随机过程的定义
一个实平稳随机过程 X (t ),若它的功率谱密度 S x (ω )具有下述性质
S x (ω ) ω0 − ωc ≤| ω |≤ ω0 + ωc S x (ω ) = 其它 0
而且带宽 ∆ω = 2ωc 满足 ∆ω << ω 0 ,则称此过程 为窄带平稳随机过程 窄带平稳随机过程。 窄带平稳随机过程
第7章 窄带随机过程
Z t X t sin 0t Y t cos 0t X t Z t cos 0t Z t sin 0t
Y t Z t cos 0t Z t sin 0t
Hibert变换Matlab函数
窄带随机过程的物理模型
Ui t
dt
幅度
Ui
t
U o t AU i sin 0t
振荡叠加
Z t B t cos t
U2
2
相位
U
1
U1
t 0t t
Z t B t cos 0t t
1 s t 2
S e jt d
s* t s t S * S
1 s t Re s t , s t 2
0
2S e jt d
s t 称为实信号s(t)的解析信号
0
内,并满足
0
随机过程通过以fc为中心频率的窄带系统的输出,即是窄
带过程。所谓窄带系统,是指其通带宽度Δf<<fc ,且fc 远离零
频率的系统。实际中,大多数通信系统都是窄带型的,通过窄 带系统的信号或噪声必是窄带的,如果这时的信号或噪声又是 随机的,则称它们为窄带随机过程。如用示波器观察一个实现 的波形,它是一个频率近似为fc,包络和相位随机缓变的正弦
B t X 2 t Y 2 t tan t Y t X t
Y t
Z t
t
X t
B t
窄带平稳随机过程
❖ 其包络和相位独立。
余弦波加窄带高斯平稳过程
❖ 形式
x t Acosct n t Acosct nc t cosct ns t sin ct
❖ 包络
R t A nc t 2 ns2 t
莱斯分布
p
r
r
2
exp
r2
正交且功率相同。
白噪声
❖ 定义
凡是功率谱密度在整个频带内均匀分布的噪声, 称为白噪声。
P() n0
2 R( ) n0 ( )
2
窄带平稳高斯过程
❖ 高斯白噪声经过带通系统
n t nc t cosct ns tsinct
E
n
t 2
E
nc
t 2
E
ns
t 2
2
nc(t),ns(t)正交
窄带平稳高斯过程(零均值)
t
arctg
ns nc
t t
p 1
2
证明
因为nc(t),ns(t)是正交的均值为0,方差为 的高斯随机变量2,因此它们独立
(窄带高斯过程的性质),则
令
p
nc ,
ns
1
2
2
exp
nc2
2
ns2
2
则 r nc2 ns2 ,
arctg ns
nc
nc r cos , ns r sin
I0
x
2
0
1
2
exp x
cos
d
p
0
p
r,
dr
0
r
2
2
exp
r
第7章 窄带随机过程
h(t ) 1/ t
| H ( ) |
2 ( ) 2
90
0 0
H ( ) 的相移
1
0
0
H () 1
90
2
解析信号(用信号的希尔伯特变换构造解析信号)
• 由实信号 x(t ) 作为复信号 z(t ) 的实部, x(t ) 的希尔伯特变 换作为复信号 z(t ) 的虚部,即
H () 1
/ 2 0 ( ) /2 0
相频特性为:
正 交 滤 波 器
1 希尔伯特变换 希尔伯特变换相当于一个正交滤波器
1 ˆ (t ) x(t ) * x t
H ( )
+j 0 -j
j 0 H ( ) j 0
什么叫窄带?当信号的带宽远小于载波频率时, 则该信号称为窄带信号,如通信系统中的调幅信号 和调频信号。正弦信号或余弦信号为单频信号(谱线), 是最窄的一种窄带信号,实际上它的带宽等于 0 , 而扩频信号则为宽带信号。这些概念对于理解 窄带随机过程是很重要的。
窄带随机过程
高斯白噪声是一种典型的随机过程,它的概率密度函数为正 态分布(又称高斯分布) ,它的功率谱在整个频率范围内为常数, 故称之为“白” 。当它通过一个窄带滤波器后,就形成了一种窄带 高斯噪声, 它是一种典型的窄带随机过程, 如图所示。 图中 ni (t ) 为 输入高斯白噪声, n0 (t ) 为输出窄带高斯噪声,NBPF 为窄带滤波 器,根据前面随机信号通过线性系统的结论,得输出窄带高斯噪 声的功率谱及窄带随机过程的时域波形如下页图所示。
5
1. 窄带随机过程的定义
一个实平稳随机过程X(t),若它的功率谱密度:
窄带随机过程
一. 非线性变换系统信噪比的计算
1、同步检波器
s(t)+n’(t)
s(t)+n (t) d(t)
窄带中放
低通滤波器
sD(t)
cos2fct 同步振荡器
Gn'
f
1 2
N0
s(t) a(t) cos 2fct
SNRo
a2 t
f Nc
2 SNRI
一. 非线性变换系统信噪比的计算
2、包络检波器
s(t)+n(t)
2、窄带随机过程的准正弦振荡表示
任何一个实平稳窄带随机过程X(t)都可以表示为:
X (t) A(t) cos[0t (t)]
其中 A(t), (t) 都是慢变化的随机过程。
莱斯(Rice)表示: X (t) AC (t) cos0t AS (t) sin 0t
AC (t) A(t) cos (t) 同相分量 AS (t) A(t) sin (t) 正交分量
H () 2
2
1
0
0
X (t)
A
B
带通滤波器
包络检波器
N (t )
Hale Waihona Puke H () 2 21
0
0
RY ( ) RX ( ) RNC ( ), GY ( ) GX ( ) GNC ( )
GNC () | H () |2
GN () | H () |2
N0 2
N0 2
1
1
|
| 0
0,
,
0
5.1 希尔伯特变换 5.2 窄带随机过程的统计特性 5.3 窄带正态随机过程包络和相位的分布 5.4 信号处理实例—通信系统的抗噪性能分析
4.3 窄带随机过程的基本特点及解析表示
RAC AS RAS AC 0
即: AC t 与
S AC AS S ASA 0
C
AS t 处处正交
结论:
X(t)宽平稳,期望为0的实窄带随机过程, Ac(t),As(t) 低频过程
性质: (1)Ac(t),As(t) 期望为0,低频、平稳过程,且 联合平稳 (2)自相关函数,功率谱密度相同
RAc () RAs () S Ac () S As ()
(3)Ac(t),As(t)与X(t)平均功率同,方差同
(4)Ac(t),As(t) 互相关函数为奇函数
互谱密度相反
(5)同一时刻Ac(t),As(t)正交
(6)若X(t)单边功率谱关于ω0对偶,则两低频Ac(t),As(t) 过程始终正交(互谱密度,互相关函数横为0)
直接得到困难
X (t )
A(t ) (t )
AC (t ) AS (t )
展开成另一种表达形式(莱斯表示式):
X t A t cos 0 t t
A t cos t cos 0t A t sin t sin 0t
1.均值:零均值
ˆ t sin t 0 E A t E X t cos t X 0 0 C
ˆ t cos t 0 E A t E X t sin t X 0 0 S
4.3.2 平稳窄带随机过程的特点
这节讨论的X(t)是任意的宽平稳、数学期望为零的 实窄带随机过程。
对窄带过程取希尔伯特变换
X t AC t cos 0 t AS t sin 0 t ˆ X ( t ) AC t sin 0 t AS t cos 0 t
5.5窄带随机过程的莱斯表示
随机信号分析目录CONTENTSCONTENTS窄带随机过程的定义窄带随机过程的莱斯表示窄带随机过程的莱斯表示证明小结⚫定义:一个实平稳随机过程X(t),若它的功率谱密度具有下述性质00() ()0 X c c X S S ωωωωωωω⎧−≤≤+⎪=⎨⎪⎩其它且带宽,满足则称此随机过程为窄带平稳随机过程,以下简称窄带随机过程。
2c ωω∆=0ωω∆<<窄带随机过程的功率谱密度图)(ωX S O ωω∆ω∆000 c c ωωωωω−+000 - -c c ωωωωω−−+窄带随机过程的一个样本函数缓慢变化的包络[B(t )]频率近似为ω0有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)窄带随机过程的莱斯表示⚫窄带随机过程的莱斯表示式:其中:00ˆ()()cos ()sin a t X t t X t t ωω=+00ˆ()()sin ()cos b t X t t X t t ωω=−+将X(t)表示成解析过程:0000ˆˆ()cos ()sin ()sin ()cos X t t X t t j X t t X t t ωωωω⎡⎤⎡⎤=++−+⎣⎦⎣⎦ˆ()()()X t X t jXt =+[]000ˆ()()()cos sin j t X t e X t jX t t j t ωωω−⎡⎤=+−⎣⎦0()()()j tX t e a t jb t ω−=+证明:()a t =()b t ==+ωX t a t jb t e j t()()()0][=−++ωωωωa t t b t t j a t t b t t ()sin ()cos ()sin ()cos 0000][][=−ωω()()sin ()cos 00X t a t t b t t =+ωωa t X t t X t t ()()cos ()sin ˆ00=−+ωωb t X t t X t t ()()sin ()cos ˆ00取实部:=X t ()=Xt ()ˆ窄带随机过程的莱斯表示有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)窄带随机过程的定义:一个是平稳随机过程X(t),若它的功率谱密度具有下述性质00() ()0 X c c X S S ωωωωωωω⎧−≤≤+⎪=⎨⎪⎩其它且带宽,满足则称其为窄带随机过程。
窄带随机过程
由Pξ (ω ) R(τ )
因为R(τ )在τ = 0才有值,所以白噪声只与τ = 0相关
(三)
∴ R(τ ) =
宽 带 过 程
n0 δ (τ ) 2
2.带限白噪声 定义: 白噪声限制于(-f0,f0)之内
白噪声 n0/2 n0/2
R(τ ) = f 0 n0 S a (ω 0τ )
FT
1 H [ f (t )]= f (t ) πt
H [a (t )Cosω c t ]
j ω ←→ Sgn [A(ω ω c ) + A(ω + ω c )] 2 2π
FT
1 jA(ω + ω c ) ω < 0 X H ( jω ) = 2 1 2 jA(ω ω c ) ω > 0
X(w)
△f
0
fc
f
1 xH (t ) = F [X H ( jω )] = 2π
1
{∫
∞ j 0 2
A(ω ω c )e dω + ∫
jωt
j ∞ 2
0
A(ω + ω c )e jωt dω
}
因为是窄带信号,假设a(t)带宽为(-W,W)
ω c +W j ω c +W j 1 j ωt = A(ω ω c )e dω + ∫ A(ω + ω c )e jωt dω ω c W 2 2π ∫ω c W 2 分别令ω ' = ω ω c;ω ' = ω + ω c
R(τ)
带限白噪声
Pξ(w) n0/2
1/2f0
-f0
f0
r (t ) = ACos (ω c t + θ ) + n(t )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理与电子工程学院
Page 4
窄带随机过程的一般概念与预备知识
一、正弦型信号的复数表示方法
简单的正弦型信号可以表示为
s(t ) a cos(0t ) a cos (t )
其中 (t ) 0t , a、、0都是实常数。
很明显,s(t)是t的实值函数,称s(t)为实信号。
目录
窄带随机过程的一般概念与预备知识
希尔伯特变换 窄带随机过程的性质 窄带高斯随机过程的包络和相位的概率分布 余弦信号与窄带高斯过程之和的概率分布
Sichuan Normal University
物理与电子工程学院
窄带随机过程的一般概念与预备知识
一个平稳随机过程,若它的功率谱密度在频率 轴的某个区域之外为零,或者说,它的功率谱带宽 为有限值,那么,便称它为限带随机过程,简称限 带过程。 在限带过程中,根据其功率谱分布区域的不同, 分为低通过程和带通过程。若平稳随机过程X(t)其功 率谱密度 S X 具有以下特点
ˆ(t ) H s(t ) ˆ(t )是s(t)的希尔伯特变换,即 s 其虚部 s ˆ(t ) 给出的是一种非常重要的复信 (3)式 s (t ) s(t ) js 号的表示形式。通常把它称为s(t)的解析信号或s(t)的预包 络。
ˆ(t ) s (t ) s(t ) js
窄带随机过程的一般概念与预备知识
其中 sc t A(t ) cos t
ss t A(t ) sin t t 都是低频限带信号。可见, sc t 和 ss t 由于 A(t ) 、 也都是 低频限带信号,且sc t 与ss t 彼此正交。
s t ae
或
s t ae
ae e
j0t
j a ae 式中 称之为复包络。
比较以上两式可得,
s t Re s t
Sichuan Normal University
物理与电子工程学院
Page 6
窄带随机过程的一般概念与预备知识
将复指数函数
A 则
1 2
jt X e d 0
Sichuan Normal University
物理与电子工程学院
Page 9
窄带随机过程的一般概念与预备知识
s(t ) A A 2Re A Re 2 A
现在假定我们已经找到一个复信号 s (t ),它 的频谱 X () 满足
进一步得出s ˆ(t )
s d t
ˆ(t )和它的实部(即原来的 上式给出了解析信号 s (t )的虚部 s 实信号)s(t)之间的关系式,把它称为希尔伯特(Hilbert) 变换,记作
ˆ(t ) H s(t ) s
Sichuan Normal University
Sichuan Normal University 物理与电子工程学院 Page 17
A( 0 )
窄带随机过程的一般概念与预备知识
下面我们再来求复指数函数se (t )的频谱 X e 与原来实信 号s(t)的频谱 X 之间的关系:
A( 0 ) 2 X A ( 0 )
Sichuan Normal University 物理与电子工程学院 Page 3
窄带随机过程的一般概念与预备知识
S X
0 c
0
0 c
0
0 c
0
0 c
若在上式中,c 0 则称X(t)为高频窄 带随机过程,简称窄带随机过程。
Sichuan Normal University
物理与电子工程学院
Page 11
归纳以上的讨论,可以得出几点结论: (1)对应于任何实信号s(t),都可以找到一个同时 1.s (t ) Re s (t )
窄带随机过程的一般概念与预备知识
2 X , 0 2. X ( ) 0, 0 两个条件的复信号s (t ) 。 (2)可将此复信号表示成解析表达式
X () 2 X U
又 s (t ) X () 从而 s(t ) Re s (t )
Sichuan Normal University
物理与电子工程学院
Page 10
窄带随机过程的一般概念与预备知识
解析信号
ˆ(t ) s (t ) s(t ) js
1
A(t )e
j t
式中 j t 通常,将A(t ) 称为的复包络;将 e 0 称为复载频。
A(t ) A(t )e j t
e j0t A(t )e j0t
A(t ) A(t ) cos t jA(t )sin t sc t jss t 可见,复包络 A(t ) 也是低频限带信号。
S X , c S X 0, c
则称X(t)为低通过程。
Sichuan Normal University
物理与电子工程学院
Page 2
窄带随机过程的一般概念与预备知识
S X
c
0
c
若X(t)的功率谱密度满足 S X , 0 c 0 c S X 0, 其它 则称X(t)为带通过程。
1.s (t ) Re s (t ) 2 X , 0 2. X ( ) 0, 0
式中, X () 是该复信号 s (t ) 的频谱。
Sichuan Normal University 物理与电子工程学院 Page 8
窄带随机过程的一般概念与预备知识
Sichuan Normal University
物理与电子工程学院
Page 12
三、高频窄带信号的复数表示方法 所谓高频窄带信号(或简称窄带信号)是指信号的频谱 限制在载波频率 0附近的一个频率范围内,而且此频带范 围远小于载波频率。 常将窄带信号表示为 s (t ) A(t ) cos 0t t 展开可以得到 s(t ) sc t cos 0t ss t sin 0t
Sichuan Normal University
物理与电子工程学院
Page 7
窄带随机过程的一般概念与预备知识
二、任意信号的复数表示方法
设s(t)是任意实信号,具有频谱 X ,根据前面的
讨论,任何实信号都具有双边带的频谱。为了简化分 析,我们想寻找一种复信号 s (t ) ,它同时满足
ˆ t x
1
x t
d
1
x t
Page 20
d
Sichuan Normal University
物理与电子工程学院
希尔伯特变换
下面给出希尔伯特变换的两个重要性质: (1)希尔伯特变换相当于一个正交滤波器。
1 ˆ (t ) x(t ) x t
所示。
X
1 1 0 0 0 2 2
0
1 1 0 0 0 2 2
窄带信号频谱举例
Sichuan Normal University
物理与电子工程学院
Page 14
窄带随机过程的一般概念与预备知识
X H
0
0 0 0
s (t )
0 1 jt jt X e d X e d 2 0
X e jt d
利用 X X
1 jt jt s(t ) X e d X e d 2 0 0 1 jt A X e d 令 2 0
Sichuan Normal University
物理与电子工程学院
Page 5
窄带随机过程的一般概念与预备知识
对于式 s(t ) a cos(0t ) a cos (t ) 的正弦信号来说, 一种最常用的复数表示形式是复指数函数。定义复指数 函数 s t 为 j t j0t j
Re se t s (t )
即,复指数函数的实部就是窄
带信号s(t)。
Sichuan Normal University 物理与电子工程学院 Page 16
窄带随机过程的一般概念与预备知识
下面再来求 se (t )的频谱 X e 。对下式两端作傅里叶变换,
A(t ) A(t )e j0t
并利用傅里叶变换的相乘性质及 e j0t 0 可得 X A( )
e 0
A( ') ' 0 d '
可见,X e 具有单边带频谱。
x(t )
1 h(t)= t H ( ) j sgn( )
ˆ (t ) x
希尔伯特变换等效为90°移相的线性滤波器
Sichuan Normal University
物理与电子工程学院
Sichuan Normal University
物理与电子工程学院
Page 13
窄带随机过程的一般概念与预备知识
1. 窄带信号的复解析表示 若s(t)为窄带信号,其振幅频谱 X 如下图所示,定义 窄带信号的解析信号 sH t 为
ˆ(t ) sH t s(t ) js ˆ(t ) H s(t ) 。从而 sH t 的振幅频谱 X H 如下页图 式中,s
Sichuan Normal University 物理与电子工程学院 Page 18