活性污泥法曝气量有关计算(仅供参考)

合集下载

好氧池曝气量的计算

好氧池曝气量的计算

好氧池曝气量的计算好氧池是利用活性污泥法进行污水处理的构筑物。

池内提供一定污水停留时间,满足好氧微生物所需要的氧量以及污水与活性污泥充分接触的混合条件。

曝气是使空气与水强烈接触的一种手段,其目的在于将空气中的氧溶解于水中,或者将水中不需要的气体和挥发性物质放逐到空气中。

换言之,它是促进气体与液体之间物质交换的一种手段,另外,它还有其他一些重要作用,如混合和搅拌。

曝气量的计算有多种方法,主要有下列3种方法。

参数∶假设设计水量为416m3/h,COD为1200mg/L,BOD5=0.5×COD=600mg/L。

①方法一按气水比计算。

接触氧化池气水比为15∶1,则空气量为15×416=6240m³/h,合计空气量为6240/60=104m³/min。

②方法二∶按去除1kg BOD5需1.5kg O2计算。

每小时BOD5去除量为0.6kg/m³×416m³/h=249.6kg BOD5/h,需氧气249.6×1.5=374.4kg O2。

空气中氧的含量为0.233kg O2/kg空气,则每小时需空气量为374.4 kg O2÷0.233 O2/kg空气=1606.87kg空气。

空气的密度为1.293kg/m³,则空气体积为1606.87kg÷1.293kg/m³=1242.74m³。

微孔曝气头的氧利用率为20%,则每小时实际需空气量为1242.74m³÷0.2=6213.72m³,即103.56m³/min。

③方法三按曝气头数量计算。

根据停留时间算出池容,算出池子的面积,一般0.5m²一个曝气头,根据池子面积计算出共需曝气头数量为3150只,需气量为2m³/(h·只),则共需空气3150×2=6300m3/h=105m³/min。

关于曝气池容积的计算

关于曝气池容积的计算

关于曝气池容积的计算!曝气是活性污泥法处理废水的重要环节,曝气在曝气池中完成。

因此曝气池的设计在整个生化处理工艺设计中也就占到十分重要的地位。

曝气池容积的计算有两种算法,如下:1、有机负荷计算法计算曝气区容积,常用的是有机负荷计算法。

负荷有两种表示方法,即污泥负荷和容积负荷。

一般采用污泥负荷,计算过程如下:1)确定污泥负荷污泥负荷一般根据经验值确定,可以参照有关成熟经验中的数值。

表1:部分活性污泥工艺参数和特点2)确定所需要微生物的量微生物的量(XV)是由所要处理的有机物的总量和单位微生物在单位时间内处理有机物的能力(即污泥负荷)决定的。

根据污泥负荷的定义:Ns=Q(SO-Se)/(XV),可得公式如下:(XV)= Q(SO-Se)/ Ns式中:V——曝气池容积,m3Q——进水设计流量,m3/dSO——进水的BOD5浓度, mg/LSe——出水的BOD5浓度, mg/LX——混合液挥发性悬浮固体,(MLVSS)浓度 mg/LNs——污泥负荷,kgBOD5/(kgMLVSS.d).3)计算曝气池的有效池容确定了微生物的总量后,需要有污泥浓度的数值才能计算曝气池的容积。

污泥浓度根据所用工艺的污泥浓度的经验值选择,一般在3000—6000mg/L之间。

经过实验或其他方式确定了回流比、SVI值后也可以根据下式计算:X=Rrf106/SVI(1+R)式中:R——污泥回流比,%r——二次沉淀池中污泥综合系数,一般为1.2左右f——MLVSS/MLSS曝气池容积的计算公式如下:V=(VX)/X=Q(SO-Se)/(XNS)式中:Q——废水量,m3/dQ(SO-Se)——每天的有机基质降解量,kg/dV——曝气池有效容积,m34)确定曝气池的主要尺寸主要确定曝气池的个数、池深、长度以及曝气池的平面形式等。

按照每日的处理量来确定池体的个数,同时,由于工艺的不同,曝气池的式样和个数各不相同,因此在实际的设计中需要我们有现场的实际地形图和整体效果图来做依据,这样设计出来的池体才可以满足工艺处理需要,并且与周围的环境和谐一致。

污水处理厂的罗茨风机选型曝气量计算

污水处理厂的罗茨风机选型曝气量计算

污水处理厂的罗茨风机选型曝气量计算1. 前言污水处理厂是紧要的环保设施,它可以对市区的污水进行收集和处理,让人们生活在更干净、更卫生的环境中。

污水处理厂需要使用罗茨风机作为曝气器,将空气输入到活性污泥池中,在好氧条件下,细菌将有机物质分解为无机物质,达到去除污水中有害物质和净化水质的目的。

因此,罗茨风机是污水处理厂中至关紧要的设备。

在选型曝气量时需要进行确定的计算和考虑,本文将介绍罗茨风机选型和曝气量计算的方法。

2. 罗茨风机的选型2.1 罗茨风机的类型罗茨风机是一种容积式风机,由两个齿轮相互啮合,圆形运动,使容积渐渐增大和缩小,以吸入、压缩和排出空气。

依据离心机械原理,罗茨风机可分为有单级和双级两种类型。

单级罗茨风机以转子的离心力作为压缩空气的力,并输出相对较低的压缩气体。

双级罗茨风机在第一个转子的基础上,安装一个更小的、更高速的转子进行二次压缩,输出更高压缩空气。

污水处理厂中通常接受双级罗茨风机,由于在实际应用中,双级罗茨风机的效率更高,且通过电子掌控可以实现变频调整、节省能源。

2.2 罗茨风机的选型参数在选型罗茨风机时,需要考虑以下几个参数:•风量(Q):即曝气量,指每小时罗茨风机送进活性污泥池的空气量,通常计量单位为立方米/小时或立方米/分。

•压力(ΔP):指罗茨风机在作业状态下所能供应的最大压力差值,单位为千帕(kPa)。

•功率(P):指罗茨风机在作业状态下所需的电力功率,通常计量单位为千瓦(kW)。

•转速(n):指罗茨风机转子在一分钟内旋转的圈数,通常计量单位为每分钟转数(rpm)。

•效率(η):指罗茨风机在运转时所能将电能转化为机械能的百分比。

3. 污水处理厂罗茨风机曝气量计算方法3.1 活性污泥法活性污泥法是污水处理厂中最常见的处理方式之一、处理流程如下:<img src=。

如何计算污水处理所需要的曝气量

如何计算污水处理所需要的曝气量

如何计算污水处理所需要的曝气量如何计算污水处理所需要的曝气量1.引言在污水处理过程中,曝气是一项重要的步骤,用于提供足够的氧气以促进生物反应器中的微生物降解污水中的有机物质。

正确计算污水处理所需要的曝气量对于保证处理效果的稳定性和高效性至关重要。

本文将详细介绍如何计算污水处理所需要的曝气量。

2.曝气系统的基本原理曝气系统通常包括曝气装置和曝气设备。

曝气装置是将氧气传送到污水中的关键部件,常用的装置包括曝气槽、曝气管等。

曝气设备则是提供氧气的设备,常见的设备有机械式曝气机和气体分配系统。

曝气系统的基本原理是通过氧气传输到污水中,为微生物提供氧气以促进有机物的降解过程。

3.确定曝气需求确定曝气需求是计算污水处理所需要的曝气量的第一步。

曝气需求的计算通常考虑以下参数:- 污水的有机负荷:代表污水中有机物的含量,常用参数包括化学需氧量(COD)和生化需氧量(BOD);- 污水中微生物种类和数量:不同的微生物对氧气的需求不同,因此需要了解污水中主要的微生物种类和数量;- 温度和pH值:温度和pH值对微生物的活性和生长有影响,需要考虑其对曝气需求的影响;- 污水处理工艺和运行条件:不同的污水处理工艺对曝气需求有不同的要求,例如,活性污泥法和曝气滤池法的曝气需求不同。

根据上述参数,可以使用经验公式或软件模拟等方法来估算曝气需求。

4.曝气量的计算方法曝气量的计算涉及到氧气的传递系数、溶解氧的浓度和曝气面积等参数。

曝气量的计算公式如下:曝气量 = 氧气需求量 / (溶解氧浓度×氧气传递系数×曝气面积)其中,氧气需求量是根据曝气需求计算得出的数值,溶解氧浓度是根据水体温度、压力和pH值等参数计算得出的数值,氧气传递系数是根据曝气装置的设计和运行条件等参数计算得出的数值,曝气面积是曝气装置的有效面积。

5.监测和调整曝气量曝气量的正确监测和调整对于保持污水处理系统的稳定运行至关重要。

监测曝气量可以使用氧气传递速率仪等设备进行测量,根据测量结果对曝气量进行调整。

活性污泥工艺曝气量计算

活性污泥工艺曝气量计算
中含氮量(kg/d)。 So同公式(1)中LI,S。同公式(1)中Lch,Nt
同公式(1)中N.,Nke同公式(1)中N d、。 2006版规范公式较97版规范公式中考
虑到了反硝化回收的氧量,但仍未考虑污泥 内源呼吸消耗的氧量,致使需氧量计算结果 更加偏小,计算结果更加不合理。
3设计手册法 给水排水工程设计手册中对于曝气池需 氧量,有如下公式: AoR=a’QLr+b1VN’
4 三分法
活性污泥法的耗氧过程是很复杂的,耗
氧的因素有很多,BoD。的去除需耗氧,污泥
要进行内源呼吸,它本身要耗氧。而每天排放
的剩余污泥又并未耗氧,在需氧量计算时要
予以扣除。我国鳓镇污水处理厂污染物排放
标准》(GBl8918—2002)对氨氮的排放要求
很严,今后绝大多数的污水处理厂都需要考
虑氨氮的硝化处理或脱氮处理。故耗氧量的
(k902I/卜kgV污SS泥),自c=1身。4氧2 化率(1/d)一般
0.04~O.1 (4)曝气池的需氧量公式为: AoR=o。+ob+oc_O.001 aQ(S0-S。)一c
△xv+b【0.001 Q(Nk-N ke)一O.1 2△×v】 一O.62b【0.001 Q(NrNke.N。e)旬.1 2△xv】
计算尚应考虑氢氮氧化的需氧反应,反硝化
过程的产氧反应。
硝化反应:
NH4十+202+2HCo;_No一2H2C03+H妇
14
2×32


X=32×2/14=4.6
亦即每氧化1 mg氨氮为硝酸盐氮需耗
氧4.6mg。 反硝化反应:(以甲醇CH30H为有机碳
源)
N03_+1 D8CH30H+024H2Cor加旧56C5 H702N+t 1.68H20+HC03_

污水处理曝气量计算

污水处理曝气量计算

污水处理曝气量计算污水处理曝气量计算:方法、应用与优化引言污水处理是环境保护和水资源利用的重要环节,而曝气量计算则是污水处理工艺设计的基础之一。

准确计算曝气量可以优化污水处理过程,降低能耗,提高处理效率。

本文将详细介绍污水处理曝气量的定义、计算方法和实际应用,以期为相关领域的研究和实践提供有益的参考。

概述污水处理曝气量是指在污水处理过程中,为了满足好氧微生物对氧气的需求而需向曝气池中充入的空气量。

曝气量直接影响到污水处理的效果和能耗,因此合理计算曝气量对于优化污水处理工艺具有重要意义。

曝气量的计算需要综合考虑多种因素,包括污水体积、温度、气泡直径等。

前置知识在进行曝气量计算之前,我们需要了解污水处理工艺的相关知识。

污水处理一般分为预处理、生化处理和后处理三个阶段。

其中,生化处理是核心环节,主要通过微生物的作用将有机污染物转化为无害物质。

在生化处理阶段,曝气池是一个重要的设施,它为好氧微生物提供充足的氧气,确保有机污染物的有效降解。

计算公式曝气量计算公式如下:Q = 60SV(氧转移系数α)k(水温)其中,Q为曝气量(m³/h);S为污水悬浮物浓度(g/L);V为曝气池有效容积(m³);α为氧转移系数;k为温度修正系数。

实际应用曝气量计算在污水处理工程中具有广泛的应用。

在设计阶段,根据污水水质、处理量和工艺要求,通过计算曝气量来确定曝气设施的数量和规格,确保生化处理阶段的氧气供应。

在运行阶段,通过实测曝气池内的溶解氧浓度,结合溶解氧需求和曝气量计算,可以对曝气设施进行优化调整,提高污水处理效率。

此外,曝气量的计算还可以为污水处理过程中的能源消耗评估提供依据。

例如,某城市污水处理厂采用活性污泥法处理生活污水,设计日处理能力为10万吨。

根据水质检测数据,进水悬浮物浓度为300mg/L,溶解氧需求为3mg/L。

假设曝气池有效容积为10000m³,氧转移系数α为2%,水温为20℃,根据曝气量计算公式,可得到曝气量为105m ³/h。

活性污泥法过程设计计算

活性污泥法过程设计计算
存在,实际上推流和完全混合处理效果相近。若能克服上述缺点, 则推流比完全混合好。 • 完全混合抗冲击负荷的能力强。 • 根据进水负荷变化情况、曝气设备的选择、场地布置、设计者的 经验综合确定。 • 在可能条件下,曝气池的设计要既能按推流方式运行,也能按完 全混合方式运行,或者两种运行方式结合,增加运行灵活性。
• 例12-1 • (3)计算曝气池水力停留时间 • 停留时间:
H
20
§12-5 活性污泥法过程设计
• 例12-1 • (4) 计算每天排除的剩余活性污泥量 • ①按表观污泥产率计算:
• 系统排除的以挥发性悬浮固体计的干污泥量(12-67式)
• 计算总排泥量MLVSS/MLSS=80%:
H
21
§12-5 活性污泥法过程设计
• 一、曝气池容积设计计算 • 3. 池容积设计计算 • ②容积负荷法 • 容积负荷:单位容积曝气区单位时间内所能承受的BOD5
量,即:
• 曝气池容积:
• Q、 S0 已知,X、LS、LV 参考规范
H
6
§12-5 活性污泥法过程设计
• 一、曝气池容积设计计算 • 3. 池容积设计计算 • (2)污泥龄法
H
28
感谢下 载
H
29
• ④确定生物处理后要求的出水溶解性BOD5,即Se: • Se+7.5mg/L ≤ 20mg /L,Se ≤ 12.5mg/L
H
17
§12-5 活性污泥法过程设计
• 例12-1 • (2)计算曝气池的体积 • ①按污泥负荷计算 • 参考表12-1(p118),污泥负荷取
0.25kg(BOD5)/kg(MLSS)·d,按平均流量计算:
• 例12-1 • (4) 计算每天排除的剩余活性污泥量 • ② 按污泥泥龄计算(12-63式)

活性污泥法公式

活性污泥法公式

反应器最大体积和 分格化的反应器
UASB<2000m3 ; EGSB<500m3 ; AF<2000m3;接触工艺<5000m3。
多个反应器利于布水,便于维修。
配水孔口负荷、配水方式(一管一点、一管多孔、分支式)、三相分离器、管道设计、出水
收集设备、排泥设备(泥床上部、偶尔底部)、建筑材料、加热保温。
TA
=
24.Cs Ls .m.C A
Qs、Cs—进水量(m3/d)、BOD5(mg/L); CA—曝气池内MLSS浓度,mg/L; V—曝气池容积,m3; e—曝气时间比; n—周期数,周期/天; TA—个周期的曝气时间,h。 1/m—排出比; 注:充入比事实上和排出比差不多是同一概念,指的是每个周期进
接触时间/(Min) 沉淀速度/(mm/s)
剩余量/(mg/L) 备注
消毒《考试教材》P112、384
液氯
二氧化氯 臭氧
一级排放时:20-30
二级排放时:5-10
2~5
30
10~20
15
1-1.3
>0.5
0.4
高 pH>氯 >氯
NH2Cl
缺氧/好氧(ANO)工艺动力学计算公式《教材三》P250
项目

. 760 DA) P
Vmax = 4.6×104 ×CA−1.26 TD—排水时间,h
(MLSS≥ 3000mg/ L)
N—池的个数,个
r—一个周期的最大进水量变化比(变化系数)
ΔQ’—在沉淀和排水期中可接纳的污水量,m3; (1)为安全量留在高度方向时 (2)为安全量留在宽度方向时
OD—每小时的需氧量,kg/h; CSW—清水T1(℃)的氧饱和浓度,mg/L; CS—清水T2(℃)的氧饱和浓度,mg/L; T1—以曝气装置的性能为基点的清水温度,℃; T2—混合液水温,℃; DA—混合液的DO,mg/L; α—高负荷法取 0.83,低负荷法取 0.93; β—高负荷法取 0.95,低负荷法取 0.97; P—处理厂大气压,mmHg 绝对大气压。

活性污泥法的基本原理活性污泥法中污泥产率的计算及浓度测定

活性污泥法的基本原理活性污泥法中污泥产率的计算及浓度测定

活性污泥法的基本原理一.基本概念和工艺流程(一)基本概念1.活性污泥法:以活性污泥为主体的污水生物处理。

2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体(二)工艺原理1.曝气池:作用:降解有机物(BOD5)2.二沉池:作用:泥水分离。

3.曝气装置:作用于①充氧化②搅拌混合4.回流装置:作用:接种污泥5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气也内的微生物量平衡。

混合液:污水回流污泥和空气相互混合而形成的液体。

二.活性污泥形态和活性污泥微生物(一)形态:1、外观形态:颜色黄褐色,絮绒状2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。

③含水率>99%,C<1%固体物质。

④比重1.002-1.006,比水略大,可以泥水分离。

3.组成:有机物:{具有代谢功能,活性的微生物群体Ma{微生物内源代谢,自身氧化残留物Me{源污水挟入的难生物降解惰性有机物Mi无机物:全部有原污水挟入Mii(二)活性污泥微生物及其在活性污泥反应中作用1.细菌:占大多数,生殖速率高,世代时间性20-30分钟;2.真菌:丝状菌→污泥膨胀。

3.原生动物鞭毛虫,肉足虫和纤毛虫。

作用:捕食游离细菌,使水进一步净化。

活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。

☆原生动物作为活性污泥处理系统的指示性生物。

4.后生动物:(主要指轮虫)在活性污泥处理系统中很少出现。

作用:吞食原生动物,使水进一步净化。

存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。

(三)活性污泥微生物的增殖和活性污泥增长四个阶段:1.适应期(延迟期,调整期)特点:细菌总量不变,但有质的变化2.对数增殖期增殖旺盛期或等速增殖期)细菌总数迅速增加,增殖表速率最大,增殖速率大于衰亡速率。

3.减速增殖期(稳定期或平衡期)细菌总数达最大,增殖速率等于衰亡速率。

学委出品水污染工程复习,重点掌握+掌握

学委出品水污染工程复习,重点掌握+掌握

学委:重点掌握:P139 活性污泥法设计1.曝气池容积计算:(1)有机物负荷法 活性污泥负荷——Ls与曝气时间相当的平均进水量——Q曝气池进水BOD 值——So曝气池混合液污泥浓度——X曝气池容积——V V X S Q L S **0= X L S Q V S ··0=(2)泥龄法 活性污泥的产率系数——Y污泥泥龄——C θ内源代谢系数——Kd )1()(0c d Ce K X S S YQ V θθ+-=2.剩余污泥计算:(1)泥龄法 每天排出总固体量——X ∆ C VXX θ=∆(2)污泥产率系数法 每日增长的污泥量——X ∆产率系数——Y曝气池内挥发性悬浮固体总量——V VXV d e VX K Q S S Y X--=∆)(0 3.需氧量设计计算:(1)有机物降解需氧率和内源代谢需氧率 混合液需氧量——2O微生物氧化分解有机物需氧率——a`微生物内源代谢需氧率——b`XV b QS a O ``2+=(2)微生物对有机物的氧化需氧量 进水可生物降解COD ——bCODo出水可生物降解COD ——bCODe污泥氧当量系数——1.42()X bCOD bCOD Q O e ∆--=42.102P228 生物接触氧化法的工作原理和设计计算工作原理:池内设置填料,填料淹没在污水中,填料表面长满生物膜,污水与生物膜接触时,水中有机物被生物膜吸附,氧化分解,并转化为新的生物膜。

脱落的生物膜到了二沉池被去除。

空气通过在池底的布气设备进入水体随着气泡上升为微生物提供氧气。

设计计算:1.生物接触氧化池容积:()Ve L S S Q V -=0 填料容积负荷——Lv2.生物接触氧化池总面积和水池数0h VA = 1A A N =填料高度——h0 一般采用3.0米每座池子的面积——A1 小于等于25平方米3.水池深度3210h h h h h +++=超高——h1,0.5~0.6米填料上层水深——h2,0.4~0.5米填料到池底的高度——h3,0.5米4.有效停留时间QV t = 5.供气量和空气管道系统计算Q D D 0=每立方米污水需气量——D0,一般取15~20掌握:P1 污水性质与指标BOD :生化需氧量,水中有机物被好氧微生物分解时所需要的氧量COD :化学需氧量,用化学氧化剂氧化水中有机污染物消耗的氧化剂量固体物质:水中所有残渣的总和成为总固体(TS ),可分为溶解性固体(DS )和悬浮固体(SS ) 重金属:汞 镉 铅 铬 镍 等生物毒性显著的金属 以及一定毒害性的 锌 铜 钴 锡无机非金属有毒有害物:总砷 含硫化合物 氰化物P34 沉砂池的分类特点分类:1.平流式沉砂池 2.曝气沉砂池 3.旋流式沉砂池特点:①平流式沉砂池:截留无机颗粒效果较好,构造简单,流速不易控制,沉沙中有机物含量高,排沙需要洗砂处理。

活性污泥法的最佳曝气量

活性污泥法的最佳曝气量

并 减少
,

6

月 0 8 )
,
=
.
0 标 准状 况下需 要 1
35

0 马 力的 曝
2
所 需功 率
a

简单 的 说
,
对 于 某 一 给 定情 况
,
气器
,
则不得 不 变 为

6 马力(标 8

值 加 倍 时将 使 所 需 功 率 减半
,
反 之 亦然

准 系 列 3 0 马 力 ) 才能 满 足 现场 的 需 要
活 性 污泥 法 的 最 佳 曝 气 量
沈 阳 煤 矿 设计 院 活 性 污 泥 法 的 最重 要 参 数 之 一 就 是 空 气
王 德一 译
如 要 选 择满 足 所 需 的 设 备


,
须知 后 面 的
需 要量



它 是 确定 空 气 扩 散 系 统 中 鼓 风机 的

数 值是 为 在 标 准状 况 下 同 样 的 设 备 所 提 供
·
据称
,
用 于 处理
,

为 现场 情况下每马 力
N
;

h
·
转换 成 氧
h
生 活 污 水 的 良好 的 气 泡 扩 散 器 之 值 并 不 高
a
的磅 数
,
为标 准 状 况 下每 马 力
C:
转 换成
而 其 它 类 型 的 曝 气 装 置 通 常具 有 较高 的 a 值
同时
,
氧的 磅 数

浓 度;
T
C 为在 给定的温度与高度 s

活性污泥法的设计计算(共33张PPT)

活性污泥法的设计计算(共33张PPT)
稳态时,ds/dt = 0,而且 那么 代入

二、劳伦斯-麦卡蒂〔Lawrence -McCarty〕法
排除的剩余活性污泥量计算 dx/dt = yobs•(dS/dt)
所需的空气量计算
理论耗氧量=有机物氧化的耗氧量- 转化为剩余 污泥的有机体的有机物耗氧量
1/θc = Yds/dt - kd
所以
其三是碳水化合物过多会造成膨胀。
造成非丝状菌性污泥膨胀的原因
经研究,非丝状菌性膨胀污泥含有大量的外表附着水,细菌外面包有黏度 极高的粘性物质,这种粘性物质是有葡萄糖、甘露糖、阿拉伯糖、鼠李糖、 脱氧核糖等形成的多糖类。
非丝状菌性污泥膨胀主要发生在污水水温较低而污泥负荷太高时。此 时,细菌吸取了大量营养物,但代谢速度慢,就积贮起大量高粘性的多 糖类物质,使活性污泥的外表附着水大大增加,致使SVI升高,形成污 泥膨胀。 解决污泥膨胀的方法
概括起来就是预防和抑制。预防就要加强管理,及时监测水质、曝气池污泥沉降比、污泥 指数、溶解氧等,发现异常情况,及时采取措施。
污泥发生膨胀后,要针对发生膨胀的原因,采取相应的制止措施:
当进水浓度大和出水水质差时,应加强曝气提高供氧量,最好保持曝气池溶解氧 在2mg/L以上;
加大排泥量,提高进水浓度,促进微生物新陈代谢过程,以新污泥置换老污泥;
解决腐化的措施是:加大曝气量,以提高出水溶解氧含量;疏通堵塞,及时排泥
十一、序批式活性污泥法〔SBR法〕
9.6 活性污泥法系统的运行管理
一、活性污泥的培养与驯化
(一)活性污泥的培养 (二)活性污泥的驯化
二、活性污泥运行中常见的问题 (一)污泥膨胀
广义地把活性污泥的凝聚性和沉降性恶化,以及处理水混 浊的现象总称为活性污泥的膨胀。

活性污泥计算题

活性污泥计算题

1、普通活性污泥法处理系统废水量为11400m3/d,BOD5=180mg/L,曝气池容积V为3400m3,出水SS=20mg/L(出水所含的未沉淀的MLSS称为SS),曝气池内维持MLSS浓度为2500mg/L,剩余污泥排放量为155m3/d,其中含MLSS为8000mg/L。

求:曝气时间、BOD5容积负荷、F/M、污泥龄。

2、某造纸厂采用活性污泥法处理废水。

废水量24000m3/d,曝气池容积V为8000m3。

经初次沉淀,BOD5=300mg/L,曝气池对BOD5的去除率为90%,曝气池混合液悬浮固体浓度为4000mg/L,其中挥发性悬浮固体占75%。

(Y=0.76kgMLVSS/kgBOD5、Kd=0.016d-1、a=0.38kgO2/kgBOD5、b=0.092kgO2/kgMLVSS.d)求:F/M、q、Nv、每日剩余污泥量、每日需氧量和污泥龄。

3、某城市日排放量30000m3,进入生物池的BOD5=169mg/L,二级处理要求处理水BOD5为25mg/L,拟采用活性污泥处理系统。

(NS=0.3kgBOD5/kgMLSS.d,SVI=120ml/g,R=50%,r=1.2,f=0.75, Y=0.5kgMLVSS/kgBOD5、Kd=0.07d-1、a=0.5kgO2/kgBOD5,b=0.15kgO2/kgMLVSS.d)(1)计算确定曝气池体积;(2)计算剩余污泥量;(3)计算需氧量。

4、原始数据:Q=10000m3/d,BOD5=200mg/L,MLSS=3000mg/L,f=0.8,Y=0.5kgMLVSS/kgBOD5,K2=0.1L/mg.d,Kd=0.1d-1,SVI=96,处理出水为6mg/L。

采用完全混合活性污泥系统,要求确定(反应动力学参数都以MLVSS出现)(1)所需曝气池体积;(2)计算运行时的污泥龄;(3)确定合适的回流比。

5、:某废水量为21600m3/d,经一次沉淀后废水BOD5为250mg/L,要求出水BOD5在20mg/L 以下,水温20℃,试设计完全混合活性污泥系统。

活性污泥法例题

活性污泥法例题

然后,求出在不同条件下的Se值
例如 X = 2342mg / L 时
因为 N S = KS e 所以
Se
=
NS K
NS
=
QS0 - Se =
XV
QSo
- N S K
XV
=
10000200 -
NS 0.1
2342 950
解方程得:
NS=0.86 d-1
于是
Se
=
0.86 0.1
=
8.6mg
通过实验测定,污水实际充氧量仅为标准条件下脱氧清水充氧量的70%,
已知鼓风曝气机氧利用效率均为18%,问应采用哪种鼓风机。
解:求标准条件下,脱氧清水的氧转移量:
O2 = OS ×70% OS = 4 039/0.7 = 5 770 kg/d
求总的供氧量:
S = OS/EA=5 770/0.18 =32 056 kg/d 求总的供气量:
V
X
MLVSS=0.8MLSS
SVI
R
80
0.3
80
0.4
160
0.3
160
0.4
10 6 X R = SVI 0.8(mg / L)
12500×0.8=10000 12500×0.8=10000
6250×0.8=5000 6250×0.8=5000
X (mg / L)
2342 2897 1171 1448
a’=0.5KgO2/kgBOD5 ,b’=0.1KgO2/kgVSS.d; a=0.6KgVSS/kgBOD5 ,b=0.08d-1; 试求:(1)曝气池的水力停留时间; (2)曝气池的F/M值、容积去除负荷及污泥去除负荷; (3)剩余污泥的产量及体积; (4)污泥龄; (5)所需要的氧量;

曝气量的计算

曝气量的计算

曝气量的计算曝气量的计算有多种方法,我试着按各种方法算了一次,发现差异较大,现发上来,请大家评评,用哪种方法较准确.参数: 水量:46吨/小时, COD:1200mg/l, 无BOD数据,按BOD=0.5*COD=600mg/l计方法一:按气水比计算:接触氧化池15:1,则空气量为:15×46=690m3/h活性污泥池10:1,则空气量为:10×46=460 m3/h调节池5:1,则空气量为:5×46=230 m3/h合计空气量为:690+460+230=1380 m3/h=23 m3/min方法二:按去除1公斤BOD需1.5公斤O2计算每小时BOD去除量为0.6kg/m3×1100m3/d÷24=27.5kgBOD/h需氧气:27.5×1.5=41.25kgO2空气中氧的重量为:0.233kg O2/kg空气,则需空气量为:41.25 kgO2÷0.233 O2/kg空气=177.04 kg空气空气的密度为1.293 kg/m3则空气体积为:177.04kg÷1.293 kg/m3=136.92 m3微孔曝气头的氧利用率为20%,则实际需空气量为: 136.92 m3÷0.2=684.6m3=11.41m3/min方法三:按单位池面积曝气强度计算曝气强度一般为10-20 m3/ m2h , 取中间值, 曝气强度为15 m3/ m2h接触氧化池和活性污泥池面积共为:125.4 m2则空气量为:125.4×15=1881 m3/h=31.35 m3/min调节池曝气强度为3m3/ m2h,面积为120 m2则空气量为3×120=360 m3/h=6m3/min总共需要37.35 m3/min方法四:按曝气头数量计算根据停留时间算出池容,再计计算出共需曝气头350只,需气量为3 m3/h只,则共需空气350×3=1050 m3/h=17.5 m3/min再加上调节池的需气量6 m3/min,共需空气:23.5 m3/min----------------------------------------------------我认为最好最合理的计算方法是根据去除BOD来计算,再结合曝气头数来校核比较合理,汽水比能根据这样算吗?-----------------------------------------------------曝气量的计算有多种方法,我试着按各种方法算了一次,发现差异较大,现发上来,请大家评评,用哪种方法较准确.参数: 水量:46吨/小时, COD:1200mg/l, 无BOD数据,按BOD=0.5*COD=600mg/l计根据我的实践经验,简单地回答楼主:1、关于汽水比,毫无理论依据,纯粹是边干边摸索的经验之谈。

污水处理基本计算公式

污水处理基本计算公式

污水处理基本计算公式污水处理是现代社会中非常重要的环境保护工作之一。

为了有效地处理污水,我们需要掌握一些基本的计算公式。

本文将介绍污水处理中常用的几个基本计算公式,并深入探讨它们的原理和应用。

一、污水流量计算公式污水处理的第一步是确定污水流量。

正确计算流量是建立适当的处理设备和工艺的关键步骤。

污水流量的计算需要考虑一些因素,如人口数量、日均用水量、水的循环次数等。

1. 斯奈德公式斯奈德公式是一种常用的污水流量计算方法,公式如下:Q = K × A × P其中,Q表示污水流量 (m³/h),K是经验系数,通常取1.33 ~ 1.5,A是污水产生面积 (ha),P是单位面积日排放污染负荷 (kg/(ha·d))。

斯奈德公式适用于城市污水的估算,但在实际应用中还需要结合其他因素进行修正。

二、污水污染物浓度计算公式污水的污染物浓度是评估污水处理效果的重要指标。

下面是计算污水污染物浓度的两个常用公式:1. 平均浓度计算公式污水的平均浓度可以通过以下公式计算:C_avg = Q × C_in ÷ (Q + Q_w)其中,C_avg表示平均浓度 (mg/L),Q表示流入污水的流量 (m³/h),C_in表示进水污染物浓度 (mg/L),Q_w表示流出污水的流量 (m³/h)。

这个公式可以帮助我们了解进出水污染物浓度的变化情况,进而对处理效果进行评估。

2. 单位流量浓度计算公式单位流量浓度是指单位时间内流入或流出污水的污染物浓度。

单位流量浓度的计算公式如下:C_u = C × Q其中,C_u表示单位流量浓度 (mg/(L·h)),C表示污染物浓度 (mg/L),Q表示流量 (m³/h)。

这个公式可以用于计算污染物在不同流量条件下的浓度变化。

三、污水处理工艺计算公式污水处理涉及到多个环节和工艺,不同的工艺有不同的计算公式。

活性污泥曝气量计算

活性污泥曝气量计算

容积1200m3 水量1500m3/d活性污泥法如何保持水中溶解氧3mg/l 所需要提供的鼓风机风量?这种算法对不对?氧的浓度和池的体积算出氧的质量为3.6kg 由氧的密度算出氧的体积为2.57m3 氧在空气中的含量算出空气体积12.2m3 由氧的利用率算它30%得出空气体积40.8m3接着如何计算所需的风量啊这个不能按照容积算。

简单的可以这么假设,进水DO为0,污水浓度不高,消耗氧气忽略,出水为3mg/L因此中间增加的氧气量都是由鼓风机提供的总氧量的30%得到总风量为1500m3/d×(3g/m3-0)×22.4/32/0.21/0.3/24/60=35L/min曝气量的计算有多种方法参数: 水量:46吨/小时, COD:1200mg/l, 无BOD数据,按BOD=0.5*COD=600mg/l计方法一:按气水比计算:接触氧化池15:1,则空气量为:15×46=690m3/h活性污泥池10:1,则空气量为:10×46=460 m3/h调节池5:1,则空气量为:5×46=230 m3/h合计空气量为:690+460+230=1380 m3/h=23 m3/min方法二:按去除1公斤BOD需1.5公斤O2计算每小时BOD去除量为0.6kg/m3×1100m3/d÷24=27.5kgBOD/h需氧气:27.5×1.5=41.25kgO2空气中氧的重量为:0.233kg O2/kg空气,则需空气量为:41.25 kgO2÷0.233 O2/kg空气=177.04 kg空气空气的密度为1.293 kg/m3则空气体积为:177.04kg÷1.293 kg/m3=136.92 m3微孔曝气头的氧利用率为20%,则实际需空气量为: 136.92 m3÷0.2=684.6m3=11.41m3/min方法三:按单位池面积曝气强度计算曝气强度一般为10-20 m3/ m2h , 取中间值, 曝气强度为15 m3/ m2h接触氧化池和活性污泥池面积共为:125.4 m2则空气量为:125.4×15=1881 m3/h=31.35 m3/min调节池曝气强度为3m3/ m2h,面积为120 m2则空气量为3×120=360m3/h=6m3/min总共需要37.35 m3/min方法四:按曝气头数量计算根据停留时间算出池容,再计计算出共需曝气头350只,需气量为3 m3/h只, 则共需空气350×3=1050 m3/h=17.5 m3/min再加上调节池的需气量6 m3/min,共需空气:23.5 m3/min。

污水处理曝气量计算

污水处理曝气量计算

污水处理曝气量计算在污水处理过程中,曝气是其中一个关键环节。

曝气量的大小直接影响到污水处理的效率和效果。

因此,正确地计算和调整曝气量是非常重要的。

本文将介绍污水处理曝气量的计算方法,以及调整曝气量的必要性。

一、曝气量的计算曝气量是污水处理过程中向污水中供氧的重要参数。

在活性污泥法中,曝气量的大小直接影响到混合液的溶解氧水平和活性污泥的活性。

因此,正确地计算和调整曝气量是非常重要的。

1、理论曝气量的计算理论曝气量可以通过以下公式计算:Q = 1.5 × S × (T - T0) × 1000/t其中:Q为理论曝气量(m³/h);S为污水平均日流量(m³/d);T为处理后污水的水温(℃);T0为进入污水处理厂污水的水温(℃);t为污水在曝气池中的停留时间(h)。

2、实际曝气量的计算实际曝气量可以通过以下公式计算:Q = 1.5 × S × (T - T0) × 1000/t - Q1 - Q2 其中:Q为实际曝气量(m³/h);S为污水平均日流量(m³/d);T为处理后污水的水温(℃);T0为进入污水处理厂污水的水温(℃);t为污水在曝气池中的停留时间(h);Q1为活性污泥的需氧量(m³/h);Q2为混合液的需氧量(m³/h)。

二、调整曝气量的必要性在污水处理过程中,由于各种因素的影响,曝气量可能会发生变化。

因此,及时调整曝气量是非常必要的。

以下是调整曝气量的几个必要性:1、保证活性污泥的活性活性污泥的活性是污水处理效果的关键因素之一。

如果曝气量不足,活性污泥的活性会降低,导致污水处理效果下降。

因此,及时调整曝气量可以保证活性污泥的活性。

曝气生物滤池污水处理工艺与设计一、引言随着工业化和城市化的快速发展,污水排放量不断增加,污水处理已成为环境保护的重要课题。

曝气生物滤池是一种先进的污水处理技术,具有处理效果好、占地面积小、运行费用低等优点,在国内外得到广泛应用。

好氧池曝气量计算

好氧池曝气量计算

一、影响因素1 营养物组分有机物、N、P、以及Na、K、Ca、Mg、Fe、Co、Ni等(营养物和污染物只是以数量及其比例相对而言)。

比例:进水BOD:N:P=100:5:1;初次池出水,100:20:2.5 (为什么?);对工业废水,上述营养比例一般不满足,甚至缺乏某些微量元素,此时需补充相应组分,尤其是在做小试研究中。

2 DO据研究当DO高于0.1~0.3mg/L时,单个悬浮细菌的好氧化谢不受DO影响,但对成千上万个细菌粘结而成的絮体,要使其内部DO达到0.1~0.3mg/L时,其混合液中DO浓度应保持不低于2mg/L。

3 pH值pH值在6.5~7.5最适宜,经驯化后,以6.5~8.5为宜。

4 t(水温)以20~30℃为宜,超过35℃或低于10℃时,处理效果下降。

故宜控制在15℃~35℃,对北方温度低,应考虑将曝气池建于室内。

5 有毒物质重金属、酚、氰等对微生物有抑制作用,(前面已述)。

Na、Al盐,氨等含量超过一定浓度也会有抑制作用。

二、活性污泥处理系统的控制指标与设计,运行操作参数活性污泥处理系统是一个人工强化与控制的系统,其必须控制进水水量,水质,维持池内活性污泥泥量稳定,保持足够的DO,并充分混合与传质,以维持其稳定运行。

1 微生物量的指标混合液悬浮固体浓度(MLSS):在曝气池单位容积混合液内所含有的活性污泥固体的总重量,由Ma+Me+Mi+Mii组成。

混合液挥发固体浓度(MLVSS):混合液活性污泥中有机性固体物质部分的浓度,由MLVSS=Ma+Me+Mi组成。

※MLVSS/MLSS在0.70左右,过高过低能反映其好氧程度,但不同工艺有所差异。

如吸附再生工艺0.7~0.75,而A/O工艺0.67~0.70。

活性污泥的沉降性能及其评定指标2污泥沉降比SV(%):混合液在量筒内静置30mm后所形成沉淀污泥的容积占原混合液容积的百分比。

污泥容积指数SVI:SVI=SV/MLSS。

对于生活污水处理厂,一般介于70~100之间。

污水处理曝气量计算

污水处理曝气量计算

污水处理曝气量计算正文:1:引言污水处理是一项重要的环保工作,其中曝气量计算是污水处理过程中的关键参数之一。

本文将介绍污水处理曝气量计算的详细方法和步骤。

2:污水处理曝气量计算的背景和目的污水处理过程中的曝气量计算旨在确定适当的曝气量,以提供足够的氧气供给微生物进行有机物的降解。

曝气量的计算与污水的性质、工艺流程和处理效果密切相关。

3:曝气量计算的基本原理曝气量的计算基于氧气传质原理和污水的需氧量。

根据污水处理厂的具体情况,可采用曝气池内溶解氧浓度的动态平衡法或基于溶解氧传质速率的方法进行曝气量的计算。

4:曝气量计算的步骤4.1 确定污水处理工艺流程根据实际情况,确定采用的污水处理工艺,例如活性污泥法、厌氧/好氧法等。

4.2 收集污水的性质参数收集污水的性质参数,包括污水的流量、水质参数(如COD、BOD5等)、温度等。

这些参数将用于计算曝气量。

4.3 确定曝气池的溶解氧浓度根据工艺流程和污水性质参数,通过测量或模拟,确定曝气池内溶解氧浓度的变化规律。

4.4 计算污水的需氧量根据污水的性质参数,计算污水的需氧量,通常采用COD或BOD5指标。

4.5 确定曝气量根据上述参数和曝气池内的溶解氧浓度,采用合适的计算公式,确定曝气量。

5:附件本文档涉及的附件包括污水处理工艺流程图、曝气池溶解氧浓度的动态平衡曲线等。

6:法律名词及注释6.1 污水处理法案污水处理法案是指规范污水处理行为以及保护水环境的法律法规。

6.2 溶解氧溶解氧是指在液体中溶解的氧气分子。

6.3 COD(Chemical Oxygen Demand)COD是指水样中可被化学氧消耗的有机物质的总量。

6.4 BOD5(Biochemical Oxygen Demand)BOD5是指在水样中,在规定条件下(通常为20℃和5天),微生物对有机物进行降解所需的氧气量。

7:结束语污水处理曝气量的计算是确保污水处理工艺正常运行的重要环节。

本文简要介绍了污水处理曝气量计算的基本原理和步骤,并提供了相应的附件和法律名词的注释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧的传递与转移
一、双膜理论与氧总转移系数
(1)气、液两相接触的界面两侧存在着处于层流状态的气膜和液膜,在其外侧则分别为处于紊流状态的气相主体和液相主体。

气体分子以分子扩散方式从气相主体通过气膜和液膜而进入液相主体。

(2)气、液两相主体的物质浓度基本上是均匀的,不存在浓度差,也不存在传质阻力,气体向液相主体的传递,阻力仅存在于气、液两层膜中。

(3)在气膜中存在氧的分压梯度,在液膜中存在氧的浓度梯度,它们是氧转移的推动力。

(4)氧难溶于水,氧转移决定性的阻力集中在液膜上,因此,氧分子通过液膜是氧转移过程的控制步骤。

V A X D K f L a
L =()C C K dt dC s La -=
KLa 小,则氧转移过程中阻力大;KLa 大,则氧转移过程中阻力小。

1/KLa 的单位为h ,表示曝气池中溶解氧浓度从C 提高到Cs 所需要的时间。

KLa ——氧总转移系数是评价空气扩散装置的重要参数。

二、提高氧转移效率的方法:
(1)提高KLa 值。

要加强液相主体的紊流程度,降低液膜厚度,加速气、液面的更新,增大气、液接触面积等(气泡细小)。

什么是液膜呢?你一定知道肥皂泡沫吧,它就是最常见的液膜,它的分子一端亲水,一端亲油,在水中遇到油,亲油的一端向油,亲水的一端向外,就成为包围着油的泡沫。

这种液膜不稳定,一吹就破。

(2)提高Cs 值。

可提高气相中的氧分压,如采用纯氧曝气或高压下曝气如深井曝气等。

三、影响氧转移的因素
(1)污水性质
污水中存在着溶解性有机物,特别是表面活性物质,如短链脂肪酸和乙醇,是一种两亲分子,极性端亲水羧基COOH -或羟基-OH -插入液相,而非极性端疏水的碳基链则伸入气相中。

由于两亲分子聚集在气液界面上,阻碍氧分子的扩散转移,增加了氧转移过程的阻力→KLa ↓,引入一个小于1的因子α来修正表面活性物质对KLa 的影响
α=KLa ’(污水)/KLa(清水) KLa ’(污水)=α*KLa(清水)
(2)污水中含有盐类,因此,氧在水中的饱和度也受水质的影响。

引入小于1的系数β因子来修正。

β=Cs ’(污水)/Cs(清水) Cs ’(污水)=β*Cs(清水)
(3)水温
水温降低有利于氧的转移。

30-35℃的盛夏情况不利。

KLa (T)=KLa (20)*1.024(T-20)
(3)氧分压
Cs 值受氧分压或气压的影响。

气压降低 ,Cs 降低,反之则提高。

在当地气压不是一个标准大气压时,C 值应乘以如下修正系数:
ρ=所在地区实际压力(Pa)/101325(Pa)
主要影响因素:气相中氧分压梯度、液相中氧浓度梯度、气液之间的接触面积(气泡大小)和接触时间、水温、污水性质、水流的紊流程度。

对于鼓风曝气池:Csb=Cs(Qt/42+Pb/202600) Pb=101300+1000*10*H (Pa) Qt:气泡从曝气池溢出时的百分数
Qt=气泡内氧量/气泡内空气量=21*(1-Ea)/(79+21*(1-Ea))
Ea:扩散装置(扩散器)的利用效率,一般为6-12% Ea=氧转移量Ro/供氧量S *100% 四、需氧量与供氧量计算
曝气池总氧量
R=V*dc/ dt= V*α*Kla(20)*1.024(T-20)*(βp(Csb(T)-C))
曝气设备在标准条件下(1atm,水温20℃、脱氧清水)脱氧清水中氧总转移量R0的计算,在标准条件下α=1,β=1,ρ=1,C=0
在标准条件下曝气设备的供氧量:
R0=K La(20)*C sb(20)*V
R0=RC sb(20)/[α*1.024(T-20)*(βp(C sb(T)-C))]
一般R0/R=1.33-1.61
曝气池混合液总氧量为R,标准条件下供氧量为R0,设备厂家是在标准条件下测试得出曝气设备性能参数。

总供气量G s=R0/0.21/1.43/Ea(m3/h)
1.43——氧的容重,kg/m3
五、机械曝气条件下充氧量
Q os=R0= 0.379*ν 2.8*D1.88*K1
Q os:泵型叶轮在标准条件下充氧量(kg/h) ν叶轮线速度,m/s K1:池型修正系数ν=π*D*n/60(m/s) n:叶轮转速,(转/分) D:叶轮直径,m
例题(仅共参考):
3。

相关文档
最新文档