什么是可控硅(SCR)-什么叫晶闸管-晶闸管是什么
什么是可控硅
![什么是可控硅](https://img.taocdn.com/s3/m/1249b10e30126edb6f1aff00bed5b9f3f90f722c.png)
什么是可控硅一、概述可控硅(SCR,Silicon-Controlled Rectifier)是一种电子器件,也称为双向晶闸管(TRIAC,Triode for alternating current)。
它属于功率半导体器件,可以进行电流的正反向控制,具有经济、可靠、范围广等优点,在诸多工业应用领域得到广泛应用。
二、组成可控硅由四个PN结组成,也就是说,它是一种四层半导体器件。
PN结是指正负电荷聚集形成的界面,由P型半导体和N型半导体构成。
可控硅的四个PN结分别为:•P型半导体•N型半导体•P型半导体•N型半导体这四个PN结相互连接而成,形成双向电流通道。
三、工作原理可控硅有两个电极,即控制电极和主电极。
当控制电极加上触发电压时,可控硅就会导通,电流开始在主电极上流动;当控制电极断电时,可控硅停止导通,电流中断。
具体来说,当控制电极加上触发电压时,可控硅的P1-N1结区域中的电子和瞬间发生注入效应,导致P1-N1结区域中的电流瞬间增大;这个过程称为开启。
当控制电极电压下降到触发电压以下时,可控硅将自动保持导通状态,即使控制电极断电也不会中断电流。
反之,当控制电极断电时,可控硅的P1-N1结区域中的电子将被P1端的空穴重新吸收,导致电流瞬间中断;这个过程称为关断。
可控硅的关断需要用反向电压来实现,即控制电极与主电极之间分别加上正、负电压,这样才能断开电流通道。
四、应用可控硅在工业控制领域应用广泛,可以用于:•电动机控制•加热控制•电源控制•充电器控制•交流电调节•灯光调节•家用电器等电子产品控制同时,可控硅的使用也存在一些限制:•工作稳定性较差,容易出现温度漂移,需要考虑散热设计。
•受限于电压和电流范围,在一些高压、高电流场合中无法使用。
五、总结可控硅作为一种高性价比、可靠、范围广的功率半导体器件,在现代工业生产中扮演着极为重要的角色。
通过控制电压和电流的开启和关断,可控硅可以实现多种电子系统和工业设备的精确控制。
晶闸管(可控硅)的特性及检测
![晶闸管(可控硅)的特性及检测](https://img.taocdn.com/s3/m/e1a575a9dd3383c4bb4cd2ca.png)
晶闸管(可控硅)的特性及检测可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。
它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。
1. 可控硅的特性。
可控硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。
只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。
单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A电压拆除或阳极A、阴极K 间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2. 单向可控硅的检测。
万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。
此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。
此时万用表指针应不动。
可控硅(SCR)知识
![可控硅(SCR)知识](https://img.taocdn.com/s3/m/e7014940a216147917112894.png)
可控硅(SCR)知识可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。
它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。
1.可控硅的特性。
可控硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G 三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G 三个引出脚。
只有当单向可控硅阳极A 与阴极K 之间加有正向电压,同时控制极G 与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K 间呈低阻导通状态,阳极A 与阴极K 间压降约1V。
单向可控硅导通后,控制器G 即使失去触发电压,只要阳极A 和阴极K 之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A 电压拆除或阳极A、阴极K 间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A 和阴极K 间又重新加上正向电压,仍需在控制极G 和阴极K 间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1 与第二阳极A2 间,无论所加电压极性是正向还是反向,只要控制极G 和第一阳极A1 间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2 间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2 电流减小,小于维持电流或A1、A2 间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2.单向可控硅的检测。
万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极。
(整理)晶闸管(SCR)原理
![(整理)晶闸管(SCR)原理](https://img.taocdn.com/s3/m/8e6acbf351e79b8968022683.png)
晶闸管(SCR)原理作者:时间:2007-12-17 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:晶闸管半导体材料晶闸管(thyristor)是硅晶体闸流管的简称,俗称可控硅(SCR),其正式名称应是反向阻断三端晶闸管。
除此之外,在普通晶闸管的基础上还派生出许多新型器件,它们是工作频率较高的快速晶闸管(fast switching thyristor,FST)、反向导通的逆导晶闸管(reverse conducting thyristor,RCT)、两个方向都具有开关特性的双向晶闸管(TRIAC)、门极可以自行关断的门极可关断晶闸管(gate turn off thyristor,GTO)、门极辅助关断晶闸管(gate assisted turn off thytistor,GATO)及用光信号触发导通的光控晶闸管(light controlled thyristor,LTT)等。
一、结构与工作原理晶闸管是三端四层半导体开关器件,共有3个PN结,J1、J2、J3,如图1(a)所示。
其电路符号为图1(b),A(anode)为阳极,K(cathode)为阴极,G(gate)为门极或控制极。
若把晶闸管看成由两个三极管T1(P1N1P2)和T2(N1P2N2)构成,如图1(c)所示,则其等值电路可表示成图1(d)中虚线框内的两个三极管T1和T2。
对三极管T1来说,P1N1为发射结J1,N1P2为集电结J2;对于三极管T2,P2N2为发射结J3,N1P2仍为集电结J2;因此J2(N1P2)为公共的集电结。
当A、K两端加正电压时,J1、J3结为正偏置,中间结J2为反偏置。
当A、K两端加反电压时,J1、J3结为反偏置,中间结J2为正偏置。
晶闸管未导通时,加正压时的外加电压由反偏值的J2结承担,而加反压时的外加电压则由J1、J3结承担。
如果晶闸管接入图1(d)所示外电路,外电源U S正端经负载电阻R引至晶闸管阳极A,电源U S的负端接晶闸管阴极K,一个正值触发控制电压U G经电阻R G后接至晶闸管的门极G,如果T1(P1N1P2)的共基极电流放大系数为α1,T2(N1P2N2)的共基极电流放大系数为α2,那么对T1而言,T1的发射极电流I A的一部分α1I A将穿过集电结J2,此外,J2受反偏电压作用,要流过共基极漏电流i CBO1,因此图1(d)中的I C1可表示为I C1=α1I A+i CBO1。
SCR 特性介绍 详细版
![SCR 特性介绍 详细版](https://img.taocdn.com/s3/m/d387f9e8b8f67c1cfad6b868.png)
通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。
I
T1
IG=0 O U
G
T2
a)
b)
图6
双向晶闸管的电气图形符号和伏安特性 a) 电气图形符号 b) 伏安特性
3) 逆导晶闸管(Reverse Conducting Thyristor—RCT) 将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件; 具有正向压降小、关断时间短、高温特性好、额定结温高等优点; 逆导晶闸管的额定电流有两个,一个是晶闸管电流,一个是反并联二极管 的电流。
IA
A 强 G K 光强度 弱
O
UA K
a)
b)
图8
光控晶闸管的电气图形符号和伏安特性 a) 电气图形符号 b) 伏安特性
光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响, 因此目前在高压大功率的场合, 如高压直流输电和高压核聚变装置中, 占据重要 的地位。
IA
正向 导通
UA
U RSM U RRM
IH O
IG2
IG1
IG=0
U DRM U bo +U A U DSM
雪崩 击穿
-IA
图3
晶闸管阳极伏安特性 IG2>IG1>IG
IG=0 时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流
流过,正向电压超过临界极限即正向转折电压 Ubo,则漏电流急剧增大,器件开 通。这种开通叫“硬开通”,一般不允许硬开通; 随着门极电流幅值的增大,正向转折电压降低; 导通后的晶闸管特性和二极管的正向特性相仿; 晶闸管本身的压降很小,在 1V 左右; 导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值 IH 以下,则晶闸管又回到正向阻断状态。IH 称为维持电流。 晶闸管上施加反向电压时,伏安特性类似二极管的反向特性; 阴极是晶闸管主电路与控制电路的公共端; 晶闸管的门极触发电流从门极流入晶闸管,从阴极流出,门极触发电流也 往往是通过触发电路在门极和阴极之间施加触发电压而产生的。 晶闸管的门极和阴极之间是 PN 结 J3,其伏安特性称为门极伏安特性,如图 4 所示。图中 ABCGFED 所围成的区域为可靠触发区;图中阴影部分为不触发区; 图中 ABCJIH 所围成的区域为不可靠触发区。 为保证可靠、安全的触发,触发电路所提供的触发电压、电流和功率应限 制在可靠触发区。
晶闸管
![晶闸管](https://img.taocdn.com/s3/m/2a1e7d384b73f242336c5f76.png)
晶闸管(SCR)晶闸管是晶体闸流管的简称,又称为可控硅整流器(Silicon Controlled Rectifier, SCR)俗称可控硅。
一、外形与符号晶闸管有3个电极:阳极(A)、阴极(K)和门极(G)。
图1 晶体管图1(a)中所示为一些常见晶闸管的实物外形,图1(b)所示为晶体管的图形符号。
二、结构与工作原理1. 结构晶闸管的内部结构和等效图如图2所示。
它相当于PNP型三极管和NPN型三极管以图2(b)所示的方式连接而成。
图2 晶闸管的内部结构和等效图2. 工作原理下面以图3所示的电路来说明晶闸管的工作原理。
电源E2通过R2为晶闸管A(阳极)、K(阴极)极提供正向电压U AK,电源E1经电阻R1和开关S为晶闸管G(门极)、K(阴极)极提供正向电压U GK。
当开关S处于断开状态时,VT1无I b1电流而无法导通,VT2也无法导通,晶闸管处于截止状态,I2电流为0。
如果将开关S闭合,电源E1马上通过R1、S为VT1提供I b1电流,VT1导通,VT2也导通(VT2的I b2与VT1的I c1相等),I c2增大,这样会形成强烈的正反馈,正反馈过程是:正反馈使VT1、VT2对进入饱和状态,I b2、I c2都很大,I b2、I c2都是由VT2的发射极流入,即晶体管A极流入,I b2、I c2电流在内部流经VT1、VT2后从K极流出。
很大的电流从晶闸管A极流入,然后从K极流出,相当于晶闸管A、K极之间导通。
晶闸管导通后,若断开开关S,I b2、I c2电流继续增大,晶闸管继续导通。
这时如果慢慢调低电源E2的电压,流入晶闸管A极的电流(即图中的I2电流)也慢慢减小,当电源电压调到很低时(接近0),流入A极的电流接近0,晶闸管进入截止状态。
3. 晶闸管导通和关断(截止)条件。
综上所述,晶闸管有以下性质。
(1)无论A、K极之间加什么电压,只要G、K极之间没有加正向电压,晶闸管就无法导通。
(2)只有A、K极之间加正向电压,并且G、K极之间也加一定的正向电压,晶闸管才能导通。
可控硅
![可控硅](https://img.taocdn.com/s3/m/4cf72d8b680203d8ce2f2417.png)
一、可控硅概述可控硅(SCR)国际通用名称为Thyristor,中文称为硅晶体闸流管,简称晶闸管。
由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅(SCR)。
在电路中用文字符号“V”、“VT”表示(旧标准中用字母“SCR”表示)。
晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。
可控硅的优点很多,例如:能在高电压、大电流条件下工作,体积小;以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。
可控硅的缺点:静态及动态的过载能力较差;容易受干扰而误导通。
二、晶闸管(thyristor)的分类晶闸管(thyristor)有多种分类方法。
(一)按关断、导通及控制方式分类晶闸管按其关断、导通及控制方式可分为普通晶闸管(SCR)即单向可控硅、双向晶闸管(TRIAC)、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。
(二)按引脚和极性分类晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。
(三)按封装形式分类晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。
其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。
(四)按电流容量分类晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。
通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。
(五)按关断速度分类晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管三、单向可控硅(SCR)(一)单向晶闸管的特性普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分别为阳极A、阴极K和门极G。
电路符号如下图:当单向晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。
scr可控硅导通阻抗
![scr可控硅导通阻抗](https://img.taocdn.com/s3/m/841641594531b90d6c85ec3a87c24028915f8504.png)
scr可控硅导通阻抗
SCR(可控硅)是一种半导体器件,也被称为晶闸管。
SCR在电路中可以用作开关,可以通过控制其触发方式来实现导通。
SCR的导通阻抗通常取决于其工作状态和控制信号。
以下是有关SCR导通阻抗的一些基本信息:
1.正导通阻抗(on-state impedance):当SCR导通时,即在正半周(正半周期)中,其导通阻抗通常是相对较低的。
正导通阻抗可以通过以下几个因素影响:
2.正向电压:在正向电压作用下,SCR的导通阻抗通常较低。
3.电流:正导通阻抗还可能受到电流水平的影响,特别是在高电流情况下,正导通阻抗可能更低。
4.触发方式和控制信号:SCR的导通可以通过施加一个触发脉冲来实现。
触发信号的施加方式和触发脉冲的参数(如宽度、幅度)都可以影响SCR导通时的阻抗。
在触发信号的作用下,SCR由高阻抗状态切换为低阻抗状态。
5.负导通阻抗(off-state impedance):当SCR处于关断状态时,即不导通时,其阻抗相对较高。
负导通阻抗受到应用的反向电压和其他关断状态的影响。
6.工作温度:SCR的导通阻抗还可能受到工作温度的影响。
通常情况下,随着温度的升高,导通阻抗可能会发生变化。
在设计电路时,工程师需要考虑SCR的导通阻抗,以确保在正
常工作条件下,SCR能够可靠地导通或关断。
此外,了解SCR的导通特性对于控制电能的传输和功率调节等应用也至关重要。
不同类型的SCR可能具有不同的导通阻抗特性,因此在具体应用中需要参考相关器件的数据手册和规格说明。
晶闸管原理及应用
![晶闸管原理及应用](https://img.taocdn.com/s3/m/5181697201f69e314332948f.png)
图3 阳极加反向电压 图4 阳极加正向电压
(2) 正向特性
当门极G开路,阳极A加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,如图2的特性曲线OA段开始弯曲,弯曲处的电压UBO称为“正向转折电压”。
设PNP管和NPN管的集电极电流分别为IC1和IC2,发射极电流相应为Ia和Ik,电流放大系数相应为α1=IC1/Ia和α2=IC2/Ik,设流过J2结的反相漏电流为ICO,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:
Ia=IC1+IC2+ICO
(3) 触发导通
在门极G上加入正向电压时(如图5所示),因J3正偏,P2区的空穴进入N2区,N2区的电子进入P2区,形成触发电流IGT。在晶闸管的内部正反馈作用(如图2)的基础上,加上IGT的作用,使晶闸管提前导通,导致图2中的伏安特性OA段左移,IGT越大,特性左移越快。
图5 阳极和门极均加正向电压
由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子进入N1区,空穴进入P2区。进入N1区的电子与由P1区通过J1结注入N1区的空穴复合。同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿后,进入N1区的电子与进入P2区的空穴各自不能全部复合掉。这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍有增加,电压便迅速下降,出现所谓负阻特性,见图2中的虚线AB段。这时J1、J2、J3三个结均处于正偏,晶闸管便进入正向导电状态——通态,此时,它的特性与普通的PN结正向特性相似,如图2的BC段。
中文名可控硅
![中文名可控硅](https://img.taocdn.com/s3/m/f9499e3565ce0508763213b7.png)
中文名可控硅外文名Silicon Controlled Rectifier 简写SCR别称晶闸管添加自定义项正文可控硅,是可控硅整流元件的简称,是一种具有三个PN结的四层结构的大功率半导体器件,亦称为晶闸管。
具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。
该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。
家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。
结构大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。
以硅单晶为基本材料的P1N1P2N2四层三端器件,起始于1957年,因为它的特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T,又因为晶闸管最初的在静止整流方面,所以又被称之为硅可控整流元件,简称为可控硅SCR.在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称"死硅")更为可贵的可控性.它只有导通和关断两种状态.可控硅能以毫安级电流控制大功率的机电设备,如果超过此功率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用.可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等.可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通.可控硅从外形上分类主要有:螺栓形、平板形和平底形.可控硅元件的结构不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构.见图1.它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件.工作原理结构原件可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如右图所示晶闸管特性为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。
可控硅名词解释
![可控硅名词解释](https://img.taocdn.com/s3/m/1d979a8d51e2524de518964bcf84b9d528ea2cb1.png)
可控硅名词解释可控硅又称为晶闸管,晶闸管是硅晶体闸流管的简称。
可控硅是大功率变流器件,利用其整流可控特性可方便地对大功率电源进行控制和变换。
它具有体积小、重量轻、耐压高、容量大,使用维护简单、控制灵敏等优点,所以在生产上得到了广泛应用。
一、可控硅的用途1、可控整流把交流电变换为大小可调的直流电称为可控整流。
例如,直流电动机调压、调速,电解、电镀电源均可采用可控整流供电。
2、有源逆变有源逆变是指把直流电变换成与电网同频率的交流电,并将电能返送给交流电源。
例如,高压输电工程将三相交流电先变换成高压直流电,再进行远距离输送,到达目的地后,再利用有源逆变技术把直流电变换成与当地电网同频率的交流电供给用户。
3、交流调压交流调压是指把不变的交流电压变换成大小可调的交流电压。
例如,用于灯光控制、温度控制及交流电动机的调压、调速。
4、变频器把某一频率的交流电变换成另一频率交流电的设备称为变频器。
例如,可控硅中频电源、不间断电源(UPS)、异步电动机变频调速中均含有变频器。
5、无触点功率开关用可控硅可组成无触点功率开关,取代接触器、继电器,用于操作频繁的场合。
例如,可用于控制电动机正反转和防爆、防火的场合。
二、可控硅的结构可控硅是用硅材料制成的半导体器件,它有3种结构形式:螺栓式、平板式和塑料封装式。
三、可控硅的工作原理上图所示的电路做实验说明。
可控硅与灯泡串联经开关S1接到电源Ea上,门极与阴极经开关S2接到电源Eg上。
开关S1、S2皆为双掷开关,可有正、零、反3种位置。
1、电源Ea的正极接阳极A、负极接阴极K,称可控硅承受正向阳极电压。
2、电源Ea的负极接阳极A、正极接阴极K,称可控硅承受反向阳极电压。
3、电源Eg的正极接门极G、负极接阴极K,称可控硅承受正向门极电压。
4、电源Eg的负极接门极G、正极接阴极K,称可控硅承受反向门极电压。
晶闸管和可控硅是不是同一个东西,功能是什
![晶闸管和可控硅是不是同一个东西,功能是什](https://img.taocdn.com/s3/m/844d184133687e21af45a90c.png)
不好意思,问题好像有点多,能回一个两个,说的能让我明白就行了,希望各位大侠帮忙,能联系我让我对可控硅搞的彻底明白的,可以给50个Q币。
问题补充:QQ66617745
敬请抄袭别人回答的朋友自重
如果你只是控制电机的启动与停止可以考虑以下方案
回答如下:
为了保证晶闸管电路能正常可靠地工作,触发电路必须满足以下要求。
一、触发脉冲信号应有足够的功率和宽度
为了使所有的元件在各种可能的工作条件下均能可靠的触发,触发电路所送出的触发电压和电流,必须大于元件门极规定的触发电压UGT与触发电流IGT的最大值,并且留有足够的余量。另外,由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间,不是一触即通,只有当晶闸管的阳极电流即主回路电流上升到晶闸管的擎住电流IL以上时,管子才能导通,所以触发脉冲信号应有一定的宽度才能保证被触发的晶闸管可靠导通。例如:一般晶闸管的导通时间在6μs左右,故触发脉冲的宽度至少在6μs以上,一般取20~50μs,对于大电感负载,由于电流上升较慢,触发脉冲宽度还应加大,否则脉冲终止时主回路电流还未上升到晶闸管的擎任电流以上,则晶闸管又重新关断,所以脉冲宽度下应小于300μs,通常取1ms,相当广50Hz正弦波的18°电角度。
控制我做的比较简单,有个小按钮,和门铃一样的,我们称为S。
从G极出来,接一个电阻,20 ohm,再接S,再接一个1.5伏的5号电池,再接电阻20 ohm,再接到T2上去,就完成了!
这时,你按下开关,晶闸管就一直导通~你松掉开关,晶闸管就截至。
那2个电阻可以取大一点,因为触发电流很小就可以了,你自己算一下,大约50毫安就够了,你看你用什么晶闸管了,说明书上应该有讲的。
晶闸管
![晶闸管](https://img.taocdn.com/s3/m/8a873b3f5727a5e9856a61ce.png)
晶闸管(thyristor)是硅晶体闸流管的简称,俗称可控硅(SCR),其正式名称应是反向阻断三端晶闸管。
除此之外,在普通晶闸管的基础上还派生出许多新型器件,它们是工作频率较高的快速晶闸管(fast switching thyristor,FST)、反向导通的逆导晶闸管(reverse conducting thyristor,RCT)、两个方向都具有开关特性的双向晶闸管(TRIAC)、门极可以自行关断的门极可关断晶闸管(gate turn off thyristor,GTO)、门极辅助关断晶闸管(gate assisted turn off thytistor,GATO)及用光信号触发导通的光控晶闸管(light controlled thyristor,LTT)等。
一、结构与工作原理晶闸管是三端四层半导体开关器件,共有3个PN结,J1、J2、J3,如图1(a)所示。
其电路符号为图1(b),A(anode)为阳极,K(cathode)为阴极,G(gate)为门极或控制极。
若把晶闸管看成由两个三极管T1(P1N1P2)和T2(N1P2N2)构成,如图1(c)所示,则其等值电路可表示成图1(d)中虚线框内的两个三极管T1和T2。
对三极管T1来说,P1N1为发射结J1,N1P2为集电结J2;对于三极管T2,P2N2为发射结J3,N1P2仍为集电结J2;因此J2(N1P2)为公共的集电结。
当A、K两端加正电压时,J1、J3结为正偏置,中间结J2为反偏置。
当A、K两端加反电压时,J1、J3结为反偏置,中间结J2为正偏置。
晶闸管未导通时,加正压时的外加电压由反偏值的J2结承担,而加反压时的外加电压则由J1、J3结承担。
如果晶闸管接入图1(d)所示外电路,外电源U S正端经负载电阻R引至晶闸管阳极A,电源U S的负端接晶闸管阴极K,一个正值触发控制电压U G经电阻R G后接至晶闸管的门极G,如果T1(P1N1P2)的共基极电流放大系数为α1,T2(N1P2N2)的共基极电流放大系数为α2,那么对T1而言,T1的发射极电流I A的一部分α1I A将穿过集电结J2,此外,J2受反偏电压作用,要流过共基极漏电流i CBO1,因此图1(d)中的I C1可表示为I C1=α1I A+i CBO1。
晶闸管
![晶闸管](https://img.taocdn.com/s3/m/ac6e57ef172ded630b1cb6ab.png)
概述
可控硅的优点很多,例如:以小功率控制 大功率,功率放大倍数高达几十万倍;反 应极快,在微秒级内开通、关断;无触点 运行,无火花、无噪音;效率高,成本低 等等。 可控硅的弱点有静态及动态的过载能力较 差;容易受干扰而误导通。
概述
普通可控硅主要用于大功率的交直流变换、调压等。 双向可控硅主要用于电机控制、电磁阀控制、调温及调 光控制等方面 。 可控硅的三个电极分别用字母A(表示阳极)、K(表示 阴极)、G(表示门极)。
可控硅等效图解图
单向可控硅的工作原理
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。 此时,如果从控制极G输入一个正向触发信号,BG2便 有基流Ib2流过,经BG2放大,其集电极电流Ic2=β2Ib2。 因为BG2的集电极直接与BG1的基极相连,所以Ib1=Ic2。 此时,电流Ic2再经BG1放大,于是BG1的集电极电流 Ic1=β1Ib1=β1β2Ib2。这个电流又流回到BG2的基极,表 成正反馈,使Ib2不断增大,如此正向馈循环的结果,两 个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所 以一旦可控硅导通后,即使控制极G的电 流消失了,可控硅仍然能够维持导通状态, 由于触发信号只起触发作用,没有关断功 能,所以这种可控硅是不可关断的。
单向可控硅主要特性参数
1、额定通态平均电流(IT(AV)) 2 、断态重复峰值电压(VDRM) 3 、反向重复峰值电压(VRRM) 4 、断态重复平均电流(IDR(AV)) 5 、反向重复平均电流(IRR(AV)) 6、通态平均电压(VTM(AV)) 7 、门极触发电流(IGT) 8 、门极触发电压(VGT) 9 、断态电压临界上升率(du/d t) 10、维持电流(IH) 11、擎住电流(IL) 12、浪涌电流(ITSM) 13、额定结温(T j M)
什么是可控硅
![什么是可控硅](https://img.taocdn.com/s3/m/af023015cc7931b765ce157a.png)
什么是可控硅(晶闸管)可控硅是硅可控整流器的简称,缩写为SCR又称为晶闸管。
自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。
今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。
要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。
晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。
晶闸管的特点:是“一触即发”。
但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。
控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。
那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。
如果晶闸管阳极和阴极之间外加的是交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。
可控硅的结构:内部有相互交叠的4层PN区组成,有三个PN结,三个电极,即阳极A 阴极K 控制极G .三个PN结实际构成了两个相互连接的三极管。
一个是PNP,一个是NPN ,每个管子的集电极连接导另一个管子的基极,形成正反馈。
可控硅按其电流容量可分,50A以上的为大功率管,5A以下的为小功率管,两者之间的则为中功率管。
可控硅的主要参数定义如下:可控硅的额定正向平均电流:在规定条件下,阳极和阴极间可以连续通过的50HZ 正旋半波电流的平均值。
可控硅的维持电流:在规定条件下维持可控硅导通的最小正向电流。
可控硅的一些基本知识
![可控硅的一些基本知识](https://img.taocdn.com/s3/m/41b32874e518964bcf847c8f.png)
可控硅的一些基本知识摘要:可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。
它具有体积小、效率高、寿命长等优点。
在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。
它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。
可控硅分单向可控硅和双向可控硅两种可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。
它具有体积小、效率高、寿命长等优点。
在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。
它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。
可控硅分单向可控硅和双向可控硅两种。
双向可控硅也叫三端双向可控硅,简称TRIAC。
双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。
其通断状态由控制极G决定。
在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。
这种装置的优点是控制电路简单,没有反向耐压问题,因此特别适合做交流无触点开关使用。
结构编辑大家使用的是单向晶闸管,也就是人们常说的普通晶闸可控硅管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
从晶闸管的电路符号可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。
以硅单晶为基本材料的P1N1P2N2四层三端器件,起始于1957年,因为它的特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T,又因为晶闸管最初的在静止整流方面,所以又被称之为硅可控整流元件,简称为可控硅SCR。
在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称"死硅")更为可贵的可控性。
可控硅晶闸管
![可控硅晶闸管](https://img.taocdn.com/s3/m/ec269a8b02d276a200292e1a.png)
晶闸管(可控硅)说明一篇关于可控硅使用基础,力求不离核心内容,篇幅短小、精炼明了,面向实际使用,实用性强的基础学习笔记。
1、概述晶体闸流管(Thyristor)或闸流晶体管,简称晶闸管,又叫可控硅整流器(Silicon Controlled Rectifier,SCR),以前被简称为可控硅,是半导体开关元件(器件)。
1956年美国贝尔实验室(Bell Lab)发明了晶闸管;1957年美国通用电气公司(GE)开发出第一只晶闸管产品;1958年商业化,开辟了电力电子技术迅速发展和广泛应用的崭新时代;20世纪80年代以来,出现了性能更好的全控型器件,在高压、高功率场合,结构相对简单、功能单一的晶闸管品种已逐步在被取代;晶闸管是PNPN四层半导体结构,它有三个极:阳极(A node),阴极(K athode)和门极(G ate),门极又叫栅极或控制极。
晶闸管具有硅整流器件的特性,相当于或类似于可控的单向(或双向)二极管,利用其的可控功能,可实现弱电对强电的控制,加之晶闸管具有体积小、结构相对简单、功能强、重量轻、效率高、控制灵活等优点,晶闸管可用于下列过程:1、可控整流:将交流电转换成可调的直流电;2、逆变器:将直流电转换成交流电;3、变频:将一种频率的交流电转换成另一种频率或频率可调的交流电;4、交流调压:将固定的交流电压转换成有效值可调的交流电压;5、斩波:将固定的直流电压转换成平均值可调的直流电压;6、无触点通断:制作无触点开关,代替交流接触器实现通断控制。
晶闸管(可控硅)是比较常用的半导体器件之一。
该器件被广泛应用于各种电子设备和电子产品中,家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。
大容量电力晶闸管,能在高电压、大电流条件下工作,能承受的电压和电流容量最高,工作可靠,额定电压达数千伏,额定电流达数千安,在大容量的场合具有重要地位,在电源装置、电力牵引、电力传动等电力电子中,应用广泛。
晶闸管常识
![晶闸管常识](https://img.taocdn.com/s3/m/2f1bced076eeaeaad1f330ec.png)
晶闸管的工作原理与应用1 晶闸管(SCR)晶体闸流管简称晶闸管,也称为可控硅整流元件(SCR),是由三个PN结构成的一种大功率半导体器件。
在性能上,晶闸管不仅具有单向导电性,而且还具有比硅整流元件更为可贵的可控性,它只有导通和关断两种状态。
晶闸管的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪声;效率高,成本低等。
因此,特别是在大功率UPS供电系统中,晶闸管在整流电路、静态旁路开关、无触点输出开关等电路中得到广泛的应用。
晶闸管的弱点:静态及动态的过载能力较差,容易受干扰而误导通。
晶闸管从外形上分类主要有:螺栓形、平板形和平底形。
2 普通晶闸管的结构和工作原理晶闸管是PNPN四层三端器件,共有三个PN结。
分析原理时,可以把它看作是由一个PNP管和一个NPN管所组成,其等效图解如图1(a)所示,图1(b)为晶闸管的电路符号。
图1 晶闸管等效图解图2.1 晶闸管的工作过程晶闸管是四层三端器件,它有J1、J2、J3三个PN结,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管。
当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。
每个晶体管的集电极电流同时就是另一个晶体管的基极电流。
因此是两个互相复合的晶体管电路,当有足够的门极电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通。
设PNP管和NPN管的集电极电流分别为IC1和IC2,发射极电流相应为Ia和Ik,电流放大系数相应为α1=IC1/Ia和α2=IC2/Ik,设流过J2结的反相漏电流为ICO,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:Ia=IC1+IC2+ICO =α1Ia+α2Ik+ICO (1)若门极电流为Ig,则晶闸管阴极电流为:Ik=Ia+Ig。
因此,可以得出晶闸管阳极电流为:(2)硅PNP管和硅NPN管相应的电流放大系数α1和α2随其发射极电流的改变而急剧变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅(SCR)是可控硅整流器的简称。
可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。
它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。
可控硅有单向、双向、可关断和光控几种类型它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。
附上几个可控硅(SCR)实物图片
下为单向可控硅(晶闸管)结构示意及电路符号
下为双向可控硅(晶闸管)结构示意及电路符号。