人教版五年级数学简易方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用含有字母的式子表示数量关系。(教材第52~53页)
1.使学生在理解数量关系的基础上,会用含有字母的式子表示数量关系。
2.使学生在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母的式子的值。
3.培养学生的抽象思维能力和归纳概括能力。
重点:会用含有字母的式子表示数量关系。
难点:理解用含有字母的式子表示数量关系的意义。
投影片。
1.在下面的里填上适当的名称。
投影出示练习。
×时间=路程单产量×=总产量
工作效率×时间= ×=总价
2.引入。
师:你们的数学课本是多少元?买一本数学课本和一本数学课外读物一共要多少元?
学生一定会问数学课外读物的价钱是多少,这时教师指出:既然不知道数学课外读物的价钱,能否用一个字母表示?
现在谁能说出买一本数学课本和一本数学课外读物一共要多少元?
请学生回答:4.87+x表示的是什么?
师:这个含有字母的式子也能表示数量关系,今天我们就来探讨这个问题。
板书课题:用含有字母的式子表示数量关系
1.指名学生说出自己的年龄。
李铭同学报出自己11岁。
师:老师比李铭大25岁。老师的年龄是多少?请你算一算李铭在1岁、2岁、3岁……到现在11岁时,老师各是多少岁。
教师板书如下:
李铭的年龄老师的年龄
11+25=26
22+25=27
33+25=28
44+25=29
提问:求老师年龄的问题提完了吗?(没有)为什么?(因为李铭在不断地长大,李铭的岁数每增加一岁,老师的岁数也增加一岁)上面这些算式表示什么意思?[上面这些算式表示,当李铭1岁时,老师(1+25)岁;当李铭2岁时,老师(2+25)岁……当李铭11岁时,老师(11+25)岁……]虽然李铭和老师的年龄都在变,但是什么没有变?(老师比李铭大25岁)
我们已经学习了用字母表示数,能不能用一个简明的式子表示老师的年龄呢?
用字母a表示李铭的年龄,那么老师的年龄就是a+25。(用其他字母表示也可以) 教师继续板书:a与a+25
从a+25这个式子里,你们知道些什么信息?
学生同桌议论或小组讨论,然后交流汇报。a+25既表明了老师的年龄,又表明了老师比李铭大25岁,所以,我们只要知道李铭的年龄a,就能用这个数量关系算出老师的年龄。
师:对,只要知道了李铭的年龄,就可以求出老师的年龄。我们可以计算一下;当李铭12岁小学毕业时,老师多大?
学生回答,教师板书:当a=12时,a+25=12+25=37。
师:当李铭19岁考入大学时,老师多大?
学生回答,教师板书:当a=19时,a+25=19+25=44。
思考:我们学习了用含有字母的式子表示数量关系,它有什么优点?
学生通过讨论,认识到用字母可以表示数量之间的关系。
出示教材第52页例1:
(1)学生默读题,理解题意。
(2)学生用自己的语言叙述题意。
(3)学生自主解决。
(4)学生集体交流、订正。
2.教学教材第53页例2。
投影出示:在月球上,人能举起物体的质量是地球上的6倍。
(1)读题,引导学生按下面的过程自己推算,并填写下表。
在地球上能举起物体的质量/kg在月球上能举起物体的质量/kg
11×6=6
22×6=12
33×6=18
(2)提问。
师:假如用字母x表示人在地球上能举起物体的质量,你能用含有字母的式子表示出人在月球上能举起的质量吗?
(3)算一算:教材插图中的小朋友在月球上能举起的质量是多少?
学生计算后交流,教师板书:6x=6×15=90(kg)
(4)说一说例2中的字母分别可以表示哪些数。
注意:人的寿命是有限的,能举起的质量也是有限的,因此a、x表示的数也是有限的。
1.列式计算。
停车场有m辆车,开走8辆。
(1)当m=24时,还剩多少辆?
(2)当m=32时,还剩多少辆?
2.想一想,填一填。
当x=( )时,8÷x=1; 当x=( )时,8÷x=8;
当x<( )时,8÷x>8;当x>( )时,8÷x<8。
课堂作业新设计
1.(1)16辆(2)24辆
2.8 1 1(0除外) 1
教材习题
第53页做一做:6 12 16.8 24 45 3x
用含有字母的式子表示数量关系
李铭的年龄老师的年龄
11+25=26
22+25=27
33+25=28
44+25=29
︙︙
a与a+25
当a=12时,a+25=12+25=37
当a=19时,a+25=19+25=44
用字母表示运算定律。(教材第54页)
1.使学生学会用字母表示运算定律。
2.让学生感受用字母表示运算定律的优越性,提高对用字母表示运算定律的认识。
3.学会在含有字母的式子里乘号的简写法和略写法。
重点:会用字母表示运算定律。
难点:理解用字母表示数的意义。
投影。
师:同学们,今天我们共同研究一个有趣的数学问题,在探究前我们先完成一组练习。
1.投影出示练习题。
在下面的里填上适当的数,在○里填上适当的运算符号。
教师指名口答,并让学生说一说是根据什么运算定律做题的。
2.用字母表示运算定律。
出示教材第54页例3(1)。
请学生分别用语言叙述一下所运用的运算定律,再分别用字母表示出运算定律。教师根据学生的回答板书。
加法交换律:两个数相加,交换加数的位置,它们的和不变。
a+b=b+a
加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
(a+b)+c=a+(b+c)
乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(a×b)×c=a×(b×c)
乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(a+b)×c=a×c+b×c
师:比较用文字叙述和用字母表示运算定律,你有什么发现?
学生小组内互说自己的想法。