定积分与微积分练习题及答案
微积分练习题(含答案)
练习题第六章 定积分1.1()(2(0)xF x dt x =->⎰的单调增加区间为_____. 1(,)4+∞2. 函数0()xt F x te dt -=⎰在点x =____处有极值. 03.设sin 201()sin ,()sin 2x f x t dt g x x x ==-⎰,则当0x →时有( A ). (A) ()~()f x g x (B) ()f x 与()g x 同阶,但()f x 不等价于()g x (C) ()(())f x o g x = (D) ()(())g x o f x =4.计算3523220sin sin 2sin cos . []3515x x x xdx ππ⋅-=⎰5.计算21e ⎰1)6.求函数dt t t x x I )ln 1(1)(-=⎰在],1[e 上的最大值与最小值. 最大值()3412-e ,最小值07.设函数⎪⎩⎪⎨⎧≥=<<-+01 2cos 110 )(2x xx xe x f x ,计算⎰-41)2(dx x f .()11tan 214-+e 8.2sin ()xt dt tπ'=⎰( C ) (其中2x π>).(A)sin x x (B)sin xC x+ (C)sin 2x x π- (D) sin 2x C x π-+ 9. 设()f x 是连续函数,且3()x f t dt x =⎰,则(8)f =_____.11210. xdt t x x cos 1)sin 1ln(lim-+⎰→=___1__ ;)1ln(cos lim202x tdtx x +⎰→=__1__ .11. 设()()()bad d I f x dx f x dx f x dx dx dx '=+-⎰⎰⎰存在,则(C ). (A) ()I f x = (B) ()I f x C =+ (C) I C = (D) 0I =12. 已知1(2),(2)02f f '==,及20()1f x dx =⎰,则120(2)x f x dx ''⎰ = 0__ .13. 若sin 0()cos xf t dt x x =+⎰(0)2x π<<,则()f x ___.第五章 不定积分1. 若()()F u f u '=,则(sin )cos f x xdx =⎰__ _. (sin )F x C +2. 若()sin 2,f x dx x C =+⎰则()f x =__ _. 2cos 2x3.2()1xf x dx C x =+-⎰,则sin (cos )xf x dx =⎰_ __. 2cos sin x C x-+ 4. 若()()f u du F u C =+⎰.则211()f dx x x⋅=⎰__ _. 1()F C x -+5.求sin cos sin cos x xdx x x -=+⎰_____. ln sin cos x x C -++6. 求ln(ln )x dx x ⎰. ln (ln ln 1)x x C -+7. 已知()f x 的一个原函数为xe -,求(2)xf x dx '⎰. 211()22x e x C--++8.计算⎰+dx xx2cos 12. tan ln cos x x x C ++9.求dx ex⎰-11. ln 1xx e C --+10.计算⎰+dx x xe x2)1(. 1xx xe e C x -+++ 11.计算 ⎰++dx x xx )1(21222. 1arctan x C x-++ 12.求⎰dx x x 2sin 2cos 2. 12sin 2Cx -+13.求ln(x x C -+第四章 导数应用1.计算极限 (1)0ln lim ln sin x xx+→=___1___. (2) cot20lim(1)xx x →+ =___2e ___(3) 01lim(ln )xx x +→=___1___ (4) sin 0lim(cot)x x +→ =__1__(5) +1ln(1)lim arccot x x x →∞+=___1___2. 函数()(1)(2)(3)(4)f x x x x x x =----的二阶导函数有_____个零点. 33. 下列极限计算中,不能使用罗必塔法则的是( B ). (A) 111lim xx x-→ (B)201sinlimsin x x x x→(C) limx lim ln x x ax x a→+∞-+4. 设()y f x =满足方程sin 0xy y e'''+-=,且0()0f x '=,则()f x 在( A ).(A) 0x 处取得极小值 (B) 0x 处取得极大值 (C) 0x 的某个邻域内单调增加 (D) 0x 的某个邻域内单调减少 5. 若()f x 与()g x 可导,lim ()lim ()0x ax af xg x →→==,且()lim()x af x Ag x →=,则( C ). (A)必有()lim()x af x Bg x →'='存在,且A B = (B) 必有()lim()x af x Bg x →'='存在,且A B ≠ (C) 如果()lim()x af x Bg x →'='存在,则A B = (D) 如果()lim()x af x Bg x →'='存在,不一定有A B = 6. 设偶函数()f x 具有连续的二阶导数,且()0f x ''≠,则0x =( B ). (A) 不是函数()f x 的驻点(B) 一定是函数()f x 的极值点(C) 一定不是函数()f x 的极值点 (D) 是否为函数()f x 的极值点还不能确定7.求曲线22x y -=的单调区间、极值、拐点并研究图形的凹向.8.求函数32)1()4()(+⋅-=x x x f 的极值和拐点并讨论函数图形的单调性与凹向.9. 证明不等式:13(0)x x≥->.10. 证明方程5510x x -+=在(0,1)内有且仅有一个实根. (提示:设5()51f x x x =-+,利用零点存在定理和罗尔中值定理.) 11. 证明不等式:ln(1)1xx x x<+<+ (0x >). (提示:对()ln(1)f t t =+在[0,]x 上使用拉格朗日中值定理.)第三章 导数1.设函数()f x 依次是,,sin x ne x x ,则()()n fx =____ ,!,sin()2x ne n x π+.2.若直线12y x b =+是抛物线2y x =在某点处的法线,则b =_____.32 3.设)(x f 是可导函数,则220()()limx f x x f x x∆→+∆-=∆( D ).(A) 0 (B) 2()f x (C) 2()f x ' (D) 2()()f x f x '4.若0()sin 20ax e x f x b x x ⎧<=⎨+≥⎩ 在0x = 处可导,则,a b 值应为( A ).(A) 2,1a b == (B) 1,2a b == (C) 2,1a b =-= (D) 1,2a b ==- 5.设函数()y f x =有01()3f x '=,则0x ∆→ 时,该函数在0x x =的微分dy 是( B ).(A) 与x ∆等价的无穷小(B) 与x ∆同价的无穷小,但不是等价无穷小 (C) 比x ∆低阶的无穷小 (D) 比x ∆高阶的无穷小6.曲线21y ax =+在点1x =处的切线与直线112y x =+垂直,则a =__ _. -1 7.设()2xf x =,则0()(0)limx f x f x→''-=____. 2ln 28.)(x f =21sin00x x xx ⎧≠⎪⎨⎪=⎩ 在点x=0处 D .A.连续且可导B.连续,不可导C.不连续D .可导,但导函数不连续9.设()f x ''存在,求函数()f x y e-=的二阶导数. ()2[(())()]f x y ef x f x -'''''=-10.2ln(1)x y e =+,求dy . 2222ln(1)1x xx e x dy e dx dx e⋅'=+=+.11.arctanyxe =确定y 是x 的函数,求导数x y '.第一、二章 函数极限与连续1. )(x f 定义域是[2,3],则)9(2x f -的定义域是___. ]5,5[-2. 设x x g -=2)(,当1≠x 时,[]1)(-=x xx g f ,则=)23(f _ _. -13. 设函数)(x f 和)(x g ,其中一个是偶函数,一个是奇函数,则必有( D ). (A))()()()(x g x f x g x f -=-+- (B) )()()()(x g x f x g x f +-=-+-(C) )()()()(x g x f x g x f ⋅=-⋅- (D) )()()()(x g x f x g x f ⋅-=-⋅-4.()()()10201521213lim16x x x x →∞+++. 53()25.()()111lim 13352121n n n →∞⎛⎫+++⎪ ⎪••-+⎝⎭. 12 6. 231sin 53limxx x x -∞→. 37. 设⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0sin01)1()(1x e x x x x x x f x ,求)(lim 0x f x →. e8. 0x →512。
数学必修二:微积分中的定积分习题答案
数学必修二:微积分中的定积分习题答案在微积分学习的过程中,掌握定积分的概念和求解方法是非常重要的。
本文将提供一些关于定积分的习题,并给出详细的解答,帮助读者更好地理解和掌握定积分的应用。
一、基础习题1. 求函数f(x)=2x的定积分∫[1, 3] 2x dx的值。
解答:利用定积分的定义,首先求出原函数F(x) = x^2,在[1, 3]范围内,F(3) - F(1)即为所求的定积分的值。
F(x) = x^2∫[1, 3] 2x dx = [x^2]1^3 = 3^2 - 1^2 = 8。
2. 计算定积分∫[-2, 2] |x| dx。
解答:分段函数|x|的定义为:当x≥0时,|x| = x;当x<0时,|x| = -x。
所以在[-2, 2]范围内,|x|可分为两个部分,负值和正值。
∫[-2, 2] |x| dx = ∫[-2, 0] -x dx + ∫[0, 2] x dx。
根据定积分的性质,负号可以提出定积分符号外,所以上式等于:= -∫[-2, 0] x dx + ∫[0, 2] x dx。
根据定积分的定义,∫[-2, 0] x dx = [x^2/2]_(-2)^0 = (0^2/2) - ((-2)^2/2) = 2。
同样,∫[0, 2] x dx = [x^2/2]_0^2 = 2^2/2 - 0^2/2 = 2。
将上述结果代入原式得:-∫[-2, 0] x dx + ∫[0, 2] x dx = -2 + 2 = 0。
二、综合习题1. 求函数f(x) = x^3 - 2x在[-1, 2]上的定积分。
解答:首先求出原函数F(x),F(x) = (x^4/4) - (x^2)。
∫[-1, 2] (x^3 - 2x)dx = [(x^4/4) - (x^2)]_(-1)^2。
将x代入方程得:= (2^4/4) - (2^2) - [(-1)^4/4] - [(-1)^2] = 8/4 - 4 - 1/4 - 1。
3.6定积分与微积分基本定理
科 目 数学 年级 高三 备课人 高三数学组第 课时 3.6定积分与微积分基本定理考纲定位 了解定积分的概念及几何意义;了解微积分基本定理.【考点整合】 1、定积分()baf x dx ⎰的几何意义:2、定积分的性质: (1)()______bakf x dx =⎰(2)12[()()]______________baf x f x dx ±=⎰(3)()()______()bc aaf x dx f x dx a c b =+<<⎰⎰其中3、微积分基本定理一般地,如果()f x 是区间[,]a b 上的连续函数,并且()()F x f x '=,那么()___________baf x dx =⎰【典型例题】一、利用微积分基本定理求函数的积分 1、计算定积分:(1)32(1)xdx +⎰ (2)0sin xdx π⎰ (3)20sin xdx π⎰2、(2010 湖南)421d x x⎰等于( ) A .2ln 2- B .2ln 2 C .ln 2- D .ln 23、(2011 福建)1(2)xe x dx +⎰等于( )A .1B .1e -C .eD .1e +4、(2013 湖南)计算1213x dx -⎰的值等于 .二、利用积分求区域面积5、(2012 湖北)已知二次函数()y f x =的图像如图所示,则它与x 轴所围图形的面积为( )A.25π B.43 C.32 D.2π6、(2012 福建)如图所示,在边长为1的正方形OABC 中任取一点P ,xyo y f (x)=abS则点P 恰好取自阴影部分的概率为( ) A .41 B .51 C .61 D .71 7、已知函数,则21()f x dx -⎰等于( )A .3B .4C .3.5D .4.58、(2011 湖南)由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A .12 B .1 C .32D .3【上本作业】已知实数0a ≠,函数2()(2),()f x ax x x R =-∈.(1)若函数()f x 有极大值为3227,求实数a 的值; (2)在第(1)问的前提下,求1()f x dx ⎰的值.【课后反思】3.6定积分与微积分基本定理 参考答案题号 1 2 3 4 5 6 7 8 答案122DC2BCCD上本作业:解:(1)32()44f x ax ax ax =-+则2()384(32)(2)f x ax ax a a x x '=-+=--令()0f x '=,则2,23x x ==或, 由于()f x 的极大值为3227,而(2)0f =故232()327f =,所以1a =.(2)32()44f x x x x =-+11324321000141411()(44)(2)|2434312f x dx x x x dx x x x =-+=-+=-+=⎰⎰。
定积分及微积分基本定理练习题及答案
1.4定积分与微积分基本定理练习题及答案1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x2-x)dx B .S =⎠⎛01(x -x2)dxC .S =⎠⎛01(y2-y)dyD .S =⎠⎛01(y -y)dy [答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数.[解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =⎠⎛01(x -x2)dx.2.(2010·日照模考)a =⎠⎛02xdx ,b =⎠⎛02exdx ,c =⎠⎛02sinxdx ,则a 、b 、c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b [答案] D[解读] a =⎠⎛02xdx =12x2|02=2,b =⎠⎛02exdx =ex|02=e2-1>2,c =⎠⎛02sinxdx =-cosx|02=1-cos2∈(1,2),∴c<a<b.3.(2010·理,7)由曲线y =x2,y =x3围成的封闭图形面积为( ) A.112B.14C.13D.712 [答案] A[解读] 由⎩⎪⎨⎪⎧y =x2y =x3得交点为(0,0),(1,1).∴S =⎠⎛01(x2-x3)dx =⎪⎪⎪⎝ ⎛⎭⎪⎫13x3-14x401=112.[点评] 图形是由两条曲线围成的时,其面积是上方曲线对应函数表达式减去下方曲线对应函数表达式的积分,请再做下题:(2010·师大附中)设点P 在曲线y =x2上从原点到A(2,4)移动,如果把由直线OP ,直线y =x2及直线x =2所围成的面积分别记作S1,S2.如图所示,当S1=S2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169 C.⎝ ⎛⎭⎪⎫43,157 D.⎝ ⎛⎭⎪⎫45,137 [答案] A[解读] 设P(t ,t2)(0≤t ≤2),则直线OP :y =tx ,∴S1=⎠⎛0t (tx -x2)dx =t36;S2=⎠⎛t 2(x2-tx)dx =83-2t +t36,若S1=S2,则t =43,∴P ⎝ ⎛⎭⎪⎫43,169.4.由三条直线x =0、x =2、y =0和曲线y =x3所围成的图形的面积为( ) A .4 B.43C.185D .6[答案] A[解读] S =⎠⎛02x3dx =⎪⎪⎪x4402=4. 5.(2010·省考试院调研)⎠⎛1-1(sinx +1)dx 的值为( )A .0B .2C .2+2cos1D .2-2cos1 [答案] B[解读] ⎠⎛1-1(sinx +1)dx =(-cosx +x)|-11=(-cos1+1)-(-cos(-1)-1)=2.6.曲线y =cosx(0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2π B .3π C.3π2D .π [答案] A [解读] 如右图, S =∫02π(1-cosx)dx =(x -sinx)|02π=2π.[点评] 此题可利用余弦函数的对称性①②③④面积相等解决,但若把积分区间改为⎝ ⎛⎭⎪⎫π6,π,则对称性就无能为力了. 7.函数F(x)=⎠⎛0xt(t -4)dt 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 [答案] B[解读] F ′(x)=x(x -4),令F ′(x)=0,得x1=0,x2=4, ∵F(-1)=-73,F(0)=0,F(4)=-323,F(5)=-253.∴最大值为0,最小值为-323. [点评] 一般地,F(x)=⎠⎛0x φ(t)dt 的导数F ′(x)=φ(x).8.已知等差数列{an}的前n 项和Sn =2n2+n ,函数f(x)=⎠⎛1x 1t dt ,若f(x)<a3,则x的取值围是( )A.⎝⎛⎭⎪⎫36,+∞B .(0,e21) C .(e -11,e) D .(0,e11) [答案] D[解读] f(x)=⎠⎛1x 1t dt =lnt|1x =lnx ,a3=S3-S2=21-10=11,由lnx<11得,0<x<e11.9.(2010·一中)如图所示,在一个长为π,宽为2的矩形OABC ,曲线y =sinx(0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 随机投一点(该点落在矩形OABC 任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π4 [答案] A[解读] 由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =⎠⎛0πsinxdx =-cosx|0π=-(cos π-cos0)=2,再根据几何概型的算法易知所求概率P =S S 矩形OABC =22π=1π.10.(2010·质检)函数f(x)=⎩⎪⎨⎪⎧x +2-2≤x<02cosx 0≤x ≤π2的图象与x 轴所围成的图形面积S为( )A.32B .1 C .4 D.12 [答案] C[解读] 面积S =∫π2-2f(x)dx =⎠⎛0-2(x +2)dx +∫π202cosxdx =2+2=4.11.(2010·二十中)设函数f(x)=x -[x],其中[x]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g(x)=-x3,f(x)在区间(0,2)上零点的个数记为m ,f(x)与g(x)的图象交点的个数记为n ,则⎠⎛mn g(x)dx 的值是( )A .-52B .-43C .-54D .-76[答案] A[解读] 由题意可得,当0<x<1时,[x]=0,f(x)=x ,当1≤x<2时,[x]=1,f(x)=x -1,所以当x ∈(0,2)时,函数f(x)有一个零点,由函数f(x)与g(x)的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛m n g(x)dx =⎠⎛14⎝ ⎛⎭⎪⎫-x 3dx =⎪⎪⎪-x2614=-52.11.(2010·调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b 、c 可以相等),若关于x 的方程x2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.34 [答案] A[解读] 方程x2+2bx +c =0有实根的充要条件为Δ=4b2-4c ≥0,即b2≥c ,由题意知,每场比赛中甲获胜的概率为p =⎠⎛01b2db 1×1=13.12.(2010·省调研)已知正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),曲线y =x2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 的概率是( )A.12B.14C.13D.25 [答案] C[解读] 如图,正方形面积1,区域M 的面积为S =⎠⎛01x2dx=13x3|01=13,故所求概率p =13.2.如图,阴影部分面积等于( )A .23B .2- 3 C.323D.353 [答案] C[解读] 图中阴影部分面积为S =⎠⎛-31 (3-x2-2x)dx =(3x -13x3-x2)|1-3=323.3.⎠⎛024-x2dx =( )A .4πB .2πC .π D.π2[答案] C[解读] 令y=4-x2,则x2+y2=4(y≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S=14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是( )A.在t1时刻,甲车在乙车前面B.在t1时刻,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面[答案] A[解读] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间行驶的路程就是该时间段速度函数的定积分,即速度函数v(t)的图象与t轴以及时间段围成区域的面积.从图象知:在t0时刻,v 甲的图象与t 轴和t =0,t =t0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t0围成区域的面积,因此,在t0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t1时刻,v 甲的图象与t 轴和t =t1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t1围成区域的面积,所以,可以断定:在t1时刻,甲车还是在乙车的前面.所以选A.5.(2012·日照模拟)向平面区域Ω={(x ,y)|-π4≤x ≤π4,0≤y ≤1}随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12 C.π2-1 D.2π [答案] D [解读]平面区域Ω是矩形区域,其面积是π2,在这个区6. (sinx -cosx)dx 的值是( )A .0 B.π4 C .2 D .-2[答案] D[解读] (sinx -cosx)dx =(-cosx -sinx) =-2.7.(2010·模拟)⎠⎛02(2-|1-x|)dx =________.[答案] 3[解读] ∵y =⎩⎪⎨⎪⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x|)dx =⎠⎛01(1+x)dx +⎠⎛12(3-x)dx=(x +12x2)|10+(3x -12x2)|21=32+32=3.8.(2010·十二中)已知函数f(x)=3x2+2x +1,若⎠⎛1-1f(x)dx =2f(a)成立,则a =________.[答案] -1或13[解读] ∵⎠⎛1-1f(x)dx =⎠⎛1-1(3x2+2x +1)dx =(x3+x2+x)|1-1=4,⎠⎛1-1f(x)dx =2f(a),∴6a2+4a +2=4,∴a =-1或13.9.已知a =∫π20(sinx +cosx)dx ,则二项式(a x -1x )6的展开式中含x2项的系数是________.[答案] -192[解读] 由已知得a =∫π20(sinx +cosx)dx =(-cosx +sinx)|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是Tr +1=(-1)r ×Cr 6×26-r ×x3-r ,令3-r =2得,r =1,故其系数为(-1)1×C16×25=-192.10.有一条直线与抛物线y =x2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解读] 设直线与抛物线的两个交点分别为A(a ,a2),B(b ,b2),不妨设a<b , 则直线AB 的方程为y -a2=b2-a2b -a(x -a), 即y =(a +b)x -ab.则直线AB 与抛物线围成图形的面积为S =⎠⎛a b[(a +b)x -ab -x2]dx =(a +b2x2-abx -x33)|b a =16(b -a)3,∴16(b -a)3=43, 解得b -a =2.设线段AB 的中点坐标为P(x ,y),其中⎩⎪⎨⎪⎧x =a +b 2,y =a2+b22.将b -a =2代入得⎩⎪⎨⎪⎧x =a +1,y =a2+2a +2.消去a 得y =x2+1.∴线段AB 的中点P 的轨迹方程为y =x2+1.能力拓展提升11.(2012·二测)等比数列{an}中,a3=6,前三项和S3=⎠⎛034xdx ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12[答案] C[解读] 因为S3=⎠⎛034xdx =2x2|30=18,所以6q +6q2+6=18,化简得2q2-q -1=0,解得q =1或q =-12,故选C.12.(2012·模拟)已知(xlnx)′=lnx +1,则⎠⎛1elnxdx =( )A .1B .eC .e -1D .e +1 [答案] A[解读] 由(xlnx)′=lnx +1,联想到(xlnx -x)′=(lnx +1)-1=lnx ,于是⎠⎛1elnxdx =(xlnx -x)|e 1=(elne -e)-(1×ln1-1)=1.13.抛物线y2=2x 与直线y =4-x 围成的平面图形的面积为________. [答案] 18[解读] 由方程组⎩⎪⎨⎪⎧y2=2x ,y =4-x ,解得两交点A(2,2)、B(8,-4),选y 作为积分变量x =y22、x =4-y ,∴S =⎠⎛-42 [(4-y)-y22]dy =(4y -y22-y36)|2-4=18.14.已知函数f(x)=ex -1,直线l1:x =1,l2:y =et -1(t 为常数,且0≤t ≤1).直线l1,l2与函数f(x)的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S2表示.直线l2,y 轴与函数f(x)的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解读] 由题意得S1+S2=⎠⎛0t (et -1-ex +1)dx +⎠⎛t 1(ex -1-et +1)dx =⎠⎛0t (et -ex)dx+⎠⎛t 1(ex -et)dx =(xet -ex)|t 0+(ex -xet)|1t =(2t -3)et +e +1,令g(t)=(2t -3)et +e +1(0≤t ≤1),则g ′(t)=2et +(2t -3)et =(2t -1)et ,令g ′(t)=0,得t =12,∴当t ∈[0,12)时,g ′(t)<0,g(t)是减函数,当t ∈(12,1]时,g ′(t)>0,g(t)是增函数,因此g(t)的最小值为g(12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2. 15.求下列定积分.(1)⎠⎛1-1|x|dx 。
定积分及微积分基本定理练习题(附答案)
1.4定积分与微积分基本定理练习题及答案1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是()A .S =1(x2-x)dx B .S =01(x -x2)dx C .S =01(y2-y)dy D .S =01(y -y)dy[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数.[解读]两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =1(x -x2)dx. 2.(2010·日照模考)a =02xdx ,b =02exdx ,c =02sinxdx ,则a 、b 、c 的大小关系是()A .a<c<bB .a<b<cC .c<b<aD .c<a<b [答案] D [解读]a =2xdx =12x2|02=2,b =02exdx =ex|02=e2-1>2,c =02sinxdx =-cosx|02=1-cos2∈(1,2),∴c<a<b.3.(2010·理,7)由曲线y =x2,y =x3围成的封闭图形面积为()A.112B.14C.13D.712[答案] A[解读]由y =x2y =x3得交点为(0,0),(1,1).∴S =01(x2-x3)dx =13x3-14x401=112.[点评]图形是由两条曲线围成的时,其面积是上方曲线对应函数表达式减去下方曲线对应函数表达式的积分,请再做下题:(2010·师大附中)设点P 在曲线y =x2上从原点到A(2,4)移动,如果把由直线OP ,直线y =x2及直线x =2所围成的面积分别记作S1,S2.如图所示,当S1=S2时,点P 的坐标是( )A.43,169B.45,169C.43,157 D.45,137[答案] A[解读]设P(t ,t2)(0≤t ≤2),则直线OP :y =tx ,∴S1=t(tx -x2)dx =t36;S2=t2(x2-tx)dx =83-2t +t36,若S1=S2,则t =43,∴P 43,169.4.由三条直线x =0、x =2、y =0和曲线y =x3所围成的图形的面积为()A .4 B.43C.185D .6[答案] A [解读]S =2x3dx =x4402=4.5.(2010·省考试院调研)1-1(sinx +1)dx 的值为()A .0B .2C .2+2cos1D .2-2cos1 [答案] B[解读] 1-1(sinx +1)dx =(-cosx +x)|-11=(-cos1+1)-(-cos(-1)-1)=2.6.曲线y =cosx(0≤x ≤2π)与直线y =1所围成的图形面积是()A .2πB .3πC.3π2D .π[答案] A [解读]如右图,S =∫02π(1-cosx)dx =(x -sinx)|02π=2π.[点评] 此题可利用余弦函数的对称性①②③④面积相等解决,但若把积分区间改为π6,π,则对称性就无能为力了.7.函数F(x)=xt(t -4)dt 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值[答案] B[解读]F ′(x)=x(x -4),令F ′(x)=0,得x1=0,x2=4,∵F(-1)=-73,F(0)=0,F(4)=-323,F(5)=-253.∴最大值为0,最小值为-323.[点评]一般地,F(x)=x φ(t)dt 的导数F ′(x)=φ(x).8.已知等差数列{an}的前n 项和Sn =2n2+n ,函数f(x)=1x 1t dt ,若f(x)<a3,则x 的取值围是()A.36,+∞B .(0,e21) C .(e -11,e) D .(0,e11) [答案] D [解读]f(x)=1x 1t dt =lnt|1x =lnx ,a3=S3-S2=21-10=11,由lnx<11得,0<x<e11.9.(2010·一中)如图所示,在一个长为π,宽为2的矩形OABC ,曲线y =sinx(0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 随机投一点(该点落在矩形OABC 任何一点是等可能的),则所投的点落在阴影部分的概率是()A.1πB.2πC.3πD.π4[答案] A[解读]由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =0πsinxdx =-cosx|0π=-(cos π-cos0)=2,再根据几何概型的算法易知所求概率P =S S 矩形OABC =22π=1π.10.(2010·质检)函数f(x)=x +2-2≤x<02cosx0≤x ≤π2的图象与x 轴所围成的图形面积S 为( )A.32B .1 C .4 D.12[答案] C[解读]面积S =∫π2-2f(x)dx =0-2(x +2)dx +∫π202cosxdx =2+2=4.11.(2010·二十中)设函数f(x)=x -[x],其中[x]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g(x)=-x3,f(x)在区间(0,2)上零点的个数记为m ,f(x)与g(x)的图象交点的个数记为n ,则mng(x)dx 的值是()A .-52B .-43C .-54D .-76[答案] A[解读]由题意可得,当0<x<1时,[x]=0,f(x)=x ,当1≤x<2时,[x]=1,f(x)=x -1,所以当x ∈(0,2)时,函数f(x)有一个零点,由函数f(x)与g(x)的图象可知两个函数有4个交点,所以m =1,n =4,则mng(x)dx =14-x3dx =-x2614=-52. 11.(2010·调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b 、c 可以相等),若关于x 的方程x2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为()A.13B.23C.12D.34[答案] A[解读]方程x2+2bx +c =0有实根的充要条件为Δ=4b2-4c ≥0,即b2≥c ,由题意知,每场比赛中甲获胜的概率为p =01b2db 1×1=13. 12.(2010·省调研)已知正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),曲线y=x2(x≥0)与x轴,直线x=1构成区域M,现将一个质点随机地投入正方形中,则质点落在区域M的概率是( )A.12 B.14C.13 D.25[答案] C[解读] 如图,正方形面积1,区域M的面积为S=1x2dx=13x3|01=13,故所求概率p=13.2.如图,阴影部分面积等于( )A.23B.2- 3C.323D.353[答案] C[解读] 图中阴影部分面积为S=-31 (3-x2-2x)dx=(3x-13x3-x2)|1-3=323.3.24-x2dx=( )A.4π B.2πC.π D.π2[答案] C[解读] 令y=4-x2,则x2+y2=4(y≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S=14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是( )A.在t1时刻,甲车在乙车前面B.在t1时刻,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面[答案] A[解读] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间行驶的路程就是该时间段速度函数的定积分,即速度函数v(t)的图象与t轴以及时间段围成区域的面积.从图象知:在t0时刻,v甲的图象与t轴和t=0,t=t0围成区域的面积大于v乙的图象与t轴和t=0,t=t0围成区域的面积,因此,在t0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D错误;同样,在t1时刻,v甲的图象与t轴和t=t1围成区域的面积,仍然大于v乙的图象与t轴和t=t1围成区域的面积,所以,可以断定:在t1时刻,甲车还是在乙车的前面.所以选 A.5.(2012·日照模拟)向平面区域Ω={(x,y)|-π4≤x≤π4,0≤y≤1}随机投掷一点,该点落在曲线y=cos2x下方的概率是( )A.π4B.12C.π2-1 D.2π[答案] D[解读]平面区域Ω是矩形区域,其面积是π2,在这个区6. (sinx-cosx)dx的值是( )A.0 B.π4C.2 D.-2[答案] D[解读] (sinx-cosx)dx=(-cosx-sinx) =-2. 7.(2010·模拟)2(2-|1-x|)dx=________.[答案] 3[解读] ∵y=1+x 0≤x≤13-x 1<x≤2,∴02(2-|1-x|)dx =01(1+x)dx +12(3-x)dx =(x +12x2)|10+(3x -12x2)|21=32+32=3.8.(2010·十二中)已知函数f(x)=3x2+2x +1,若1-1f(x)dx =2f(a)成立,则a =________.[答案] -1或13[解读]∵1-1f(x)dx=1-1(3x2+2x +1)dx =(x3+x2+x)|1-1=4,1-1f(x)dx =2f(a),∴6a2+4a +2=4,∴a =-1或13.9.已知a =∫π20(sinx +cosx)dx ,则二项式(ax -1x)6的展开式中含x2项的系数是________.[答案] -192 [解读]由已知得a =∫π20(sinx +cosx)dx =(-cosx +sinx)|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是Tr +1=(-1)r ×Cr 6×26-r ×x3-r ,令3-r =2得,r =1,故其系数为(-1)1×C16×25=-192. 10.有一条直线与抛物线y =x2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解读]设直线与抛物线的两个交点分别为A(a ,a2),B(b ,b2),不妨设a<b ,则直线AB 的方程为y -a2=b2-a2b -a (x -a),即y =(a +b)x -ab.则直线AB 与抛物线围成图形的面积为S =ab[(a +b)x -ab -x2]dx =(a +b 2x2-abx -x33)|ba =16(b -a)3,∴16(b -a)3=43,解得b -a =2.设线段AB 的中点坐标为P(x ,y),其中x =a +b 2,y =a2+b22.将b -a =2代入得x =a +1,y =a2+2a +2.消去a 得y =x2+1.∴线段AB 的中点P 的轨迹方程为y =x2+1. 能力拓展提升11.(2012·二测)等比数列{an}中,a3=6,前三项和S3=034xdx ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12[答案] C [解读]因为S3=34xdx =2x2|30=18,所以6q +6q2+6=18,化简得2q2-q -1=0,解得q =1或q =-12,故选 C.12.(2012·模拟)已知(xlnx)′=lnx +1,则1elnxdx =( )A .1B .eC .e -1D .e +1 [答案] A[解读]由(xlnx)′=lnx +1,联想到(xlnx -x)′=(lnx +1)-1=lnx ,于是1elnxdx=(xlnx -x)|e1=(elne -e)-(1×ln1-1)=1.13.抛物线y2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案] 18 [解读]由方程组y2=2x ,y =4-x ,解得两交点A(2,2)、B(8,-4),选y 作为积分变量x=y22、x =4-y ,∴S =-42 [(4-y)-y22]dy =(4y -y22-y36)|2-4=18.14.已知函数f(x)=ex -1,直线l1:x =1,l2:y =et -1(t 为常数,且0≤t ≤1).直线l1,l2与函数f(x)的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S2表示.直线l2,y 轴与函数f(x)的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解读] 由题意得S1+S2=t(et -1-ex +1)dx +t1(ex -1-et +1)dx =0t(et -ex)dx +t1(ex -et)dx =(xet -ex)|t 0+(ex -xet)|1t =(2t -3)et +e +1,令g(t)=(2t -3)et +e +1(0≤t ≤1),则g ′(t)=2et +(2t -3)et =(2t -1)et ,令g ′(t)=0,得t =12,∴当t ∈[0,12)时,g ′(t)<0,g(t)是减函数,当t ∈(12,1]时,g ′(t)>0,g(t)是增函数,因此g(t)的最小值为g(12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分.(1)1-1|x|dx 。
2023年高考数学微专题练习专练15定积分与微积分基本定理含解析理
专练15 定积分与微积分基本定理命题范围:积分的概念与运算、微积分基本定理.[基础强化]一、选择题1.⎠⎛12(x -2)d x 的值为( )A .-1B .0C .1D .-122.若f(x)=x 2+2⎠⎛01f(x)d x ,则⎠⎛01f(x)d x =( )A .-1B .-13C .13D .13.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .22B .4 2C .2D .44.若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b5.⎠⎛-11(1-x 2+sin x)d x =( )A .π4B .π2C .πD .π2+26.设k =⎠⎛0π(sin x -cos x)d x ,若(1-kx)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 8=( )A .-1B .0C .1D .2567.设f(x)=⎩⎨⎧1-x 2,x∈[-1,1),x 2-1,x∈[1,2],则⎠⎛-12f(x)d x 的值为( )A .π2+43B .π2+3C .π4+43D .π4+38.如图是函数y =cos (2x -5π6)在一个周期内的图像,则阴影部分的面积是( )A .34B .54C .32D .32-349.已知等差数列{a n }中,a 5+a 7=⎠⎛0πsin x d x ,则a 4+2a 6+a 8的值为( )A .8B .6C .4D .2二、填空题10.[2022·安徽滁州二模]设f(x)=e x,则⎠⎛01[f′(x)+2x]d x________.11.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.12.已知函数f(x)=x 3+ax 2+bx(a ,b∈R )的图像如图所示,它与直线y =0在原点处相切,此切线与函数图像所围区域(图中阴影部分)的面积为274,则a 的值为________.13.[2022·西藏拉萨中学月考]由曲线y =x ,直线y =x -2及y 轴所围成的平面图形的面积为________.14.[2022·甘肃张掖期末]如图,在矩形ABDC 中,AB =1,AC =2,O 为AC 中点,抛物线的一部分在矩形内,点O 为抛物线顶点,点B ,D 在抛物线上,在矩形内随机地放一点,则此点落在阴影部分的概率为________.15.[2022·宁夏石嘴山一模]⎠⎛-11(e x+|x|)d x =________.16.[2022·黑龙江一模]在棱长为2的正方体ABCDA 1B 1C 1D 1的侧面ABB 1A 1内有一动点P 到直线A 1B 1与直线BC 的距离相等,则在侧面ABB 1A 1上动点P 的轨迹与棱AB 、BB 1所围成的图形面积是________.专练15 定积分与微积分基本定理1.D ⎠⎛12(x -2)d x =⎝ ⎛⎭⎪⎫12x 2-2x |21 =12×22-2×2-⎝ ⎛⎭⎪⎫12-2=-12.2.B 令⎠⎛01f(x)d x =m ,则f(x)=x 2+2m ,∴⎠⎛01f(x)d x =⎠⎛01x 2d x +⎠⎛012m d x =(13x 2+2mx)|10=m ,得m =-13.3.D 由⎩⎪⎨⎪⎧y =4x ,y =x 3,得x =0或x =2或x =-2(舍), ∴S=⎠⎛02(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 4|20 =4.4.D a =⎠⎛02x 2d x =13x 3|20 =83,b =⎠⎛02x 3d x =14x 4|20 =4,c =⎠⎛02sin x d x =(-cos x )|20 =1-cos2,∵1-cos2<83<4,∴c <a <b .5.B ⎠⎛-11(1-x 2+sin x )d x =⎠⎛-111-x 2d x +⎠⎛-11sin x d x ,∵y =sin x 为奇函数,∴⎠⎛-11sin x d x =0,又⎠⎛-111-x 2d x 表示以坐标原点为圆心,以1为半径的上半个圆的面积,∴⎠⎛-111-x 2d x=π2, ∴⎠⎛-11( 1-x 2+sin x )d x =π2.6.B 因为k =⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x =-cos x |π0 -sin x |π0 =2,所以(1-kx )8=(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8.令x =1,得a 0+a 1+a 2+…+a 8=(1-2)8=1,令x =0,得a 0=1,所以a 1+a 2+…+a 8=(a 0+a 1+a 2+…+a 8)-a 0=1-1=0.故选B.7.A ⎠⎛-12f(x)d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+(13x 3-x)|21 =π2+43.故选A .8.B S =-∫π60cos (2x -5π6)d x +∫2π3π6cos (2x -5π6)d x=-⎣⎢⎡⎦⎥⎤12sin (2x -5π6)|π60+[12sin (2x -5π6)]|2π3π6=-[12sin (-π2)-12sin (-5π6)]+[12sin π2-12sin (-π2)]=14+1=54.故选B .9.C ∵a 5+a 7=⎠⎛0πsin x d x =(-cos x)|π0 =-(cosπ-cos 0)=2,又{a n }为等差数列, ∴a 5+a 7=2a 6=2,∴a 6=1, ∴a 4+2a 6+a 8=4a 6=4. 10.e解析:因为f(x)=e x, 所以错误!错误!0=e +1-1=e . 11.16解析:如图,阴影部分的面积即为所求.解⎩⎪⎨⎪⎧y =x 2,y =x ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,则A(1,1). 故所求面积为S =⎠⎛01(x -x 2)d x =(12x 2-13x 3)|10 =16.12.-3解析:由已知得f′(0)=0,因为f′(x)=3x 2+2ax +b ,所以b =0,则f(x)=x 3+ax 2,令f(x)=0,得x 1=0,x 2=-a.由切线y =0与函数图像所围区域(题图中阴影部分)的面积为274,得 -⎠⎛0-a f(x)d x =274,即-⎠⎛0-a (x 3+ax 2)d x =274,即-(14x 4+a 3x 3)-a 0 =274,所以-⎣⎢⎡⎦⎥⎤a 44+a3×(-a )3=274,即a 412=274,解得a =±3,由题图可知a<0,∴a=-3. 13.163解析:由定积分知 S =⎠⎛4x -(x -2)d x =(23x 32-12x 2+2x)|1=(23×8-8+8)-0=163. 14.13解析:由题可知矩形面积为2,建立如图所示的平面直角坐标系,则抛物线方程为y 2=2x(0≤x≤1), 抛物线及BD 围成的面积为2(1-⎠⎛01x d x)=23,点落在阴影部分的概率为232=13.15.e -1e+1解析:⎠⎛-11(e x+|x|)d x =⎠⎛-1(e x-x)d x +⎠⎛01(e x+x)d x =(e x-x 22)|0-1 +(e x +x 22)|10 =(e-0)[e -1-(-1)22]+(e 1+122)-[e 0+0]=1-1e +12+e +12-1=e -1e +1.16.43解析:以点A 为坐标原点,AB 、AD 、AA 1所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,设点P(x ,0,z),则0≤x≤2,0≤z≤2,则点P 到直线A 1B 1的距离为2-z , 因为BC⊥平面AA 1B 1B ,BP ⊂平面AA 1B 1B , 所以,BC⊥BP,所以,点P 到直线BC 的距离为|BP →|=(x -2)2+z 2, 由已知可得(z -2)2+z 2=2-z ,化简可得z =x -x24,当x =2时,z =1,即点P 的轨迹交棱BB 1于点(2,0,1),因此,在侧面ABB 1A 1上动点P 的轨迹与棱AB 、BB 1所围成的图形面积是⎠⎛02(x -x 24)d x =(12x 2-x 312)|20 =43.。
微积分习题答案第七章定积分
4
cos
3 2
3
x
2 0
4 3
(12)
2 dx 1 x x3
21 ( 1x
x
x2
)dx 1
[ln
x
1 2
ln(1
x2 )]
2 1
1 2
ln
8 5
4 dx t
2. (1) 1 1 x
x
2 1 2tdt 1 1t
2
2
(1
1
)dt
1 1t
2[t ln(t 1)]
2 1
2(1 ln 2) 3
0
1
(x 2
0
1 0
f (t)dt) 0
1
xdx 2
0
1
f (t)dt
0
1
dx
0
1 x2 2
1 0
2
1
f (x)dx
0
.
1 f (x)dx 1x2
0
2
1 0
1 2
1
f (t)dt
0
练习 7.4
1
f (x) x 2 2 f (t)dt x 1. 0
1.(1)
2 cos5 x sin2 xdx 2 (1 sin2 )4 sin2 xd sin x
22 3 3
1 x2
0 (1 x 2 )2
dx
4 0
tan 2 sec4
t t
sec2
tdt
4 sin 2 tdt
0
4 0
1
cos 2t 2
dt
1 2
(t
1 2
sin t)
4 0
1 ( 2) 8
(8)
2024届高考数学复习:精选历年真题、好题专项(定积分与微积分基本定理)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(定积分与微积分基本定理)练习一、 基础小题练透篇1.若a =⎠⎛02 x 2d x ,b =⎠⎛02 x 3d x ,c =⎠⎛02 sin x d x ,则a ,b ,c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b2.由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为( )A .329 B .2-ln 3 C .4+ln 3 D .4-ln 33.[2023ꞏ甘肃省兰州市第一次月考]求由抛物线y =2x 2与直线x =0,x =t(t >0),y =0所围成的曲边梯形的面积时,将区间[0,t]等分成n 个小区间,则第i -1个区间为( )A .⎣⎡⎦⎤i -1n ,i nB .⎣⎡⎦⎤i n ,i +1n C .⎣⎡t (i -1)n ,ti n D .⎣⎡t (i -2)n ,t (i -1)n4.若数列{a n }是公比不为1的等比数列,且a 2 018+a 2 020=⎠⎛024-x 2 d x ,则a 2 017(a 2 019+2a 2 021+a 2 023)=( )A .4π2B .2π2C .π2D .3π25.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t +251+t(t 的单位:s ,v 的单位:m /s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是( )A .1+25ln 5B .8+25ln 113 C .4+25ln 5 D .4+50ln 26.已知分段函数f(x)=⎩⎪⎨⎪⎧1+x 2,x ≤0,e -x,x>0,则⎠⎛13 f(x -2)d x =( ) A .3+1e B .2-e C .73 -1e D .2-1e7.设函数f(x)=ax 2+b(a ≠0),若⎠⎛03 f(x)d x =3f(x 0),x 0>0,则x 0=________.8.[2023ꞏ河南省信阳考试]⎠⎛12 (1x +1-(x -2)2 )d x =________.二、能力小题提升篇1.[2023ꞏ兰州检测]曲线y =x 2和直线x =0,x =1,y =14 所围成的图形(如图中阴影部分所示)的面积为( )A .23B .13C .12D .142.[2023ꞏ河北唐山联考]曲线y =x -1x +1与其在点(0,-1)处的切线及直线x =1所围成的封闭图形的面积为( )A .1-ln 2B .2-2ln 2C .2ln 2-1D .ln 23.[2023ꞏ河南商丘检测]已知不等式1-3x +a <0的解集为(-1,2),则⎠⎛0a (2e 2x +x)d x=( )A .e +12B .e -12 C .e 2+12 D .e 2-124.[2023ꞏ河南省洛阳市考试]由抛物线y =-x 2+4x -3及其在点M(0,-3)和点N(3,0)处的两条切线所围成的图形的面积为( )A .94B .92C .74 D .25.[2023ꞏ江西省新余市第一中学考试]函数的图象f(x)=⎩⎪⎨⎪⎧x +4,-4≤x<0,4cos x ,0≤x ≤π2 与x 轴所围成的封闭图形的面积为________.6.[2023ꞏ吉林省东北师范大学模拟]设y =f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分⎠⎛01 f(x)d x ,先产生两组(每组n 个)区间[0,1]上的均匀随机数x 1,x 2,…,x n 和y 1,y 2,…,y n ,由此得到n 个点(x i ,y i )(i =1,2,…,n),再数出其中满足y i >f(x i )(i =1,2,…,n)的点有m 个,那么由随机模拟方法可得积分⎠⎛01f(x)d x 的近似值为________.7.[2023ꞏ吉林省实验中学检测]若f(x)=⎩⎪⎨⎪⎧f (x -4),x>0,2x+∫π60cos 3x d x ,x ≤0, 则f(2 018)=________.三、高考小题重现篇1.[湖南卷]由直线x =-π3 ,x =π3 ,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A .12B .1C .32 D .32.[湖北卷]若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数.给出三组函数:①f(x)=sin 12 x ,g(x)=cos 12 x ②f(x)=x +1,g(x)=x -1 ③f(x)=x ,g(x)=x 2. 其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .33.[江西卷]若f(x)=x 2+2⎠⎛01 f(x)d x ,则⎠⎛01 f(x)d x =( )A .-1B .-13C .13 D .14.[湖北卷]已知二次函数y =f(x)的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5 B .43 C .32 D .π2 5.[湖南卷]⎠⎛02 (x -1)d x =________.6.[福建卷]如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.四、经典大题强化篇1.[2023ꞏ四川绵阳模拟]A ,B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t ) m/s ,在B 站恰好停车,试求:(1)A ,C 间的距离; (2)B ,D 间的距离.2.[2023ꞏ江西省赣州市赣县月考]已知函数f (x )=ax +ln x (a ∈R ).(1)若a =2,求导函数曲线y =f ′(x )与直线x =1,x =e 及x 轴所围成的面积; (2)求f (x )的单调区间.参考答案一 基础小题练透篇1.答案:D答案解析:a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3 ⎪⎪ 2 0=83 ,b=⎠⎛02 x 3d x=⎝ ⎛⎭⎪⎫14x 4 ⎪⎪20=4,c =⎠⎛02 sin x d x =(-cos x )⎪⎪20=1-cos 2.∵cos 2∈[-1,1],∴1-cos 2∈[0,2],∴1-cos 2<83<4,故c<a<b.2.答案:D答案解析:S ==4-ln 3. 3.答案:D答案解析:在[0,t]上等间隔插入(n -1)个分点,把区间[0,t]等分成n 个小区间,每个小区间长度均为t n ,故第i -1个区间为⎣⎢⎡⎦⎥⎤t ()i -2n ,t ()i -1n .本题选择D 选项. 4.答案:C答案解析:根据定积分的几何意义,⎠⎛02 4-x 2d x 表示以原点为圆心,以2为半径的四分之一圆的面积,所以⎠⎛02 4-x 2d x =π.所以a 2 018+a 2 020=π,设a 2 018=a ,公比为q ,则a +aq 2=π,所以a 2 017(a 2 019+2a 2 021+a 2 023)=a q(aq +2aq 3+aq 5)=a 2(1+2q 2+q 4)=a 2(1+q 2)2=[a (1+q 2)]2=π2.5.答案:C答案解析:令v (t )=7-3t +251+t =0,又t>0,则t =4,汽车刹车的距离是⎠⎛04 ⎝ ⎛⎭⎪⎫7-3t +251+t d t =4+25ln 5.6.答案:C答案解析:⎠⎛13 f (x -2)d x =⎠⎛12 f (x -2)d x +⎠⎛23 f (x -2)d x =⎠⎛12 (x 2-4x +5)d x+⎠⎛23 e-x +2d x=⎝ ⎛⎭⎪⎫13x 3-2x 2+5x ⎪⎪21+(-e -x +2)⎪⎪ 32=[⎝ ⎛⎭⎪⎫13×23-2×22+5×2 -⎝ ⎛⎭⎪⎫13×13-2×12+5×1 ]+[(-e -3+2)-(-e -2+2)]=73 -1e.7.答案: 3答案解析:依题意得⎝ ⎛⎭⎪⎫a 3x 3+bx ⎪⎪⎪3=3(ax 20 +b ),即3ax 20 =9a (a≠0),x 20 =3(x 0>0),由此解得x 0= 3 .8.答案:ln 2+π4答案解析:由题意得,⎠⎛12 ⎝ ⎛⎭⎪⎫1x +1-(x -2)2 d x =⎠⎛12 1x d x +⎠⎛12 1-(x -2)2 d x=ln x|21 +⎠⎛12 1-(x -2)2 d x =ln 2+⎠⎛12 1-(x -2)2d x .根据定积分的几何意义可知,⎠⎛121-(x -2)2 d x 表示圆(x -2)2+y 2=1满足1≤x≤2,y≥0的这一部分面积,即圆面积的14 ,故⎠⎛12 1-(x -2)2d x =π4 .因此⎠⎛12 ⎝ ⎛⎭⎪⎫1x +1-(x -2)2 d x =ln 2+⎠⎛12 1-(x -2)2 d x =ln 2+π4 .二 能力小题提升篇1.答案:D答案解析:令x 2=14 ,得x =12 或x =-12 (舍去),所以所求的阴影部分的面积为∫120⎝ ⎛⎭⎪⎫14-x 2 d x +∫112⎝ ⎛⎭⎪⎫x 2-14 d x =⎝ ⎛⎭⎪⎫14x -x 33 ⎪⎪⎪120 +⎝ ⎛⎭⎪⎫x 33-14x ⎪⎪⎪112 =14 .2.答案:C答案解析:因为y =x -1x +1 ,所以y′=⎝ ⎛⎭⎪⎫x -1x +1 ′=2(x +1)2 ,则曲线y =x -1x +1 在(0,-1)处的切线的斜率k =2,切线方程为y =2x -1,则曲线y =x -1x +1 与其在点(0,-1)处的切线及直线x =1所围成的封闭图形的面积S =⎠⎛01 ⎝ ⎛⎭⎪⎫2x -1-x -1x +1 d x =⎠⎛01 (2x -1-1+2x +1 )d x =[x 2-2x +2ln (x +1)]⎪⎪⎪1=2ln 2-1. 3.答案:D答案解析:∵不等式1-3x +a <0,∴x +a -3x +a<0,∴(x +a )(x +a -3)<0,∴-a<x<-a +3,由于1-3x +a <0的解集为(-1,2),∴⎩⎪⎨⎪⎧-a =-1-a +3=2,解得a =1,∴⎠⎛0a(2e 2x+x )d x =⎠⎛01(2e 2x+x )d x =⎝ ⎛⎭⎪⎫e 2x +x 22 ⎪⎪⎪10 =e 2-12 .4.答案:A答案解析:∵y =-x 2+4x -3,则y′=-2x +4,在点M (0,-3)的切线斜率k 1=y′|x =0=4,切线方程y =4x -3,在点N (3,0)的切线斜率k 2=y′|x =3=-2,切线方程y =-2()x -3 ,联立方程⎩⎨⎧y =4x -3y =-2()x -3 ,解得⎩⎪⎨⎪⎧x =32y =3, 即两切线的交点坐标为⎝ ⎛⎭⎪⎫32,3 , 所围成的图形的面积为S =∫32[]()4x -3-()-x 2+4x -3 d x +∫332[]-2()x -3-()-x 2+4x -3 d x=∫320x 2d x +∫332 ()x 2-6x +9 d x =13 x 3|32 0+(13 x 3-3x 2+9x )|332=94 .故选A .5.答案:12答案解析:由题意可得:围成的封闭图形的面积为:S =⎠⎛-4(x +4)d x +∫π2 04cos x d x =(12 x 2+4x )|0-4 +4sin x|π2 0=0-()8-16 +4sin π2-0=12.6.答案:1-mn答案解析:由题意得满足y i ≤f (x i )(i =1,2,…,n )的点有n -m 个,故n -m n ≈⎠⎛01f (x )d x 1 ,即⎠⎛01 f (x )d x≈1-mn ,故积分⎠⎛01 f (x )d x 的近似值为1-mn .7.答案:712答案解析:当x≤0时,f (x )=2x+∫π60cos 3x d x =2x+sin 3x 3⎪⎪⎪π6=2x+13,所以f (2 018)=f (2)=f (-2)=14 +13 =712.三 高考小题重现篇1.答案:D答案解析:如图可得,∫π3-π3 cos x d x =sin x|π3 -π3=2sin π3 = 3 .2.答案:C答案解析:由题意,要满足f (x ),g (x )是区间[-1,1]上的一组正交函数,即需满足⎠⎛-11 f (x )g (x )d x =0.①⎠⎛-11 f (x )g (x )d x =⎠⎛-11 sin 12 x cos 12 x d x =12 ⎠⎛-11 sin x d x=⎝ ⎛⎭⎪⎫-12cos x |1-1 =0,故第①组是区间[-1,1]上的正交函数;②⎠⎛-11 f (x )·g (x )d x =⎠⎛-11(x +1)(x -1)d x = ⎠⎛-11(x 2-1)d x =⎝ ⎛⎭⎪⎫x 33-x |1-1 =-43 ≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11 f (x )g (x )d x =⎠⎛-11 x·x 2d x =⎠⎛-11 x 3d x =x 44 |1-1 =0,故第③组是区间[-1,1]上的正交函数.综上,其中为区间[-1,1]上的正交函数的组数是2.3.答案:B答案解析:不妨设⎠⎛01 f (x )d x =k ,则f (x )=x 2+2⎠⎛01 f (x )d x =x 2+2k ,所以⎠⎛01 f(x )d x =⎠⎛01 (x 2+2k )d x =⎝ ⎛⎭⎪⎫13x 3+2kx |10 =13 +2k =k ,得k =-13 ,即⎠⎛01 f (x )d x =-13. 4.答案:B答案解析:容易求得二次函数的答案解析式为f (x )=1-x 2,所以S =⎠⎛-11 (1-x 2)d x =⎝ ⎛⎭⎪⎫x -x 33 |1-1 =43 .5.答案:0答案解析:⎠⎛02 (x -1)d x =⎝ ⎛⎭⎪⎫12x 2-x |20 =12 ×22-2=0.6.答案:2e2答案解析:联立⎩⎪⎨⎪⎧y =e x,y =e , 解得x =1,因为y =e x与y =ln x 互为反函数,故所求阴影部分面积S =2⎠⎛01 (e -e x)d x =2,故所求概率P =2e2 .四 经典大题强化篇1.答案解析:(1)设A 到C 的时间为t 1 s ,则1.2t 1=24,解得:t 1=20,则AC =⎠⎛0201.2t d t =0.6t 2|200 =240(m ).即A 、C 间的距离为240 m . (2)设D 到B 的时间为t 2 s ,则24-1.2t 2=0,解得t 2=20,则BD =⎠⎛020 (24-1.2t )d t =(24t -0.6t 2)|200 =240(m ),即B 、D 间的距离为240 m . 2.答案解析:(1)由已知,当a =2时,f (x )=2x +ln x , ∴导函数曲线y =f′(x )与直线x =1,x =e 及坐标轴所围成的面积为:S =⎠⎛1e f′(x )d x =()2x +ln x |e1 =2e -1.(2)由题得f′(x )=a +1x=ax +1x (x>0), ①当a≥0时,由于x>0,则ax +1>0恒成立, 即f′(x )>0当x>0时恒成立,∴函数f (x )的单调递增区间为(0,+∞);②当a<0时,令f′(x )=0可得x =-1a>0,当x∈⎝ ⎛⎭⎪⎫0,-1a 时,f′(x )>0;当x∈⎝ ⎛⎭⎪⎫-1a ,+∞ 时,f′(x )<0, ∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞ . 综上,当a≥0时,函数f (x )的单调递增区间为()0,+∞ ;当a<0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞ .。
定积分与微积分含答案
定积分与微积分基本定理基础热身1.已知f (x )为偶函数,且⎠⎜⎛06f(x)d x =8,则⎠⎛6-6f(x)d x =( ) A .0 B .4 C .8 D .162. 设f(x)=⎩⎪⎨⎪⎧x 2,x∈[0,1],1x,x∈1,e ](其中e 为自然对数的底数),则⎠⎜⎛ef(x)d x 的值为( )B .2C .13.若a =⎠⎜⎛02x 2d x ,b =⎠⎜⎛02x 3d x ,c =⎠⎜⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b4.如图K 15-1,阴影部分的面积是( )图15-1A .2 3B .2- 3能力提升5.设函数f(x)=ax 2+1,若⎠⎜⎛1f(x)d x =2,则a =( )A .1B .2C .3D .46.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )B .17.一物体以v =+(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )A .260 mB .258 mC .259 mD . m8.若⎠⎜⎛0k(2x -3x 2)d x =0,则k 等于( ) A .0 B .1C .0或1D .以上均不对9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( )A . JB . JC . JD . J10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧K ,f x ≤K ,f x ,f x >K ,则当函数f (x )=1x ,K =1时,定积分⎠⎛214f K (x)d x 的值为________.(x -x 2)d x =________.12. ∫π20(sin x +a cos x)d x =2,则实数a =________.13.由抛物线y 2=2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________.14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f(x)的解析式.图K 15-215.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t(0<t≤1)与曲线C 1、C 2分别相交于点D 、B ,连接OD 、DA 、AB.(1)写出曲边四边形ABOD(阴影部分)的面积S 与t 的函数关系式S =f(t);(2)求函数S =f(t)在区间(0,1]上的最大值.图K 15-3难点突破16.(12分)已知点P 在曲线y =x 2-1上,它的横坐标为a(a>0),由点P 作曲线y =x 2的切线PQ(Q 为切点).(1)求切线PQ 的方程;(2)求证:由上述切线与y =x 2所围成图形的面积S 与a 无关.参考答案:【基础热身】1.D [解析] ⎠⎛6-6f(x)d x =2⎠⎜⎛6f(x)d x =2×8=16.2.A [解析] 根据积分的运算法则,可知∫e0f(x)d x 可以分为两段,即∫e 0f(x)d x =⎠⎜⎛01x 2d x +∫e 11x d x =13x 3⎪⎪⎪⎪⎪⎪10+ln x e 1=13+1=43,所以选A .3.D [解析] a =⎠⎜⎛2x 2d x =13x 3⎪⎪⎪20=83,b =⎠⎜⎛02x 3d x =14x 4⎪⎪⎪ 20=4,c =⎠⎜⎛2sin x d x =-cos x ⎪⎪⎪ 20=1-cos 2<2,∴c<a<b.4.C [解析] ⎠⎛1-3(3-x 2-2x)d x =⎝ ⎛⎭⎪⎫3x -13x 3-x 2⎪⎪⎪1-3=323. 【能力提升】5.C [解析] ⎠⎜⎛1f(x)d x =⎠⎜⎛01(ax 2+1)d x =ax 33+x ⎪⎪⎪10=a3+1=2,解得a =3.6.D [解析] 根据定积分的相关知识可得到:由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为:⎪⎪⎪S =∫π3-π3cos x d x =sin x π3-π3=sin π3-sin ⎝ ⎛⎭⎪⎫-π3=3,故选D .7.D [解析] ⎠⎜⎛48+d t =+⎪⎪⎪ 84=×64+×8-×16-×4=+52--26=.8.C [解析] ⎠⎜⎛0k (2x -3x 2)d x =⎠⎜⎛0k2x d x -⎠⎜⎛0k3x 2d x =x 2⎪⎪⎪⎪⎪⎪k 0-x 3k=k 2-k 3=0,∴k=0或k =1.9.D [解析] 由F(x)=kx ,得k =100,F(x)=100x ,错误!100x d x =(J ).10.2ln 2+1 [解析] 由题设f 1(x)=⎩⎪⎨⎪⎧1,1x≤1,1x ,1x >1,于是定积分⎠⎛214f 1(x )d x =⎠⎛1141x d x +⎠⎜⎛121d x =ln x⎪⎪⎪114+x⎪⎪⎪ 21=2ln 2+1.[解析] ⎠⎜⎛1(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫23x 32-13x 310=13. 12.1 [解析] ∫π20(sin x +a cos x)d x =(a sin x -cos x)错误!=⎝⎛⎭⎪⎫a sin π2-cos π2-a sin 0+cos 0=a +1=2,∴a=1.[解析] 如图所示,因为y 2=2x ,x∈⎣⎢⎡⎦⎥⎤0,12,⎪⎪⎪所以V =π∫1202x d x =πx 2120=π4.14.[解答] y =0在原点处相切知b =0,则有f (x )=x 3+ax 2,令f (x )=0,得x 3+ax 2=0,可得x =0或x =-a (-a >0,即a <0).可以得到图象与x 轴交点为(0,0),(-a,0),故∫-a 0-f (x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫-x 44-ax 33-a 0=-a 44+a 43=a 412=274,a=-3,所以f (x )=x 3-3x 2.15.[解答] (1)由⎩⎪⎨⎪⎧y =x 2,y =-x 2+2ax ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =a ,y =a 2.∴O (0,0),A (a ,a 2).又由已知得B (t ,-t 2+2at ),D (t ,t 2),∴S =⎠⎜⎛0t(-x 2+2ax )d x -12t ×t 2+12(-t 2+2at -t 2)×(a -t ) =⎝ ⎛⎭⎪⎫-13x 3+ax 2⎪⎪⎪t-12t 3+(-t 2+at )×(a -t ) =-13t 3+at 2-12t 3+t 3-2at 2+a 2t =16t 3-at 2+a 2t .故S =f (t )=16t 3-at 2+a 2t (0<t ≤1).(2)f ′(t )=12t 2-2at +a 2,令f ′(t )=0,即12t 2-2at +a 2=0,解得t =(2-2)a 或t =(2+2)a .∵0<t ≤1,a >1,∴t =(2+2)a 应舍去.①若(2-2)a ≥1,即a ≥12-2=2+22,∵0<t ≤1,∴f ′(t )≥0.∴f (t )在区间(0,1]上单调递增,S 的最大值是f (1)=a 2-a +16.②若(2-2)a <1,即1<a <2+22,(i)当0<t <(2-2)a 时,f ′(t )>0, (ii)当(2-2)a <t ≤1时,f ′(t )<0.∴f (t )在区间(0,(2-2)a )上单调递增,在区间[(2-2)a ,1]上单调递减.∴f (t )的最大值是f ((2-2)a )=16[(2-2)a ]3-a [(2-2)a ]2+a 2(2-2)a =22-23a 3.综上所述f (t )max=⎩⎪⎨⎪⎧a 2-a +16⎝ ⎛⎭⎪⎪⎫a ≥2+22,22-23a 3⎝ ⎛⎭⎪⎪⎫1<a <2+22.【难点突破】16.[解答] (1)设点P 的坐标为(a ,a 2-1),又设切点Q 的坐标为(x ,x 2).则k PQ =a 2-1-x 2a -x ,由y ′=2x 知a 2-1-x 2a -x=2x ,解得:x =a +1或x =a -1.所以所求的切线方程为2(a +1)x -y -(a +1)2=0或2(a -1)x -y -(a -1)2=0.(2)证明:S =⎠⎛a a -1[x 2-2(a -1)x +(a -1)2]d x +∫a +1a[x 2-2(a +1)x +(a +1)2]d x =23.故所围成的图形面积S =23,此为与a 无关的一个常数.。
高考数新人教A一轮复习专题练习 3.3 定积分与微积分基本定理
1.设连续函数f(x)>0,则当a<b 时,定积分∫()b a f x dx 的符号( ) A.一定是正的 B.一定是负的C.当0<a<b 时是正的,当a<b<0时是负的D.以上结论都不对 【答案】 A【解析】 由∫()b a f x dx 的几何意义及f(x)>0,可知∫()ba f x 表示x=a,x=b,y=0与y=f(x)围成的曲边梯形的面积. ∴∫()b a f x dx>0.2. ∫22ππ- (1+cosx)dx 等于( )A.πB.2C.π-2D.π+2【答案】 D【解析】 ∫22ππ-(1+cosx)dx=(x+sinx)|22ππ-2(π=+sin 22)[ππ--+sin 2()]2π-=+π. 3.用S 表示图中阴影部分的面积,则S 的值是( )A. ∫()c a f x dxB.| ∫()c a f x dx|C. ∫()b a f x dx+∫()cb f x dxD. ∫()cb f x dx-∫()b a f x dx【答案】 D【解析】 由定积分的几何意义知选项D 正确.4.(2012山东荷泽模拟)设函数()mf x x ax =+的导函数则∫21()f x -dx 的值等于( ) A.56 B.12 C.23 D.16【答案】 A【解析】 由于()m f x x ax =+的导函数为f′(x)=2x+1,所以2()f x x x =+,于是∫21()f x -dx=∫221()x x -313(x -212)x |2516=.5.直线y=2x+3与抛物线2y x =所围成的图形面积为 . 【答案】323【解析】 由 223y x y x =+,⎧⎨=,⎩得1213x x =-,=. ∴面积S=∫31(23)x -+dx-∫321x -dx 2(3)x x =+|33113x --|33213-=. 1. ∫412x dx 等于( )A.-2ln2B.2ln2C.-ln2D.ln2【答案】 D【解析】 ∫412x dx=lnx |42=ln4-ln2=ln2.2.(2011福建高考,理5) ∫10(e 2)xx +dx 等于( ) A.1B.e-1 C.e D.e+1【答案】 C【解析】 ∵被积函数e 2x x +的一个原函数为e 2xx +,∴∫10(e 2)x x +dx=(e 2)x x +|10(=e 121)(+-e 0+3.已知f(x)= 210101x x x ⎧,-≤≤,⎨,<<,⎩则∫11()f x -dx 的值为 ( )A.32B.23-C.23D.43【答案】 D【解析】 ∫11()f x -dx=∫021x -dx+∫101dx 313x=|01x -+|10 14331=+=.4.函数f(x)= 2110cosx 0x x x π+,-≤<,⎧⎨,≤≤⎩ 的图象与x 轴所围成的封闭图形的面积为( ) A.32B.1C.2D.12【答案】 A【解析】 根据定积分的几何意义结合图形可得所求的封闭图形的面积为1211S =⨯⨯+∫20πcosxdx 12=+sinx |2π12=+sin 2π-sin032=.5.函数y=∫(x x -cos 22)t t ++dt( )A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确【答案】 A【解析】 y=(sin 332)t t t ++|2xx -=sin 3234x x x ++,为奇函数6.(2011湖南高考,理6)由直线330x x y ππ=-,=,=与曲线y=cos x 所围成的封闭图形的面积为( ) A.12 B.1【答案】 D【解析】 结合图形可得:S=∫33ππ-cosxdx=sin x |33ππ-3π-3()π-=7.由曲线32y x y x =,=围成的封闭图形的面积为( )A.112B.14C.13D.712【答案】 A【解析】 因为2y x =与3y x =的交点为(0,0),(1,1), 故所求封闭图形的面积为∫102x dx-∫103x d 313x x =|10414x -|101113412=-=,选A.8.曲线1x y =与直线y=x,x=2所围成的图形面积为 . 【答案】32-ln2【解析】 S=∫211()x x -d 212(x x =-lnx)|2312=-ln2. 9.如果∫10()f x dx=1, ∫20()f x dx=-1,则∫21()f x dx= .【答案】 -2【解析】 ∵∫20()f x dx=∫10()f x dx+∫21()f x dx, ∴∫21()f x dx=∫20()f x dx-∫10()f x dx=-1-1=-2.10.由曲线2y x =和直线2(01)t t ,∈,所围成的图形(阴影部分)的面积的最小值为 .【答案】14【解析】 围成图形的阴影部分的面积3S t =-∫20t x dx+∫12t x dx 2324133(1)t t t t --=-+.令S′2420t t =-=,解得12t =或t=0(舍去).可判断当12t =时S 最小1min 4S ,=.11.计算下列定积分.(1) ∫2211(2)x x -dx;(2) ∫322dx;(3) ∫30π(sinx-sin2x)dx.【解】 (1) ∫2211(2)x x -d 323(x x =-lnx)|21 163=-ln 214332-=-ln2.(2) ∫322dx=∫312(2)x x ++dx212(x =+lnx+2x)|32 92(=+ln3+6)-(2+ln2+4)=ln 3922+.(3) ∫30π(sinx-sin2x)dx=(-cos 12x +cos2x)|30π11112424()(1)=----+=-.12.已知f(x)为二次函数,且f(-∫10()f x -2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值.【解】 (1)设2()(0)f x ax bx c a =++≠,则f′(x)=2ax+b. 由f(-1)=2,f′(0)=0,得 20a b c b -+=,⎧⎨=⎩即20c a b =-,⎧⎨=.⎩∴2()(2)f x ax a =+-.又∫10()f x dx=∫120[(2)]ax a +-dx 313[(2)]ax a x =+-|120322a =-=-. ∴a=6,c=-4.从而2()64f x x =-. (2)∵2()64[11]f x x x =-,∈-,, ∴当x=0时min ()4f x ,=-; 当1x =±时max()2f x =.13.如图所示,直线y=kx 分抛物线2y x x =-与x 轴所围图形为面积相等的两部分,求k 的值.【解】 抛物线2y x x =-与x 轴两交点的横坐标为1201x x =,=, 所以,抛物线与x 轴所围图形的面积S=∫120()x x -d 23123()x x x =-|1106=.又由 2y x x y kx ⎧=-,⎨=,⎩ 可得抛物线2y x x =-与y=kx 两交点的横坐标为3401x x k =,=-,所以,2S =∫120()k x x kx ---d 231123()k x x x -=-|13106(1)k k -=-.又知16S =,所以312(1)k -=,于是11k ==14.一条水渠横断面为抛物线型,如图,渠宽AB=4米,渠深CO=2米,当水面距地面0.5米时,求水的横断面的面积.【解】 如图,建立直角坐标系,设抛物线方程为22x py =,代入(2,2)得2p=2,∴22x y =.将点(x,1.5)代入22x y =得x =∴水的横断面的面积为S=(1.2125)x -dx=(1.3165)x x -|.∴水的横断面的面积为平方米.。
高中高三数学 定积分与微积分基本定理练习题-人教版高三全册数学试题
4.若 x2dx=9,则常数T的值为________.
解析:∵ ′=x2,
∴ x2dx= x3 = T3-0=9,∴T=3.
答案:3
5.如右图所示,则由两条曲线y=-x2,x2=-4y及直线y=-1所围成图形的面积为________.
解析:由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由 得C(1,-1).
同理,得D(2,-1).
故所求图形的面积S=2 [- -(-x2)]dx+ [- -(-1)]dx =2 dx- ( -1)dx =2 -( -x) = .
答案:
《定积分与微积分基本定理》
1.若S1= x2dx,S2= dx,S3= exdx,则S1,S2,S3的大小关系为( )
A. S1<S2<S3B. S2<S1<S3
C. S2<S3<S1D. S3<S2<S1
解析:S1= x2dx= x3 = ,
S2= dx=lnx =ln2,
S3= exdx=ex =e2-e=e(e-1)>e> ,
所以S2<S1<S3,故选B.
答案:B
2.设f(x)= 则
f(x)dx等于( )
A. B.
C. D. 不存在
解析:本题画图求解,更为清晰,如图,
f(x)dx= x2dx+ (2-x)dx
= x3+ )= .
答案:C
3.计算定积分 dx=________.
解析: dx表示圆x2+y2=22与x=0,x=2,y=0围成的图形的面积.根据定积分的几何意义,得 dx=π.
1定积分与微积分基本定理理含答案版
定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .2.如图,阴影部分面积等于( )A .2 3B .2- 3 C.323 D.353[答案] C[解析] 图中阴影部分面积为S =⎠⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 3.⎠⎛024-x 2d x =( )A .4πB .2πC .π D.π2[答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .在t 1时刻,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 [答案] A[解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的面积,因此,在t 0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t 1时刻,v 甲的图象与t 轴和t =t 1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t 1围成区域的面积,所以,可以断定:在t 1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}内随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12C.π2-1 D.2π[答案] D[解析] 平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 B.π4 C .2 D .-2 [答案] D[解析] 2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎛02(2-|1-x |)d x =________.[答案] 3 [解析]∵y =⎩⎨⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x |)d x =⎠⎛01(1+x )d x +⎠⎛12(3-x )d x=(x +12x 2)|10+(3x -12x 2)|21=32+32=3. 9.已知a =20(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案] -192 [解析] 由已知得a =2(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r 6×26-r×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析] 设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a 2b -a (x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b )x -ab -x 2]d x=(a +b 2x 2-abx -x 33)|b a =16(b -a )3,∴16(b -a )3=43,解得b -a =2.设线段AB 的中点坐标为P (x ,y ), 其中⎩⎪⎨⎪⎧x =a +b 2,y =a 2+b 22.将b -a =2代入得⎩⎨⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12 D .-1或-12[答案] C [解析] 因为S 3=⎠⎛034x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1 [答案] A[解析] 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案] 18 [解析]由方程组⎩⎨⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎛-42 [(4-y )-y 22]dy =(4y -y 22-y36)|2-4=18.14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解析] 由题意得S 1+S 2=⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1(e x -1-e t +1)d x =⎠⎛0t (e t -e x )d x +⎠⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e+1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t =(2t -1)e t ,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分. (1)⎠⎛1-1|x |d x; (2)⎠⎛πcos 2x2d x ;(3)∫e +121x -1d x . [解析] (1)⎠⎛1-1|x |d x =2⎠⎛1x d x =2×12x 2|10=1.(2)⎠⎛0πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |π0+12sin x |π=π2. (3)∫e +121x -1d x =ln(x -1)|e +12=1.16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). ∴S 阴影=⎠⎛a0[0-(-x 3+ax 2)]d x=(14x 4-13ax 3)|0a =112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )A.16+π2 B .π C .1 D .0 [答案] B[解析] 22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x 是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎨⎧-x -1 (-1≤x <0),cos x (0≤x <π2),的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )A.2+π4B.12 C .1 D.32[答案] D[解析] 由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案] 22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.[答案] 33[解析] ⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a 3+c =ax 20+c ,即ax 20=a 3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33.5.设n =⎠⎛12(3x 2-2)d x ,则(x -2x)n 展开式中含x 2项的系数是________.[答案] 40 [解析] ∵(x 3-2x )′=3x 2-2,∴n =⎠⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为T r +1=C r 5x 5-r (-2x)r =(-2)r C r 5x 5-3r 2 ,令5-3r2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。
微积分 定积分 练习题(有答案)
微积分定积分练习题(有答案)1利用定积分的几何意义计算1-x 2d x . 2.计算定积分⎠⎛12(x +1)d x . 3.定积分⎠⎛a b f (x )d x 的大小 ( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、区间[a ,b ]和ξi 的取法都有关4.在求由x =a ,x =b (a <b ),y =0及y =f (x )(f (x )≥0)围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列结论中正确的个数是 ( )①n 个小曲边梯形的面积和等于S ;②n 个小曲边梯形的面积和小于S ;③n 个小曲边梯形的面积和大小S ;④n 个小曲边梯形的面积和与S 之间的大小关系不确定A .1 B .2 C .3 D .45.求由曲线y =e x ,直线x =2,y =1围成的曲边梯形的面积时,若选择x 为积分变量,则积分区间为 ( )A .[0,e2]B .[0,2]C .[1,2]D .[0,1]6.⎠⎛011d x 的值为( )A .0 B .1 C.12 D .2 7.lim n →+∞ ⎝ ⎛⎭⎪⎫1n +2n +…+n +1n ·1n写成定积分是________. 8.已知⎠⎛02f (x )d x =3,则⎠⎛02[f (x )+6]d x =________. 9.利用定积分的几何意义求⎠⎛069-(x -3)2d x . 10 求下列定积分:(1)⎠⎛12(x 2+2x +1)d x ; (2)⎠⎛0π(sin x -cos x )d x ; (3)⎠⎛12⎝ ⎛⎭⎪⎫x -x 2+1x d x ;(4)⎠⎛0-π(cos x +e x )d x . (5)⎠⎛01x 2d x (6)⎠⎛01(2x +1)d x ; (7)⎠⎛12⎝ ⎛⎭⎪⎫2x +1x d x (7)⎠⎛121x d x ; (8)⎠⎛01x 3d x ; (9)⎠⎛1-1e x d x .11 求y =-x 2与y =x -2围成图形的面积S.12.由直线x =12,x =2,曲线y =1x 及x 轴所围图形的面积为( )A.154B.174C.12ln2 D .2ln213.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b . 14.已知函数f (x )=⎠⎛0x (at 2+bt +1)d t 为奇函数,且f (1)-f (-1)=13,求a ,b 的值. 15. 求正弦曲线y =sin x 在[0,2π]上围成的图形的面积________16. (sin x +cos x )d x 的值是 ( )A .0 B.π4 C .2 D .417.下列各式中,正确的是( ) A.⎠⎛a b f ′(x )d x =f ′(b )-f ′(a ) B.⎠⎛ab f ′(x )d x =f ′(a )-f ′(b ) C.⎠⎛a b f ′(x )d x =f (b )-f (a ) D.⎠⎛ab f ′(x )d x =f (a )-f (b ) 18.已知自由落体的运动速度v =gt (g 为常数),则当t ∈[1,2]时,物体下落的距离为( )A.12g B .g C.32g D .2g19.如图中阴影部分面积用定积分表示为________.20e 2x d x =________.答案1. π2。
2-定积分与微积分基本定理(理)含答案
(理)定积分与微积分基本定理一、选择题1.S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析 本题考查微积分基本定理. S 1=⎠⎛12x 2d x =x 33|21=73.S 2=⎠⎛121x d x =ln x |21=ln 2-ln 1=ln 2.S 3=⎠⎛12e x d x =e x |21=e 2-e =e (e -1).令e =2.7,∴S 3>3>S 1>S 2.故选B . 答案 BA .3B .4C .3.5D .4.5解析答案 C3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是()A .⎪⎪⎪⎪⎪⎪⎠⎛02(x 2-1)d x B .⎠⎛02(x 2-1)d xC.⎠⎛02|x 2-1|d xD .⎠⎛01(x 2-1)d x +⎠⎛02(x 2-1)d x解析 面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎠⎛02|x 2-1|d x ,故选C.答案 C4.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为()A.2π5B.43C.32D.π2解析答案 B5.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln5B .8+25ln 113 C .4+25ln5D .4+50ln2解析 令v (t )=0,7-3t +251+t=0∴3t 2-4t -32=0,∴t =4,则汽车行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝ ⎛⎭⎪⎪⎫7-3t +251+t d t = ⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )|40=7×4-32×42+25ln5-0=4+25ln5,故选C.答案 C6.如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A.ln22B.1-ln22C.1+ln22D.2-ln22解析答案 C 二、填空题7.若⎠⎛0T x 2d x =9,则常数T 的值为________.解析 ∵⎠⎛0T x 2d x =x 33|T 0=T 33=9,∴T =3.答案 38.计算:⎠⎛01(x 2+1-x 2)d x =______.解析 ⎠⎛01(x 2+1-x 2)d x =⎠⎛01x 2d x +⎠⎛011-x 2d x =x 3310+14π=13+π4.答案 13+π49.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B ⎝ ⎛⎭⎪⎫12,5、C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解析 设直线为y =kx +b ,代入A ,B 两点,得y =10x . 代入B ,C 两点,则⎩⎪⎨⎪⎧5=12k +b ,0=k +b ,∴k =-10,b =10.∴f (x )=⎩⎪⎨⎪⎧10x , 0≤x ≤12,-10x +10, 12<x ≤1.∴y =xf (x )=⎩⎪⎨⎪⎧10x 2, 0≤x ≤12,-10x 2+10x , 12<x ≤1.答案 54 三、解答题10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x的值.解 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0).由⎠⎛01(ax +b )d x =5,得⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5.① 由⎠⎛01xf (x )d x =176,得⎠⎛01(ax 2+bx )d x =176. 即⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=176. ∴13a +12b =176.②解①②,得a =4,b =3.∴f (x )=4x +3. 于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln2-4 =4+3ln2.11.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1, 所以抛物线与x 轴所围图形的面积 S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-x 33|10=12-13=16. 又可得抛物线y =x -x 2与y =kx 两交点的横坐标为x ′1=0,x ′2=1-k ,所以S 2=∫1-k0(x -x 2-kx )d x=⎝ ⎛⎭⎪⎫1-k 2x 2-x 33|1-k0 =16(1-k )3.又知S =16,所以(1-k )3=12. 于是k =1- 312=1-342.12.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2. (1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积.解 (1)由题意知,f ′(x )=3x 2+2ax +b ,f (1)=-2,且f ′(1)=0,即⎩⎨⎧1+a +b =-2,3+2a +b =0,解得⎩⎨⎧a =0,b =-3.(2)由(1)可知,f (x )=x 3-3x . 作出曲线y =x 3-3x 的草图如图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,所以函数图象关于原点成中心对称.所以所求图形的面积为。
微积分试题及答案pdf
微积分试题及答案pdf一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的导数是:A. \( 3x^2 - 12x + 11 \)B. \( 3x^2 - 12x + 6 \)C. \( x^2 - 12x + 11 \)D. \( x^2 - 6x + 11 \)答案:A2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:B3. 函数 \( y = \ln(x) \) 的不定积分是:A. \( x\ln(x) + C \)B. \( \frac{x}{\ln(x)} + C \)C. \( x\ln(x) - x + C \)D. \( x + C \)答案:A4. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 在第一象限的交点坐标是:A. \( (1, 2) \)B. \( (2, 4) \)C. \( (-1, -2) \)D. \( (-2, -4) \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = \sin(x) \) 的二阶导数是 \( \_\_\_\_\_ \)。
答案:\( -\sin(x) \)2. 曲线 \( y = e^x \) 在 \( x = 0 \) 处的切线斜率是\( \_\_\_\_\_ \)。
答案:13. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_ \)。
答案:\( x\ln(x) - x + C \)4. 定积分 \( \int_{0}^{1} e^x dx \) 的值是 \( \_\_\_\_\_ \)。
答案:\( e - 1 \)三、解答题(每题10分,共20分)1. 求函数 \( f(x) = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数值。
定积分与微积分基本定理随堂练习(含答案).doc
定积分与微积分基本定理基础巩固强化1.(2011 •宁夏银川一中月考)求曲线与y=x所围成图形的面积,其中正确的是()[答案]B[分析]根据定积分的几何意义,确定积分上、下限和被积函数.[解析]两函数图象的交点坐标是(0,0), (1,1),故积分上限是1, 下限是0,由于在[0,1]上,,故函数y =疽与y = x所围成图形的面积S = C\x ~ x2)dx.[答案]C[解析]图中阴影部分面积为S =「(3 - x2 - 2x)dx = (3x %2)l-3 = ~3~- J-33.J2A/4—x2dx=( )A.4TT B. 2TIC.71 D.T[答案]c[解析]令y = .4 _ x2,则x2 + y2 = 4(y^0),由定积分的几何意义知所求积分为图中阴影部分的面积,.*.S=^X K X22= 7t.Cz ,乙 Rt4.00"1已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为”甲和”乙(如图所示).那么对于图中给定的姑和S下列判断中一定正确的是()A.在h时刻,甲车在乙车前面B.在4 口寸刻,甲车在乙车后面C.在而时刻,两车的位置相同D.t.时刻后,乙车在甲车前面[答案]A[解析]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在如4时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数NO的图象与,轴以及时间段围成区域的面积.从图象知:在「0时刻,"甲的图象与♦轴和t = 0, t=t Q围成区域的面积大于华的图象与♦轴和f = 0, 围成区域的面积,因此,在£。
时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C, D错误;同样,在》时刻,"甲的图象与£轴和t=t{围成区域的面积,仍然大于"乙的图象与F轴和t=t x围成区域的面积,所以,可以断定:在4时刻,甲车还是在乙车的前面.所以选A.__ _IT 7T5.(2012-山东日照模拟)向平面区域Q={(x, y)|—云, OW)W1}内随机投掷一点,该点落在曲线y = cos2x下方的概率是B.?A-A 714D.271[答案]D[解析]平面区域。
定积分、微积分基本定理-高中数学知识点讲解(含答案)
定积分、微积分基本定理(北京习题集)(教师版)一.选择题(共6 小题)1)101.(2018 春•海淀区期中)dx (1xA.1 B.ln 10 1 C.ln10 D.101 1a 1 a ( )a2.(2018 春•海淀区校级期中)若(x )dx 1ln3 ,且,则的值为1 x2A. 3 B.1n3 C. 3 D.31)33.(2017•丰台区一模)定积分(2x ) dx (1xA.B.C.D.10 ln3 8 ln3 223 649f (x) g(x) [ 1 1]14.(2017 春•丰台区期末)若函数f x ,g(x) 满足 f (x)g(x)dx 0 ,则称,在区间,上是“互为( )1正交函数”.现给出三组函数:①f (x ) 2 ,g(x ) e x .②f (x ) x 1,g(x ) x 1;③f (x ) x ,g(x ) x2 其中“互为正交函数”的组数是 ( )A.0 B.1 C.2 D.31( )45.(2017 春•西城区校级期中)dx 等于2xA.21n 2 B. 21n 2 C.ln 2 D.ln 21a b( ) 6.(2017 春•朝阳区期末)若a xdx ,b sin xdx ,则的值是1 0A. 2 B.0 C.2 D.3二.填空题(共7 小题)1 37.(2017 秋•海淀区期中)定积分x dx 的值等于.12 28.(2017 秋•海淀区校级月考)计算:3x dx .2139.(2017 秋•东城区校级期中)定积分(2x )dx .1x3 210.(2017 秋•崇文区校级期中)x dx 的值等于.311.(2017 秋•西城区校级月考)如图中的曲线为( ) 2 ,则阴影部分面积为.f x x2 x第1页(共7页)3 212.(2017 春•西城区校级期中)x dx .213.(2017 春•海淀区校级期末)sin xdx .3三.解答题(共2 小题)14.(2013•宣武区校级模拟)计算下列定积分的值3 2(1)(4x x )dx ;12 5(2)(x 1) dx ;1(3)(x sin x)dx ;2(4).2 cos xdx2215.(2013•北京校级模拟)计算下列定积分(1);2 (3x sin x)dx2(2).323 9 x dx第2页(共7页)定积分、微积分基本定理(北京习题集)(教师版)参考答案与试题解析一.选择题(共6 小题)1)101.(2018 春•海淀区期中)dx (1xA.1 B.ln10 1 C.ln10 D.10【分析】根据定积分的计算法则计算即可.110 10【解答】解:dx lnx | ln10 ln1ln10 ,11x故选:C .【点评】本题考查了定积分的计算,关键是求出原函数,属于基础题.1 1a 1 a ( )a2.(2018 春•海淀区校级期中)若(x )dx 1ln3 ,且,则的值为1 x2A. 3 B.1n3 C. 3 D.3【分析】根据微积分基本定理,计算即可.1 1 1 1 1 1 1a x dx x lnx a a lna a lna ln【解答】解:( ) ( ) | ( ) ( 0) 13,2 2 211x 2 2 2 2 2 21 a 1 13 2 1 lnaln且,2 2 2解得a 3 ,故选:C .【点评】本题考查了定积分的计算,关键是求出原函数,属于基础题.1)33.(2017•丰台区一模)定积分(2x ) dx (1xA.B.C.D.10 ln3 8 ln3 223 64 9【分析】求出原函数,即可求出定积分.13 2 3【解答】解:(2x ) dx (x lnx ) | 8 ln3 ,11x故选:B .【点评】本题考查定积分,考查学生的计算能力,确定原函数是关键.f (x) g(x) [ 1 1]14.(2017 春•丰台区期末)若函数f x ,g(x) 满足 f (x)g(x)dx 0 ,则称,在区间,上是“互为( )1正交函数”.现给出三组函数:①f (x ) 2 ,g(x ) e x .②f (x ) x 1,g(x ) x 1;③f (x ) x ,g(x ) x2 其中“互为正交函数”的组数是 ( )第3页(共7页)A.0 B.1 C.2 D.3【分析】利用题意将原问题转化为考查函数奇偶性的问题,据此整理计算即可求得最终结果.y f (x)g(x)1【解答】解:函数,满足( ) ( ) 0 ,则为奇函数,f (x) g(x) f xg x dx1对于①:( ) 2 ,,不是奇函数,,不是区间,上的一组正交函数;f x g(x) e x y 2e x f (x) g(x) [ 1 1]对于②:,,则为偶函数,,不是区间,上的一组f (x) x 1 g(x) x 1 y (x 1)(x 1) x2 1 f (x) g(x) [ 1 1]正交函数;对于③:,,,为奇函数,,为区间,上的一组正交函数,f (x) x g(x) x2 y x3 f (x) g(x) [ 1 1]正交函数有 1 组,故选:B .【点评】本题考查定积分的性质,函数的奇偶性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.1( )45.(2017 春•西城区校级期中)dx 等于2xA.21n 2 B. 2 C. 2 D. 221n ln ln【分析】根据定积分的计算法则计算即可14 4【解答】解:dx lnx | ln4 ln2 2ln2 ln2 ln2 ,22x故选:D .【点评】本题考查了定积分的计算,属于基础题1a b( ) 6.(2017 春•朝阳区期末)若a xdx ,b sin xdx ,则的值是1 0A. 2 B.0 C.2 D.3【分析】根据定积分的定义计算即可.1 11 2 1 2 2【解答】解:a xdx x |[1 ( 1) ] 0 ,112 2,b sin xdx cos x | cos cos 0 2则0 2 2 .a b故选:C .【点评】本题考查了定积分的定义与计算问题,是基础题.二.填空题(共7 小题)1 37.(2017 秋•海淀区期中)定积分x dx 的值等于0.111 3 4 1【分析】由已知可得x dx x ,进而得到答案.|114第4页(共7页)1 1 1【解答】解:Q1 3 4 1x dx x |114 4 4故答案为:0【点评】本题考查的知识是定积分,求出原函数是解答的关键.2 28.(2017 秋•海淀区校级月考)计算:3x dx 16.2【分析】结合积分公式进行计算即可.2 23 2 3 3【解答】解:3x dx x | 2 ( 2) 8 8 16 ,22故答案为:16.【点评】本题主要考查积分的计算,结合积分公式是解决本题的关键.18 ln339.(2017 秋•东城区校级期中)定积分(2x )dx .1x1 33 2 3【分析】,由此能求出结果.(2x )dx (x lnx)x |x 1111 33 2 3【解答】解:(2x )dx (x lnx)x |x 111(3 ln3) (1 ln1)2 28 ln3.故答案为:8 ln3.【点评】本题考查函数的定积分的求法,考查导数、不定积分、定积分等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3 210.(2017 秋•崇文区校级期中)x dx 的值等于18.3【分析】利用微积分基本定理即可得出.x 27 2733 2 3【解答】解:.x dx | () 18333 3 3故答案为:18.【点评】本题考查了微积分基本定理,考查了推理能力与计算能力,属于基础题.11.(2017 秋•西城区校级月考)如图中的曲线为( ) 2 ,则阴影部分面积为.f x x x 823第5页(共7页)【分析】根据积分的几何意义求对应阴影部分的面积,即可得到结论.S f x dx fx dx 【解答】解:由积分的意义得阴影部分的面积 1 ( ) 0( )0 20 2 2 21(x 2x)dx 0 (x 2x)dx1 1( x x ) |( x x ) |3 2 0 3 2 21 03 31 1,4 48(1)( 8 4)()3 33 338故答案为:.3【点评】本题主要考查阴影部分面积是计算,利用积分的应用,建立积分关系是解决本题的关键.193 212.(2017 春•西城区校级期中)x dx .23【分析】根据定积分的运算法则,求解即可.1 1 193 2 3 3【解答】解:x dx x | (27 8) .223 3 319故答案为:.3【点评】本题考查了定积分的计算问题,是基础题.313.(2017 春•海淀区校级期末)sin xdx .23【分析】找出被积函数y sin x 的原函数,然后利用牛顿莱布尼兹公式计算即可得出答案.3 3【解答】解:sin xdx cos x ,故答案为:.2 233【点评】本题考查定积分的计算,找出被积函数的原函数,是解本题的关键,属于基础题.三.解答题(共2 小题)14.(2013•宣武区校级模拟)计算下列定积分的值3 2(1)(4x x )dx ;12 5(2)(x 1) dx ;1第6页(共7页)(3)(x sin x)dx ;2(4)cos xdx .222【分析】利用微积分基本定理和导数的运算法则即可得出.x 2033 2 2 3【解答】解:(1)x x dx x ;(4 ) (2 ) |113 3( 1) (x 1)6 1x 62 5 2(2)Q ( ) ( 1) ,(x 1) dx | ;5x16 16 62 2x(3)( sin ) ( cos ) | 1;2 x x dx x 22 81 cos 2x x sin 2x(4)cos xdx dx ( ) | .2 2 222 2 4 22 2 2【点评】熟练掌握微积分基本定理和导数的运算法则是解题的关键.15.(2013•北京校级模拟)计算下列定积分(1);2 (3x sin x)dx2(2) 3 9 x dx .32【分析】利用微积分基本定理和定积分的几何意义即可求出.3【解答】解:(1),原式;Q (x 3 cos x) |2 1(x 3 cos x ) 3x 2 sin x8(2)令,则,9 x 2 y… 0 x 2 y 2 9(y…0)3 29 xdx3 表示的是上半圆的面积,x 2 y 2 9(y…0)3 29 x dx392.【点评】熟练掌握微积分基本定理是解题的关键.第7页(共7页)。
微积分公式与定积分计算练习
微积分公式与定积分计算练习(附加三角函数公式)一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxe e '= ⑽()ln xx a a a'= ⑾()1ln x x '=⑿()1log ln x ax a '=⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nx n = (2)()()n ax bn ax be a e ++=⋅ (3)()()ln n xx n a a a=(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dxμμμ-= ⑶()sin cos d x xdx= ⑷()cos sin d x xdx=- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx=-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx=-⋅⑼()xxd ee dx = ⑽()ln xxd a aadx= ⑾()1ln d x dx x =⑿()1log ln xa d dx x a = ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+六、微分运算法则 ⑴()d u v du dv±=± ⑵()d cu cdu=⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a =+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x =++⎰⑾arcsin x c=+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a =++⎰2211ln 2x adx c x a a x a -=+-+⎰arcsinxca=+ln x c=+十、分部积分法公式⑴形如n axx e dx⎰,令nu x=,axdv e dx=形如sinnx xdx⎰令nu x=,sindv xdx=形如cosnx xdx⎰令nu x=,cosdv xdx=⑵形如arctannx xdx⎰,令arctanu x=,ndv x dx=形如lnnx xdx⎰,令lnu x=,ndv x dx=⑶形如sinaxe xdx⎰,cosaxe xdx⎰令,sin,cosaxu e x x=均可。
定积分与微积分基本定理
A.-1B.-
C. D.1
答案:B
解析:设t= f(x)dx,∴f(x)=x2+2t,∴ f(x)dx= = +2t=t,∴t=- ,即 f(x)dx=- .故选B.
二、非选择题
9.已知物体以速度v(t)=2t2(单位:m/s)做直线运动,则它在t=0s到t=3s内所走过的路程为________.
C.c<b<aD.c<a<b
答案:D
解析:a= x2dx= = ,
b= x3dx= =4,
c= sinxdx=(-cosx) =1-cos2.
∵cos2∈[-1,1],∴1-cos2∈[0,2],
∴1-cos2< <4,故c<a<b.故选D.
4.[优质试题·湖北鄂南高中月考]已知数列{an}为等差数列,且a2 013+a2 015= dx,则a2 014(a2 012+2a2 014+a2 016)的值为()
4.设函数f(x)= ,则 f(x)dx的值为()
A. + B. +3
C. + D. +3
答案:A
解析:根据定积分的性质可得 f(x)dx= dx+ (x2-1)dx,根据定积分的几何意义可知, dx表示以原点为圆心,以1为半径的圆的面积的 ,即 dx= ,∴ f(x)dx= + = + ,故选A.
A.1-ln2B.2-2ln2
C.2ln2-1D.ln2
答案:C
解析:因为y= ,所以y′= ′= ,则曲线y= 在(0,-1)处的切线的斜率k=2,切线方程为y=2x-1,则曲线y= 与其在点(0,-1)处的切线及直线x=1所围成的封闭图形的面积S= dx=∫ dx=[x2-2x+2ln(x+1)] =2ln2-1.故选C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分与微积分练习题及答案一、选择题:1如图,阴影部分面积等于( )A .2 3B .2- 3 C.323 D.353[答案] C[解析] 图中阴影部分面积为S =⎠⎛-31 (3-x2-2x)dx =(3x -13x3-x2)|1-3=323.2.⎠⎛024-x2dx =( )A .4πB .2πC .πD.π2[答案] C[解析] 令y =4-x2,则x2+y2=4(y≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.3.(2012·山东日照模拟)向平面区域Ω={(x ,y)|-π4≤x≤π4,0≤y≤1}内随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12C.π2-1D.2π[答案] D[解析] 平面区域Ω是矩形区域,其面积是π2,在这个区4.设f(x)=⎩⎪⎨⎪⎧x2, x ∈[0,1],2-x ,x ∈[1,2],则2⎰f(x)dx 等于 ( )A.34B.45C.56 D .不存在解析:数形结合,2⎰f(x)dx=1⎰x2dx+21⎰(2-x)dx=321211(2)3021x x x +-=3115(422)326x +--+=.答案:C 5.如图,函数y =-x2+2x +1与y =1相交形成一个闭合 图形(图中的阴影部分),则该闭合图形的面积是 ( ) A .1 B.43C. 3 D .2解析:函数y =-x2+2x +1与y =1的两个交点为(0,1)和(2,1),所以闭合图形的面积等于2⎰(-x2+2x +1-1)dx =2⎰(-x2+2x)dx =43.答案:B6.(2010·烟台模拟)若y =x⎰(sint +costsint)dt ,则y 的最大值是 ( )A .1B .2C .-72 D .0解析:y =x⎰(sint +costsint)dt =x⎰(sint +12sin2t)dt=(-cost -14cos2t)0x=-cosx -14cos2x +54=-cosx -14(2cos2x -1)+54=-12cos2x -cosx +32=-12(cosx +1)2+2≤2. 答案:B7.(2010·惠州模拟)⎠⎛02(2-|1-x|)dx =________.[答案] 3[解析] ∵y =⎩⎪⎨⎪⎧1+x 0≤x≤13-x 1<x≤2,∴⎠⎛02(2-|1-x|)dx =⎠⎛01(1+x)dx +⎠⎛12(3-x)dx=(x +12x2)|10+(3x -12x2)|21=32+32=3.8.(2012·太原模拟)已知(xlnx)′=lnx +1,则⎠⎛1e lnxdx =( )A .1B .eC .e -1D .e +1[答案] A[解析] 由(xlnx)′=lnx +1,联想到(xlnx -x)′=(lnx +1)-1=lnx ,于是⎠⎛1elnxdx =(xlnx -x)|e 1=(elne -e)-(1×ln1-1)=1.9.若函数f(x)=⎩⎪⎨⎪⎧-x -1 -,π2,的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )A.2+π4B.12C .1 D.32[答案] D[解析] 由图可知a =12+⎠⎜⎛0 π2cosxdx =12+sinx|π20=32.二、填空题:1.已知函数y =x2与y =kx(k >0)的图象所围成的阴影部分 (如图所示)的面积为43,则k =________.解析:直线方程与抛物线方程联立先求出积分区间为[0,k],再由k⎰(kx -x2)dx =(kx22-x33)0k=k36=43求得k =2.答案:22.如图,设点P 从原点沿曲线y =x2向点A(2,4)移动, 记直线OP 、曲线y =x2及直线x =2所围成的面积 分别记为S1,S2,若S1=S2,则点P 的坐标为________. 解析:设直线OP 的方程为y =kx, P 点的坐标为(x ,y), 则x⎰(kx -x2)dx =2x⎰(x2-kx)dx ,即(12kx2-13x3)0x =(13x3-12kx2)2x ,解得12kx2-13x3=83-2k -(13x3-12kx2),解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为(43,169).答案:(43,169)3.一辆汽车的速度—时间曲线如图所示,则该汽车在这一分钟内行驶的路程为_______米.解析:据题意,v 与t 的函数关系式如下:v =v(t)=⎩⎪⎨⎪⎧32t ,0≤t <20,50-t ,20≤t <40,10,40≤t≤60.所以该汽车在这一分钟内所行驶的路程为s =60()d v t t⎰=203d 2t t ⎰+4020(50)d t t -⎰+604010d t ⎰=34t2200+(50t -12t2)4020+10t4020=900米.答案:9004.已知函数f(x)=3x2+2x +1,若⎠⎛-11f(x)dx =2f(a)成立,则a =________.解析:⎠⎛-11 (3x2+2x +1)dx =(x3+x2+x)| 1-1=4,所以2(3a2+2a +1)=4,即3a2+2a -1=0,解得a =-1或a =13.答案:-1或135.(2010·温州模拟)若f(x)是一次函数,且1⎰f(x)dx =5,1⎰xf(x)dx =176,那么21⎰f(x)xdx 的值是________.解析:∵f(x)是一次函数,∴设f(x)=ax +b(a≠0),由1⎰(ax +b)dx =5得(12ax2+bx)10=12a +b =5, ①由1⎰xf(x)dx =176得1⎰(ax2+bx)dx =176,即 (13ax3+12bx2) 10=176,∴13a +12b =176,②解①②得a =4,b =3,∴f(x)=4x +3, 于是21⎰f(x)xdx =21⎰4x +3xdx =21⎰(4+3x)dx =(4x +3lnx)21=8+3ln2-4=4+3ln2. 答案:4+3ln26.抛物线y2=2x 与直线y =4-x 围成的平面图形的面积为________. [答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y2=2x ,y =4-x ,解得两交点A(2,2)、B(8,-4),选y 作为积分变量x =y22、x =4-y ,∴S =⎠⎛-42 [(4-y)-y22]dy =(4y -y22-y36)|2-4=18.7.如果⎠⎛01f(x)dx =1,⎠⎛02f(x)dx =-1,则⎠⎛12f(x)dx =________.解析:∵⎠⎛02f(x)dx =⎠⎛01f(x)dx +⎠⎛12f(x)dx , ∴⎠⎛12f(x)dx =⎠⎛02f(x)dx -⎠⎛01f(x)dx =-1-1=-2.答案:-2 8.设函数f(x)=ax2+c(a≠0),若⎠⎛01f(x)dx =f(x0),0≤x0≤1,则x0的值为________.[答案]33[解析] ⎠⎛01f(x)dx =⎠⎛01(ax2+c)dx =(ax33+cx)|10=a 3+c ,故a 3+c =ax20+c ,即ax20=a3,又a≠0,所以x20=13,又0≤x0≤1,所以x0=33.故填33.9.(2010·安徽合肥质检)抛物线y2=ax(a>0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.[答案] 16x -8y +1=0[解析] 由题意知⎠⎛01axdx =23,∴a =1,设l :y =2x +b 代入y2=x 中,消去y 得, 4x2+(4b -1)x +b2=0,由Δ=0得,b =18,∴l 方程为16x -8y +1=0.10.设n =⎠⎛12(3x2-2)dx ,则(x -2x )n 展开式中含x2项的系数是________.[答案] 40[解析] ∵(x3-2x)′=3x2-2,∴n =⎠⎛12(3x2-2)dx =(x3-2x)|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为Tr +1=Cr 5x5-r(-2x)r =(-2)rCr 5x5-3r2 ,令5-3r2=2,得r =2,∴x2项的系数是(-2)2C25=40. 三、解答题: 1.计算以下定积分: (1) 21⎰(2x2-1x)dx ;(2)32⎰(x +1x)2dx ;(3)30π⎰(sinx -sin2x)dx ;(4)11-⎰|x|dx; (5)⎠⎛0πcos2x2dx ;解:(1)21⎰(2x2-1x )dx =(23x3-lnx)21 =163-ln 2-23=143-ln 2.(2)32⎰(x +1x)2dx =32⎰(x +1x+2)dx=(12x2+lnx +2x)32=(92+ln 3+6)-(2+ln 2+4)=ln 32+92. (3) 3π⎰(sinx -sin2x)dx =(-cosx +12cos2x)30π=(-12-14)-(-1+12)=-14.(4)⎠⎛1-1|x|dx =2⎠⎛01xdx =2×12x2|10=1.(5)⎠⎛0πcos2x 2dx =⎠⎛0π1+cosx 2dx =12x|π0+12sinx|π0=π22.设y =f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x -2. (1)求y =f(x)的表达式;(2)求y =f(x)的图象与两坐标轴所围成图形的面积.解:(1)设f(x)=ax2+bx +c(a≠0),则f′(x)=2ax +b.又f′(x)=2x -2, 所以a =1,b =-2,即f(x)=x2-2x +c.又方程f(x)=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f(x)=x2-2x +1. (2)依题意,所求面积为S =⎠⎛01(x2-2x +1)dx =(13x3-x2+x)|10=13.3.已知f(x)为二次函数,且f(-1)=2,f′(0)=0,⎠⎛01f(x)dx =-2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值. 解:(1)设f(x)=ax2+bx +c(a≠0), 则f′(x)=2ax +b.由f(-1)=2,f′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-a b =0. ∴f(x)=ax2+(2-a).又⎠⎛01f(x)dx =⎠⎛01 [ax2+(2-a)]dx=[13ax3+(2-a)x]|10=2-23a =-2.∴a =6,∴c =-4.从而f(x)=6x2-4. (2)∵f(x)=6x2-4,x ∈[-1,1],所以当x =0时,f(x)min =-4;当x =±1时,f(x)max =2. 4.设f(x)=1⎰|x2-a2|dx.(1)当0≤a≤1与a >1时,分别求f(a); (2)当a≥0时,求f(a)的最小值. 解:(1)0≤a≤1时, f(a)=1⎰|x2-a2|dx =a⎰(a2-x2)dx +1a⎰(x2-a2)dx=(a2x -13x3)0a +(x33-a2x)1a =a3-13a3-0+0+13-a2-a33+a3=43a3-a2+13. 当a >1时,f(a)=1⎰(a2-x2)dx =(a2x -13x3)10=a2-13.∴f(a)=32241(0),331(>311).a a a a a ⎧-+⎪⎪⎨⎪-⎪⎩≤≤(2)当a >1时,由于a2-13在[1,+∞)上是增函数,故f(a)在[1,+∞)上的最小值是f(1)=1-13=23.当a ∈[0,1]时,f′(a)=4a2-2a =2a(2a -1),由f′(a)>0知:a >12或a <0,故在[0,12]上递减,在[12,1]上递增.因此在[0,1]上,f(a)的最小值为f(12)=14.综上可知,f(x)在[0,+∞)上的最小值为14.5.有一条直线与抛物线y =x2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析] 设直线与抛物线的两个交点分别为A(a ,a2),B(b ,b2),不妨设a<b , 则直线AB 的方程为y -a2=b2-a2b -a(x -a),即y =(a +b)x -ab.则直线AB 与抛物线围成图形的面积为S =⎠⎛a b [(a +b)x -ab -x2]dx =(a +b2x2-abx -x33)|b a =16(b -a)3,∴16(b -a)3=43, 解得b -a =2.设线段AB 的中点坐标为P(x ,y), 其中⎩⎨⎧x =a +b2,y =a2+b22.将b -a =2代入得⎩⎪⎨⎪⎧x =a +1,y =a2+2a +2.消去a 得y =x2+1.∴线段AB 的中点P 的轨迹方程为y =x2+1.6.如图所示,在区间[0,1]上给定曲线y =x2,试在此区间内确定t 的值,使图中阴影部分的面积S1+S2最小.[解析] 由题意得S1=t·t2-⎠⎛0t x2dx =23t3,S2=⎠⎛t 1x2dx -t2(1-t)=23t3-t2+13,所以S =S1+S2=43t3-t2+13(0≤t≤1).又S′(t)=4t2-2t =4t ⎝⎛⎭⎫t -12, 令S′(t)=0,得t =12或t =0.因为当0<t<12时,S′(t)<0;当12<t≤1时,S′(t)>0.所以S(t)在区间⎣⎡⎦⎤0,12上单调递减,在区间⎣⎡⎦⎤12,1上单调递增. 所以,当t =12时,Smin =14.。