第5章杆件应力和强度计算
建筑力学(5章)
M eB 0.95kN m
M eC 1.27kN m
M eD 1.59kN m
第5章 扭转杆的强度计算
(2)计算扭矩 1 1 2 2
截面1-1:
Mx 0
T2 WP2 14 106 MPa 71.3MPa π 1003 16
比较上述结果,该轴最大切应力位于BC段内任一截面的 边缘各点处,即该轴最大切应力为τmax=71.3MPa。
第5章 扭转杆的强度计算
圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力 圆轴的扭转试件可分别用Q235钢、铸铁等材料做成, 扭转破坏试验是在扭转试验机上进行。试件在两端外力偶
T1 M eB 0
T1 M eB 0.95kN m
截面2-2:
Mx 0
T1
T2 M eB M eA 0
T2 M eA M eB 2.87kN m
T2
第5章 扭转杆的强度计算
3
截面3-3:
Mx 0
T3 M eD 0
3
T3 M eD 1.59kN m
式中:[σC]为材料的许用挤压应力,可查有关设计手册。
注意:若两个相互挤压构件的材料不同,应对挤压强度 小的构件进行计算。
第5章 扭转杆的强度计算
挤压强度条件在工程中同样可以解决三类问题。 但工程中构件产生单纯挤压变形的情况较少,挤压强
度的计算问题往往是和剪切强度计算同时进行。
第5章 扭转杆的强度计算
第5章 扭转杆的强度计算
当挤压面为平面时,挤压计算面积与挤压面面积相等。
《材料力学》 第五章 弯曲内力与弯曲应力
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
《工程力学》第五章 杆件的变形与刚度计算
根据杆所受外力,作出其轴力图如 图 b所示。
(2)计算杆的轴向变形 因轴力FN和横截面面积A沿杆轴线变
化,杆的变形应分段计算,各段变形的 代数和即为杆的轴向变形。
l
FNili FN1l1 FN 2l2 FN 2l3
EAi
EA1
EA1
EA2
1 200 103
( 20 103 100 500
10 103 100 500
10 103 100 )mm 200
0.015mm
例5-2 钢制阶梯杆如图,已知
轴向外力F1=50kN,F2=20kN,
各段杆长为l1=150mm,
l2=l3=120mm,横截面面积为:
1
A1=A2=600mm2,A3=300mm2,
钢的弹性模量E=200GPa。求各
x
l 3
,ym
ax
9
Ml2 3E
I
xMl2 16EI
A
M 6EIl
(l 2
3b2 )
B
M 6EIl
(l 2
3a2 )
三、叠加法计算梁的变形
➢叠加法前提条件:弹性、小变形。 ➢叠加原理:梁在几个载荷共同作用下任一截面的挠度或转角, 等于各个载荷单独作用下该截面挠度或转角的代数和。
F1=2kN,齿轮传动力F2=1kN。主轴的许可变形为:卡盘 C处的挠度不超过两轴承间距的 1/104 ;轴承B处的转角
不超过 1/103 rad。试校核轴的刚度。
解(1)计算截面对中 性轴的惯性矩
Iz
D4
64
(1 4 )
804 (1 0.54 )mm4
64
188104 mm4
(2)计算梁的变形
过程装备基础第5章习题解
第5章 杆件的强度与刚度计算5-1 如图所示的钢杆,已知:杆的横截面面积等于100mm 2,钢的弹性模量E=2×105MPa ,F=10kN ,Q=4kN 。
要求:(1)计算钢杆各段的应力、绝对变形和应变; (2)计算钢杆的纵向总伸长量。
解:(1)计算钢杆各段内的轴力、应力、绝对变形和应变从左到右取3段,分别为1-1、2-2、3-3截面,则根据轴力的平衡,得各段内的轴力:(左)N 1=F=10kN (中)N 2=F-Q=10-4=6kN (右)N 3=F =10=10kN 各段内的应力:(左)MPa Pa S N 1001010010100101066311=⨯=⨯⨯==-σ (中)MPa Pa S N 6010601010010666322=⨯=⨯⨯==-σ (右)MPa Pa S N 1001010010100101066333=⨯=⨯⨯==-σ 各段内的绝对变形:(左)mm m ES L N l 1.0101.0)10100()102(2.0)1010(3653111=⨯=⨯⨯⨯⨯⨯==--∆ (中) mm m ES L N l 06.01006.0)10100()102(2.0)106(3653222=⨯=⨯⨯⨯⨯⨯==--∆ (右)mm m ES L N l 1.0101.0)10100()102(2.0)1010(3653333=⨯=⨯⨯⨯⨯⨯==--∆ 各段内的应变:(左)41111052001.0-⨯==∆=L l ε 题5-1图1 2 3 123(中)422210320006.0-⨯==∆=L l ε (右)43331052001.0-⨯==∆=L l ε (2)计算钢杆的总变形26.01.006.01.0321=++=∆+∆+∆=∆l l l l mm (3)画出钢杆的轴力图 钢杆的轴力图见下图。
Nx5-2 试求图示阶梯钢杆各段内横截面上的应力以及杆的纵向总伸长量。
05工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第5章)范钦珊 唐静静2006-12-18第5章轴向拉伸与压缩5-1试用截面法计算图示杆件各段的轴力,并画轴力图。
解:(a)题(b)题(c)题(d)题习题5-1图F NxF N(kN)x-3F Nx A5-2 图示之等截面直杆由钢杆ABC 与铜杆CD 在C 处粘接而成。
直杆各部分的直径均为d =36 mm ,受力如图所示。
若不考虑杆的自重,试求AC 段和AD 段杆的轴向变形量AC l Δ和AD l Δ解:()()N N 22ssππ44BCAB BC AB ACF l F l l d dE E Δ=+33321501020001001030004294720010π36.××+××=×=××mm ()3N 232c100102500429475286mm π10510π364..CDCD AD AC F l l l d E ΔΔ×××=+=+=×××5-3 长度l =1.2 m 、横截面面积为1.10×l0-3 m 2的铝制圆筒放置在固定的刚性块上;-10F N x习题5-2图刚性板固定刚性板A E mkN习题5-4解图直径d =15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。
若在钢杆的C 端施加轴向拉力F P ,且已知钢和铝的弹性模量分别为E s =200GPa ,E a =70GPa ;轴向载荷F P =60kN ,试求钢杆C 端向下移动的距离。
解: a a P A E l F u u ABB A −=−(其中u A = 0)∴ 935.0101010.11070102.1106063333=×××××××=−B u mm钢杆C 端的位移为33P 32s s601021100935450mm π20010154...BC C B F l u u E A ×××=+=+=×××5-4 螺旋压紧装置如图所示。
《输电线路基础》第5章-杆塔强度校核-第五节-铁塔构件内力的计算.
图5-5-2 单斜材平面桁架内力计算图
由于桁架主材坡度
所以
0 用Ⅰ-Ⅰ线截开U1、U2、s5三个构件,按照上述方法,取 M A ,即
Hale Waihona Puke 求得U1 PH 5 5 8.5034kN (受压) b6 cos 3.0 0.98
同理,取占 M 0 0
可得
U2
5 4 7.8493 kN (受拉 ) 2.6 0.98
所以,采用截面法时,一次截取未知内力的构件数不得超过三个。 求任意一个构件的内力时,取另外两个构件的交点为力矩中心。 如果截取的构件多于三个,但是除拟求内力的构件外,其余各构 件都交汇在一点,那么就取这一交点为力矩中心。
这样,在 M 0 的方程式里只有一个未知数,能够很快地求出拟 求的构件内力。 截面法的优点是,一次能求出桁架内任意构件的内力,而不必计 算其它各构件的内力,因此在铁塔的计算中广泛采用截面法。 利用截面法求构件内力的步骤: (1)将桁架截为两部分,截断桁架时,要在截断面内包括拟求内力的 构件,同时将未知内力的构件交汇于一点。 (2)将桁架另一部分舍去并用构件的内力代替舍去部分对留下部分的 作用。同时假定所有构件受拉,就是说,其内力的方向是离开节点 的。 (3)在求某一构件内力时,取其余各构件的汇交点作为力矩中心,并 写出作用在留下部分桁架上诸力的力矩平衡方程式。 (4)从列出的方程式中,如果算出的各构件内力是正值(+)的,那么 表示该构件受拉,如果是负值(-),则表明构件受压。
上式中的r1为自O点至斜材s3的垂直距离,用作图法求得。 交点0的距离a可按下式计算。 (5-5-4)
例题5-5-1 如图5-5-2所示的单斜材平面桁架,水平作用力P=5kN, 试求主材U1~U5和斜材s1~s5的内力。 【解】 由式(8-6)可得水平力P的作用点到主材 交点0的距离a为
拉伸杆件的许用应力计算公式
拉伸杆件的许用应力计算公式拉伸杆件是一种广泛应用于工程领域的机械构件,通常由金属材料制成。
因其受力状态主要为拉伸状态,所以其许用应力计算也是非常重要的。
一般来说,拉伸杆件在受外力拉伸时,将承受拉伸力的作用,这时,杆件上出现的应力为拉应力,其计算公式为σ=F/A,其中F表示拉力,A表示截面积。
根据拉伸性质,拉应力不会超过材料的抗拉强度,因此,杆件的许用应力计算就是要根据抗拉强度来确定。
许用应力是指杆件所能承受的最大拉应力,通常也叫做极限拉应力。
对于轴对称的杆件,其许用应力计算公式为σmax=F/S,其中,F表示拉力,S表示应力集中系数与截面积的乘积。
应力集中系数是由于杆件悬臂长度不同,所致使应力不均匀分布,而引起的系数。
若杆件为圆柱形,则应力集中系数等于1。
当杆件为正方形、矩形、槽形或其他异形时,应力集中系数需要根据截面形状确定。
而许用应力则需要根据材料的抗拉强度和安全系数来确定。
对于非轴对称的杆件,其许用应力计算公式需要根据实际情况而定。
需要注意的是,杆件的长度也是影响其许用应力的因素之一,一般来说,长度越长,杆件所能承受的拉应力就越小。
因此,在实际使用过程中,需要根据杆件的长度及使用环境来确定合适的许用应力。
除了考虑杆件自身的许用应力,还需要根据实际情况来确定安全系数。
安全系数是指将许用应力与实际所受载荷的比值。
一般来说,安全系数越大,杆件的安全性就越高,但同时也会降低其承载能力。
因此,在实际使用过程中,需要根据实际情况来确定合适的安全系数。
综上所述,拉伸杆件的许用应力计算公式需要根据杆件自身的形状、长度以及材料的抗拉强度和安全系数来确定。
在实际使用过程中,需要根据实际情况来确定合适的许用应力和安全系数,以确保杆件的安全性和承载能力。
第五章 应力状态分析 强度理论 组合变形.ppt
min
N A
M WZ
130103 0.18h
6 106 0.18h2
6
0
h 276.9mm,取h 280mm
min
N M A WZ
130103 6106 180 280 180 28026Βιβλιοθήκη 0.029MPa28
2 xy
min
x
y
2
x y
2
2
2 xy
主应力按代数值排序:σ1 σ2 σ3
17
§5.2 平面应力状态分析——解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MPa xy 30MPa, y 40MPa, 30。
2
2
xy
cos 2
15
§5.2 平面应力状态分析——解析法
2. 主平面和主应力
确定正应力极值
( x
y )
2
( x
y ) cos 2
2
xy
sin
2
d d
2
(
x
y ) sin
2
2
xy cos 2
0
(σx
σy
) s
x 2 xy
y
1
1
2
max min
x
2
y
2
2 xy
23
平面应力状态重要公式
max min
5-1杆件拉伸和压缩时的强度条件及应力集中
§5-1 杆件拉伸和压缩时的强度条件及应力集中课时计划:讲授3学时教学目标:1.掌握杆件拉伸和压缩时的强度条件;2.理解应力集中的概念。
教材分析:1.重点为杆件拉伸和压缩时的强度条件;2.难点为利用拉压强度条件解决工程中的强度问题。
教学设计:本节课的主要内容是讲解杆件拉伸和压缩时的强度条件以及应力集中现象。
重点为杆件拉伸和压缩时的强度条件,在前几章的基础上引出拉压强度条件,并通过对教材例题的讲解,使学生在此过程中进一步理解拉压强度条件,进而学会用其解决校核强度、设计截面和确定许用载荷三类常见工程中的强度问题。
最后列举若干工程实际中变截面杆件的例子,使学生理解应力集中的概念及影响。
第1学时教学内容:一、杆件拉伸和压缩时的强度条件等截面直杆轴向拉伸和压缩时,截面上的应力是均匀分布的,即横截面上各点处的应力大小相等,其方向与横截面上轴力一致,垂直于横截面,故为正应力,如下图所示。
为了保证拉伸和压缩的杆件满足强度要求,必须使杆件内的最大应力不超过材料的许用应力。
则有杆件拉伸和压缩时的强度条件为:][max σσ≤=AF N 杆件的最大应力max σ称为工作应力。
最大应力所在的截面称为危险截面。
工作应力小于等于许用应力,就认为强度足够;工作应力大于许用应力,就认为强度不够。
例题5-1 如图所示的悬臂吊车,尺寸如图。
斜拉杆D C '和水平线的夹角 30=α,材料为Q235低碳钢的无缝钢管,外径D =分析:校核斜拉杆D C '的强度,就是计算该杆件的应力是否超过材料的许用应力。
该杆件的许用应力ns σσ=][ ,由§4-1知Q235低碳钢MPa s 235=σ,由§4-2塑性材料MPa n s118][==σσ。
力c c F F ='可选梁AB 为研究对象列平衡方程求得。
外力:铰链'C 和该杆两端受力KN F F c c 150'==;内力:因为斜杆是二力杆件,其轴力等于两端受力KN F F c N150'==。
杆件的强度计算公式资料讲解
杆件的强度计算公式资料讲解杆件的强度、刚度和稳定性计算1.构件的承载能⼒,指的是什么?答:构件满⾜强度、刚度和稳定性要求的能⼒称为构件的承载能⼒。
(1)⾜够的强度。
即要求构件应具有⾜够的抵抗破坏的能⼒,在荷载作⽤下不致于发⽣破坏。
(2)⾜够的刚度。
即要求构件应具有⾜够的抵抗变形的能⼒,在荷载作⽤下不致于发⽣过⼤的变形⽽影响使⽤。
(3)⾜够的稳定性。
即要求构件应具有保持原有平衡状态的能⼒,在荷载作⽤下不致于突然丧失稳定。
2.什么是应⼒、正应⼒、切应⼒?应⼒的单位如何表⽰?答:内⼒在⼀点处的集度称为应⼒。
垂直于截⾯的应⼒分量称为正应⼒或法向应⼒,⽤σ表⽰;相切于截⾯的应⼒分量称切应⼒或切向应⼒,⽤τ表⽰。
应⼒的单位为Pa。
1 Pa=1 N/m2⼯程实际中应⼒数值较⼤,常⽤MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应⼒和内⼒的关系是什么?答:内⼒在⼀点处的集度称为应⼒。
4.应变和变形有什么不同?答:单位长度上的变形称为应变。
单位纵向长度上的变形称纵向线应变,简称线应变,以ε表⽰。
单位横向长度上的变形称横向线应变,以ε/表⽰横向应变。
5.什么是线应变?什么是横向应变?什么是泊松⽐?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表⽰。
对于轴⼒为常量的等截⾯直杆,其纵向变形在杆内分布均匀,故线应变为l l?=ε(4-2)拉伸时ε为正,压缩时ε为负。
线应变是⽆量纲(⽆单位)的量。
(2)横向应变拉(压)杆产⽣纵向变形时,横向也产⽣变形。
设杆件变形前的横向尺⼨为a,变形后为a1,则横向变形为aaa-=1横向应变ε/为a a=/ε(4-3)杆件伸长时,横向减⼩,ε/为负值;杆件压缩时,横向增⼤,ε/为正值。
因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。
(3)横向变形系数或泊松⽐试验证明,当杆件应⼒不超过某⼀限度时,横向应变ε/与线应变ε的绝对值之⽐为⼀常数。
此⽐值称为横向变形系数或泊松⽐,⽤µ表⽰。
第5章 杆件的轴向拉伸与压缩变形
图5-6
第5章 杆件的轴向拉伸与压缩变形
使表用示规,将范即△说FR明与 △ A的比值称为微小面积 上△ A的平均应力,用 pm
一般情况下,内力在截面上的分布并不均匀,为了更精确地描述
内力的分布情况,令 △ A趋近于零,由此得到
在国际单位制中,应力的单位是帕斯卡,简称帕(Pa)。工程
构件所受应力通常较大,故常采用更大的应力单位,如兆帕(MPa)
工程构件所受外力通常比较复杂,各段的内力也可能各不相同,
这时需分段用截面法计算内力。为了直观地表达内力随横截面位置的
变化情况,用平行于构件轴线的坐标表示各横截面的位置,用垂直于
构件轴线的坐标表示内力的数值,将构件各段所受内力按比例绘制到
此坐标系上所形成的图形称为内力图。借助内力图可直观地确定出构
件上各段的内力情况,并可以很容易地确定出最大内力的大小、方向
验段,其长度l称为标距。根据标距l与杆直径d的比例关系,将试样分
成两种:长试样 和短试样 。
图5-12
第5章 杆件的轴向拉伸与压缩变形
使5用.6规.1范说低明碳钢拉伸时的力学性能
低碳钢是工程上广泛使用的金属材料,它在拉伸时表现出来的
力学性能具有典型性。以Q235钢为例,拉伸变形时,试样的拉力 F
工程力学
第5章 杆件的轴向拉伸与压缩变形
使5用.1规范轴说向明 拉伸与压缩变形的概念
产生轴向拉伸或轴向压缩变形的构件统称为杆件。分析杆件在
轴向拉压载荷作用下的内力、应力和变形以及杆的强度问题,具有典
型性和普遍意义。
在工程结构和机械装置中,经常会遇到承受拉伸或压缩的构件。
例如悬臂吊车的斜拉杆BC和横梁AB,在重力的作用下,杆BC受到
第五章杆件的内力与内力图.ppt
FQy
AC: FQy (x) = - FRA = - m / l (0<x ≤ a)
m/l
Mz (x) = - FRAx = - mx / l (0≤x < a)
Mz BC: FQy (x) = - FRA = - m / l (a ≤ x< l )
ma/l mb/l
Mz (x) = m - FRAx = m (l -x ) / l (a < x≤ l )
x
由∑Fxi = 0, - 3 +2x + FN (x) = 0, FN (x) = 3 - 2x . x = 0 时 , FN (x) = 3 KN; x = 2m 时 , FN (x) = - 1KN。
3KN A
B 2KN/ m C
D 1KN
2m
2m
2m
3 FN
(KN)
1
规律:没有力作用的杆段,轴力为常数; 分布荷载为常数的杆段,轴力线性变化; 集中力两侧,轴力有突变。
二、梁的内力——剪力和弯矩
a FPm1 FP2
A
B
m
FRA
x
FRB
FP1
A
m MZ
C
x m FQY
FRA
FQY —— 剪力 MZ —— 弯矩
规 定:
FQY:
∑FP FQY
FQY
左上右下剪力正, 反之为负
∑ FP
∑M
MZ
MZ:
MZ
∑M
上凹下凸弯矩正, 反之为负
a
FP1
m
FP2
A
m
B 由∑Fyi=0, FRA- FP1 - FQY =0
规定:按右手法则,力矩矢的方向指向横截 面的外法线方向为正,反之,为负。
理论力学中的杆件受力分析与应力计算
理论力学中的杆件受力分析与应力计算杆件在力学中是一种常见的结构元件,广泛应用于工程领域。
在使用杆件的过程中,对其受力分析与应力计算是十分重要的,这有助于了解杆件的工作状态和承受外部力的能力。
在理论力学中,杆件的受力分析和应力计算是相互关联的,通过分析杆件上的受力情况可以计算出其内部所受的应力。
一、杆件受力分析杆件在受力时一般会存在拉力、压力和剪力等力的作用,为了分析杆件上的受力情况,我们首先需要了解以下几个概念:1. 内力:杆件内部产生的相互作用力被称为内力,包括拉力、压力和剪力等。
内力可以分为轴向力、弯矩和剪力三种类型。
2. 外力:杆件受到的外部施加的力被称为外力,可以分为集中力和分布力。
集中力是沿杆件轴线方向的作用力,可以通过杆件两端的连接点传递;分布力是沿杆件长度方向分布的作用力。
3. 杆件端点的支座条件:杆件连接点的支座条件可以分为固定支座、铰接支座和滑动支座。
固定支座可以防止杆件端点的位移和旋转;铰接支座只能防止位移,而滑动支座只能防止垂直位移。
通过分析杆件上的受力情况,可以得出杆件内部所受的内力大小和方向。
具体的受力分析方法包括静力平衡方程和弹性力学原理等。
二、应力计算杆件在受力时会发生变形,产生应力。
应力是指杆件内力对杆件截面积的比值,常用符号表示为σ。
杆件所受的应力可以分为轴向应力、剪应力和弯曲应力。
1. 轴向应力:杆件受到拉力或压力时,在截面上会产生轴向应力。
轴向应力可以通过杆件所受的轴向力与截面面积的比值来计算,即σ= F/A,其中F为轴向力,A为截面面积。
2. 剪应力:杆件在受到剪力时会产生剪应力。
剪应力可以通过杆件所受的剪力与截面面积的比值来计算,即τ = V/A,其中V为剪力,A 为截面面积。
3. 弯曲应力:杆件在受到弯矩作用时会产生弯曲应力。
弯曲应力可以通过弯矩对截面矩型模量的比值来计算,即σ_b = M/W,其中M为弯矩,W为截面矩型模量。
根据杆件所受的外力和材料的性质,可以计算出杆件所受的内力和应力。
第五章杆件的应力与强度计算
FN ,m a x A
例5.3.1
一钢制阶梯杆如图6-3a所示。各段杆的横截面 面积为:A1=1600 mm2,A2=625 mm2, A3=900 mm2,试画出轴力图,并求出此杆的 最大工作应力。
解: (1)求各段轴力
FN1=F1=120 kN FN2=F1-F2=120 kN-220 kN = -100 kN FN3=F4=160 kN (2)作轴力图 由各横截面上的轴力值,作出 轴力图(图6-3b)。
(1)弹性阶段(图5-2-2中ob段)
b点相对应的应力–应变的弹性极限,以 表示。
e
在弹性阶段,拉伸的初始阶段oa为直线, 表明与成正比。
a点对应的应力–应变的比例极限,用 P
表示。
根据虎克定律可知,图中直线oa与横坐标ε 的夹角正切就是材料的弹性模量,即
E tg
弹性极限与比例极限二者意义不同,但由
5-3-2斜截面上的应力
图5-3-2a表示一等截面直杆,受轴向拉力F的作
用 显然。,由截横面截法面知的F正N应=F力,若为杆的横截面面积 为 AFN,
A
由图5-3-2(b)求得斜截面m-m上的内力(图 6-5b)为
FN=FN
(b)
由几何关系可知,斜截面m-m的面积为
A A / cos ,可得斜截面上各点的应力为
p dp p lim
A0 A dA
上式p定义为C点处内力的分布集度,称为该 点处的总应力。其方向一般既不与截面垂直, 也不与截面相切。通常,将它分解成与截面垂 直的法向分量和与截面相切的切向分量(图5-
1b),法向分量称为正应力,用 表示;切向 分量称为切应力,用表示。
5-1-2、关于应力注意的几点
(3)求最大应力
杆件的强度计算公式
杆件的强度计算公式1.应力:应力是杆件内部单位面积上的力,通常以帕斯卡(Pa)为单位。
应力被定义为负载除以横截面积。
在强度计算中,应力是一个重要的参数,用于评估杆件是否能够承受给定的负载。
2.截面形状:截面形状指的是杆件横截面的形状,如圆形、矩形、梯形等。
截面形状对杆件的强度计算有很大影响,因为不同的形状在承载能力方面具有不同的特点。
3.材料性质:杆件的材料性质包括弹性模量、屈服强度、抗拉强度等。
这些参数用于计算杆件在受力情况下的应力和应变,并评估其强度。
根据杆件的受力类型和计算方法的不同,强度计算公式可以有很多种形式。
以下是几个常见的强度计算公式示例:1.杆件的拉伸强度计算公式:拉伸强度=屈服强度/安全系数这个公式适用于纯拉伸情况下的杆件强度计算。
通常,设计中会采用一个安全系数,以确保杆件在实际应用中不会超过其屈服强度。
2.杆件的压缩强度计算公式:压缩强度=屈服强度/安全系数这个公式适用于纯压缩情况下的杆件强度计算。
与拉伸情况类似,设计中也会采用一个安全系数。
3.杆件的弯曲强度计算公式:弯曲强度=弯矩/抗弯矩弯曲强度计算涉及到杆件的几何形状和截面惯性矩等参数,以及杆件的材料性质。
通过计算弯矩和抗弯矩的比值,可以评估杆件在受弯应力作用下的强度。
此外,还有一些特殊情况下的杆件强度计算公式,如扭转、剪切、冲击等。
这些公式通常相对复杂,需要更详细的材料性质和截面形状参数。
需要注意的是,强度计算公式只是一种初步评估杆件承载能力的方法,它没有考虑杆件的缺陷、损伤和非均匀加载等因素。
因此,在实际工程中,还需要进行更为详细的强度分析和安全性评估,以确保杆件的可靠性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以该柱满足强度要求。
轴向拉伸和压缩
例 已知钢筋混凝土组合屋架受到竖直向下的均布荷载 q=10kN/m,水平钢拉杆的许用应力[σ]=160MPa。试按要求 设计拉杆AB的截面。⑴ 拉杆选用实心圆截面时,求拉杆的 直径。⑵ 拉杆选用二根等边角钢时,选择角钢的型号。
1—3。 • 试验通常在室温的条件下按一般的变形速
度进行。在上述条件下所得材料的力学性 质,称为常温、静载下材料在拉伸(压缩) 是的力学性质。
低碳钢在拉伸时的力学性质
拉伸过程
• 弹性阶段 • 屈服阶段 • 强化阶段 • 局部变形阶段
强度指标与塑性指标
• 对低碳钢这一类材料:屈服极限和强度极 限是衡量其强度的主要指标。
1、强度校核:
max
FN A
2、设计截面:
A
FN
3、确定许可载荷: FN A
轴向拉伸和压缩
例 正方形截面阶梯形砖柱。已知:材料的许用压应力 [σC]=1.05MPa,弹性模量E=3GPa,荷载FP=60kN,试校核 该柱的强度。
解(1)画轴力图如图b所示。 (2)计算最大工作应力
对于产生轴向拉(压)变形的等直杆,轴力最大的截 面就是危险截面,该截面上任一点都是危险点。
轴向拉伸和压缩
例 图示结构,试求杆件AB、CB的应力。已知 F=20kN; 斜杆AB为直径20mm的圆截面杆,水平杆CB为15×15的方 截面杆。
A 1
45° B
C
2
F
解:1、计算各杆件的轴力。 用截面法取节点B为研究对象
确定安全系数时要考虑的因素,如:材料的均匀程度、荷
载的取值和计算方法的准确程度、构件的工作条件等。 塑性材料 nS取1.4~1.7; 脆性材料 nb取2.5~3。 某些构件的安全系数和许用应力可以从有关的规范中查到。
轴向拉伸和压缩
1.强度条件
σmax≤[σ]
max
FN A
σmax是杆件的最大工作应力,可能是拉应力,也可能是
需分段计算各段的应力,然后选 最大值。
AB
FNAB AAB
60103
MPa
250 250
0.96MPa
BC
FNBC ABC
180103 MPa 0.72MPa 500 500
轴向拉伸和压缩
比较得:最大工作应力为压应力,产生在AB段。 即|σmax|=0.96Mpa。
2
(1 cos2 )
p
s in
sin
cos
2
sin 2
为斜截面上的应力计算公式
A αAα
P
pα N=Pα
σα α pα
τα
2. 最大应力和最小应力
(1)最大 最小应力正应力
当 α = 00 时
拉杆 压杆
σ max = σ σ min = - σ
( 2 ) 最大 最小应力剪应力
FN1
y
FN 2 45° B x
F
轴向拉伸和压缩
FN1
y
Fy 0 FN1 sin 45 F 0
FN 2 45° B x
F
Fx 0
FN1 28.3kN
FN1 cos 45 FN 2 0 FN 2 20kN
2、计算各杆件的应力。
1
FN1 A1
28.3103
(2)应力是矢量,不仅有大小还有方向。
(3)内力与应力的关系:内力在某一点处的集度为该点 的应力;整个截面上各点处的应力总和等于该截面上的内 力。
第2节 材料在轴向拉压时的力 学性能
材料在拉伸、压缩时的机械性能
• 标 l0=准10圆0m试m件的:试l0件/d0进=1行0或测5试,。常称用为d标=1距0m;m, • 压缩时,圆截面试件高度h与直径d之比为
纵向线伸长了,靠近凹边的纵向线缩短了。
横向线仍为直线但转过了一个角度;
矩形截面的上部变宽下部变窄。
弯曲应力
平面假设:梁变形后其横截面仍保持为平面,且
仍与变形后的梁轴线垂直。同时还假设梁的各纵向纤 维之间无挤压。
单向受力假设:将梁看成由无数条纵向纤维组成,
各纤维只受到轴向拉伸或压缩,不存在相互挤压。
四、应力集中的概念
第5节 平面弯曲梁的应力与强 度计算
弯曲应力
a FP AC
FP a DB
FP FQ
FP M
FPa
CD梁段横截面上 只有弯矩,而没有剪力, 这种平面弯曲称为纯 弯曲。
AC和DB 梁段横截 面上不仅有弯矩还伴 有剪力,这种平面弯 曲称为横力弯曲。
弯曲应力
一、纯弯曲时梁横截面上的正应力
坐标系的选取: y轴:截面的纵向对称轴。 z轴:中性轴。 x轴:沿纵向线。
z M
x O
dA
(y z) y
受力分析:dA上的内力为σdA,于是整个截面上所有内力 组成一空间平行力系,由于横截面上只有绕中性轴的弯矩MZ, 所以横截面法向的轴力FN和力偶矩My应为零,即:
ΣFx=0
FN
dA 0
塑性材料
极限应力 脆性材料
0 S
0 b
0
n
n —安全系数 —许用应力。
轴向拉伸和压缩
塑性材料的许用应力 s
ns
脆性材料的许用应力 b
nb
选取安全系数的原则是:在保证构件安全可靠的前提下, 尽可能减小安全系数来提高许用应力。
当拉杆用角钢时,查型钢表。每根角型的最小面积应为
A1
A 2
393.8 2
mm 2
196.9mm2
选用两根36×3的3.6号等边角钢。
轴向拉伸和压缩
36×3的3.6号等边角钢的横截面面积 A1=210.9mm2
故此时拉杆的面积为 A=2×210.9mm2=421.8mm2>393.8mm2
能满足强度要求,同时又比较经济。
q
钢拉杆
8.4m
FAy
FBy
解 (1)整体平衡求支反力
FAy FBy 42kN
轴向拉伸和压缩
q =4.2kN/m
FCy FCx
FN 钢拉杆
(2)求拉杆的轴力。 用截面法取左半个屋架为 研究对象,列平衡方程
ΣMC =0
FAy
FAy
4.2
q
l 2
l 4
FNAB
1.4
0
(3)设计拉杆的截面。
弯曲应力
梁中取出的长为dx的微段
1
2
o1
o2
a
b
1 dx 2
变形后其两端相对转了d角
M
12
M
1
2
12
o1
o2
a
b
12
d
r
O1
O2
a1
b1
弯曲应力
距中性层为y处的纵向纤维ab的变形
原
长:
ab O1O2 rd dx
1
d
2
r
变形后长: a1b1 (r y)d
o1
o2
a
轴向拉伸和压缩
一、拉(压)杆横截面上的应力
变形规律试验:
FP
FP’
观察发现:当杆受到轴向拉力作用后,所有的纵向线 都伸长了,而且伸长量都相等,并且仍然都与轴线平行; 所有的横向线仍然保持与纵向线垂直,而且仍为直线,只 是它们之间的相对距离增大了。
轴向拉伸和压缩
根据从杆件表面观察到的现象,从变形的可能性考虑, 可推断:
弯曲应力
中性层:梁的下部纵向纤维伸长,而上部纵向纤维缩短 ,由变形的连续性可知,梁内肯定有一层长度不变的纤维 层,称为中性层。
中性轴:中性层与横截面的交线称为中性轴,
受压区
受拉区
中性层
z 中性轴
y
由于荷载作用于梁的纵向对称面内,梁的变形沿纵向 对称,则中性轴垂直于横截面的对称轴。梁弯曲变形时, 其横截面绕中性轴旋转某一角度。
轴向拉杆在受力变形时,横截面只沿杆轴线平行移动。 由此可知:横截面上只有正应力σ。 假如把杆想象成是由许多纵向纤维组成的话,则任意两 个横截面之间所有纵向纤维的伸长量均相等,即两横截面间 的变形是均匀的,所以拉(压)杆在横截面上各点处的正应 力σ都相同。
FP
FN
轴向拉伸和压缩
通过上述分析知:轴心拉杆横截面上只有一种应力—— 正应力,并且正应力在横截面上是均匀分布的,所以拉杆横 截面上正应力的计算公式为
第1节 应力的概念
一、应力的概念
受力杆件截面上某一点处的内力集度称为该点的应力。
总应力:
p lim FR dFR A0 A dA
FR
K
A
总应力p是一个矢量,通常情况下,它既不与截面垂
直,也不与截面相切。 为了研究问题时方便起见,习惯上常将它分解为与截
面垂直的分量σ和与截面相切的分量τ。
b
式中ρ 为中性层上的纤维为
1
2 a1
O2 b1
a1b1 ab a1b1 O1O2
ab
O1O2
(r y)d rd y
rd
r
可知:梁内任一层纵向纤维的线应变与其的坐标成正比。
弯曲应力
2. 物理关系方面
由于假设梁内各纵向纤维只受拉伸或压缩,所以当材料
当 α =+45 0 时
max 450