图论期末复习题(16年)ppt课件
(完整版)图论复习提纲

复习课件 数学科学学院
1
本次课主要内容 期末复习
(一)、重点概念 (二)、重要结论 (三)、应用
2
(一)、重点概念
1、图、简单图、图的同构与自同构、度序列与图序列、 补图与自补图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
G1 G2
例1 指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。
5
(6) 补图与自补图
1) 对于一个简单图G =(V, E),令集合 E1 uv u v,u,vV
则图H =(V,E1\E)称为G的补图,记为 H G
2) 对于一个简单图G =(V, E),若 G G ,称G为自补图。
(5) 根树
一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶 点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根, 出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点 和树根统称为分支点。
9
(6) 完全m元树
对于根树T,若每个分支点至多m个儿子,称该根树为m元根树; 若每个分支点恰有m个儿子,称它为完全m元树。
(2) 森林
称无圈图G为森林。
8
(3) 生成树
图G的一个生成子图T如果是树,称它为G的一棵生成树;若T 为森林,称它为G的一个生成森林。
生成树的边称为树枝,G中非生成树的边称为弦。
(4) 最小生成树
在连通边赋权图G中求一棵总权值最小的生成树。该生成树称 为最小生成树或最小代价树。
图论期末考试整理复习资料

目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。
2.只有一个顶点而无边的图称为平凡图。
3.边集为空的图称为空图。
4.既没有环也没有重边的图称为简单图。
5.其他所有的图都称为复合图。
6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。
7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。
10. 图G 的顶点的最大度。
11. k-正则图: 每个点的度均为 k 的简单图。
例如,完全图和完全偶图Kn,n 均是正则图。
12. 推论1 任意图中,奇点的个数为偶数。
13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。
15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。
16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。
图论课件-PPT课件

学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c
图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。
图论 期末复习

图论及其应用总复习第1章图的基本概念•§1.1 图论发展史•§1.2 图的定义•§1.3 顶点的度•§1.4 子图与图的运算•§1.5一些特殊的图•§1.6 图的矩阵表示•§1.7 有向图1、图的定义图--图G=<V(G),E(G),ψ)>是有序三元组,其中V(G)是一个非空有限集合,E(G)与是V(G)不相交的有限集合,ψ)使E(G)中每一个元素对应于V(G)中的一个无序元素对.顶点--V(G)中的元素称为G的顶点,p(G)=|V(G)|称为G的点数.边--E(G)中的元素称为G的边,q(G)=|E(G)|称为G的边数.环--两个端点重合为一个顶点的边。
重边(平行边)--关联于同一对顶点的若干条边。
关联--如果ψ)e =uv ,则称边e 连接顶点u 和v ,u 和v 是e 的端点,u (或v )与e 关联。
相邻--点的相邻:两点间有边边的相邻:两条边有公共端点简单图--不含环和重边的图.有限图--一个图的顶点集和边集都是有限集的图.平凡图--只有一个顶点所构成的图称为平凡图.2、图的同构3、顶点的度最大度Δ(G)=max{d(v)|v∈V}最小度δ(G)=min{d(v)|v∈V}孤立顶点--度为0的顶点。
k-正则图--如果一个图中每个顶点的度是某一个固定整数k,则称该图是k-正则图。
握手定理顶点的度序列4、子图完全图--若图G 中的每一对不同顶点之间恰有一条边连接,则称图G 为完全图,记作K ;.4K 5K 3K 2K 1K 5、特殊图二分图−−G=(V>,V@;E)通常写出G=(X,Y;E),即它的点集可以分解为两个(非空)子集X和Y,使得每条边的一个端点在X中,另一个端点在Y中。
完全二分图--是指具有二分类(X,Y)的简单二部图,其中X 的每个顶点与Y的每个顶点相连,若|X|=p,|Y|=q,则这样的偶图记为K p,q.关联矩阵设图G=(V,E),V=v>,v@,⋯,v;,E=e>,e@,⋯,e G,则称B(G)=(b JK);×G为G的关联矩阵,其中b JK=0v J与e K不关联1v J与e K关联1次2v J与e K关联2次(即e K是以v J为端点的环)6、矩阵表示邻接矩阵设图G=(V,E),V=v>,v@,⋯,v;,用a JK表示G中顶点v J与v K之间的边数,则称M(G)=(a JK);×;为G的邻接矩阵。
离散数学第七章图论习题课ppt课件

24
设G是一个n阶无向简单图,n是大于等于3的 奇数。证明图G与它的补图中度数为奇数的结 点个数相等。
证明: 因为G是n阶无向简单图,且n是大于等于3的奇数,
故无向图的结点数为奇数,则所对应的n阶完全图 中每个结点的度数为n-1即为偶数, 利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
25
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
(4) D中长度为4的回路有多少条? 答: 长度为4的回路为11条。
(5) D中长度4的通路有多少条?其中有几条是回路? 答:长度4的通路88条,其中22条为回路。
(6) 写出D的可达矩阵。 44的全1矩阵。
17
简单无向图 G 必有2结点同度数。
证: 令 G={v1,…,vn},
(2) n阶非连通的简单图的边数最多可为n-1阶连通图 加上一个孤立点,所以边数为(n-1)(n-2)/2,最少为0。
20
一个图如果同构于它的补图,则该图称为自补图。
1)一个图是自补图,其对应的完全图的边数必为偶数; 2)证明:若n阶无向简单图是自补图,则n=4k或n=4k+1
(k为正整数)。 解:
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
3
4
一、无向图与有向图
电大离散数学图论部分期末复习辅导Word版

离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
《图论》期末考试模拟题(答案)

《图论》期末考试模拟题(答案) ⼀、选择题 1、给定⽆向图如图所⽰,下⾯给出的顶点集⼦集中,是点割集的为(A,B,C,D)。
A. {b, d} B. {d} C. {a, c} D. {g, e} bf 内容需要下载⽂档才能查看 2、设V={a,b,c,d},与V能构成强连通图的边集E=( A )。
A. {,,,,} B. {,,,,} C. {,,,,} {,,,,} 3、⼀个连通的⽆向图G,如果它的所有结点的度数都是偶数,那么它具有⼀条( B )。
A. 哈密尔顿回路 B. 欧拉回路 C. 哈密尔顿通路 D. 欧拉通路 4、如图所⽰各图,其中存在哈密顿回路的图是( A, C )。
内容需要下载⽂档才能查看 第 1 页共 5 页 图论期末考试题⽬参考 《图论》 5. 下图中既是欧拉图,⼜是哈密尔顿图的有(D)。
5、设G是有5个顶点的完全图,则G( B )。
D. ⽆哈密尔顿路 E. 可以⼀笔画出 F. 不能⼀笔画出 G. 是平⾯图 6、设G是连通简单平⾯图,G中有11个顶点5个⾯,则G中的边是( D )。
A. 10 B. 12 C. 16 D. 14 ⼆、填空题 1、完全图K8具有( 28 )条边。
2、图G如图所⽰, ab fc 那么图G的割点是( a, f )。
e d 3、⽆向图G为欧拉图,当且仅当G是连通的,且G中⽆(奇数度)结点。
第 2 页共 5 页 图论期末考试题⽬参考 《图论》 4、连通有向图D含有欧拉回路的充分必要条件是( D中每个结点的⼊度=出度)。
5、 n个结点、m条边的⽆向连通图是树当且仅当m=__(3)___。
(1) n+1 (2) n (3) n-1 (4)2n-1 三、 1、设图G=(P,E) 中有12条边,6个度数为3的顶点,其余顶点的度数均⼩于3,求G⾄少有多少个顶点。
解答:设G有n个顶点,由定理1, ∑d i=1nG(vi)=2m=24 (|E|=m) 由题设 24<3×6+3(n?6) ∴ 3n>24 即 n>8 因此,G中⾄少有9个顶点。
图论期末考试题库及答案

图论期末考试题库及答案一、单项选择题1. 图论的创始人是()。
A. 欧拉B. 莱布尼茨C. 牛顿D. 高斯答案:A2. 在图论中,一个图的顶点集合为空,但边集合不为空的图称为()。
A. 空图B. 完全图C. 树D. 多重图答案:A3. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。
A. 连通图B. 强连通图C. 弱连通图D. 无环图答案:A4. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。
A. 欧拉图B. 哈密顿图C. 树答案:C5. 图论中,一个图的边的集合可以划分为若干个不相交的回路,使得图中的每个顶点恰好属于其中一条回路,这样的图称为()。
A. 欧拉图B. 哈密顿图C. 树D. 环答案:A二、多项选择题1. 下列哪些是图论中的基本术语()。
A. 顶点B. 边D. 权重答案:ABCD2. 在图论中,以下哪些图是无向图()。
A. 完全图B. 树C. 多重图D. 有向图答案:ABC3. 图论中,以下哪些图是连通图()。
A. 完全图B. 树C. 多重图D. 空图答案:ABC三、填空题1. 图论中,一个图的顶点集合为V,边集合为E,那么图可以表示为G=()。
答案:(V, E)2. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。
答案:连通图3. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。
答案:树四、简答题1. 请解释什么是图论中的“完全图”?答案:完全图是指图中每一对不同的顶点之间都恰好有一条边相连的图。
在完全图Kn中,n个顶点两两相连,共有n(n-1)/2条边。
2. 请解释什么是图论中的“欧拉路径”和“欧拉回路”?答案:欧拉路径是指图中存在一条路径,该路径恰好经过每条边一次。
欧拉回路是指图中存在一条回路,该回路恰好经过每条边一次。
五、计算题1. 给定一个图G=(V, E),其中V={A, B, C, D, E},E={(A, B), (B, C), (C, D), (D, E), (E, A), (A, C)},请判断该图是否为连通图,并说明理由。
图论-总结PPT课件

.
16
第三节 割点、桥和割集
3.1 割点和桥(割边)
定义1 设v是图G的一个顶点,若G-v的支数大于 G的支数,则称顶点v为图G的一个割点(如图)。
degu + degv≥p-1,
则G是连通的。[这个定理是一个充分条件]
定理3 设G=(V,E)是至少有一个顶点不是弧立顶 点的图。若对任意v∈V,degv为偶数,则G中 有回路。
定理4 若图G中的两个不同顶点u与v间有两条不 同的路联结,则G中有回路。
.
6
例1 若G是一个恰有两个奇度顶点u和v的无向图,则 G连通G+uv连通。
.
8
第五节 欧拉图(Euler)
5.1 欧拉图
定义1 设(G,V)是一个图,则包含图的所有顶 点和所有边的闭迹称为欧拉闭迹;存在一 条欧拉闭迹的图称为欧拉图。
定理1 图G是欧拉图当且仅当G是连通的且每 个顶点的度都是偶数。
(定理1对多重图也成立)
.
9
第六节 哈密顿图
6.1 哈密顿图 定义1 设G是一个图,则图G中包含G的所有顶
数称为顶点v的度,记为degv。 定理1 (握手定理)设G=(V,E)是一个具有p个顶点q条边的图,
则G中各顶点度的和等于边的条数q的两倍,即∑degv=2q。 推论1任一图中,度为奇数的顶点的数目必为偶数。
.
3
定义3 设G是图,若Δ(G)=δ(G)=r,即G的每个顶点的 度都等于r,则G称为r度正则图。
离散数学——图论 ppt课件

ppt课件
11
哥尼斯堡七桥问题
把四块陆地用点来表示,桥用点与点连线表 示。
ppt课件
12
欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
因此,尽管本教材介绍的是较为基础的图论内容, 但阅读理解与完成习题是学习图论必不可少的步骤。
ppt课件
8
图是人们日常生活中常见的一种信息载体, 其突出的特点是直观、形象。图论,顾名思 义是运用数学手段研究图的性质的理论,但 这里的图不是平面坐标系中的函数,而是由 一些点和连接这些点的线组成的结构 。
P(G)表示连通分支的个数。连通图的连通 分支只有一个。
ppt课件
40
练习题---图的连通性问题
1.若图G是不连通的,则补图是连通的。 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
ppt课件
41
2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
33
§8.2通路、回路与连通性
定义:通路与回路 设有向图G=<V,E>,考虑G中一条边的序列
(vi1,vi2,…, vik),称这种边的序列为图的通路。 Vi1、vik分别为起点、终点。通路中边的条数称
为通路的长度。 若通路的起点和终点相同,则称为回路。
ppt课件
34
简单通路、基本通路
简单通路:通路中没有重复的边。 基本通路:通路中没有重复的点。 简单回路和基本回路。 基本通路一定是简单通路,但反之简单通路
第七章图论PPT课件

v V
ห้องสมุดไป่ตู้
deg(v)为偶数,2|E|亦为偶数
vV2
deg(v)为偶数 vV1
|V1|为偶数
定理: 有向图中所有结点的入度之和等于所有结点的出度之和
-
12
7-1 图的基本概念
(5)多重图:含有平行边的图
简单图:不含有平行边和环的图
完全图:每一对结点之间都有边关联的简单图
有向完全图:完全图中每条边任意确定一个方向所得的图
a
e
b
d
f
h
c
g
定理: n个结点的无向(有向)完全图Kn的边数为n(n-1)/2
证明: 在完全图中,每个结点的度数应为n-1,则n个结点的
度数之和为n(n-1),因此|E|=n(- n-1)/2
13
7-1 图的基本概念
(6)子图:
G V , E , 有 G ' V ', E ' , 且 E ' E , V ' V ,
a到b的有向边
孤立结点:无邻接点的结点
a
e hi
k
b
df
c
j
l
g
无向边:(a,b), (b,c), (b,d), (c,d), (i,l), (k,l)
有向边:<e,f>, <f,g>, <g,e>, <e,h>, <k,j>, <j,l>
-
5
7-1 图的基本概念
(2)无向图:图中每一边都为无向边
e f
g
deg+(e)=2, deg-(e)=1, deg(e)=3
h deg+(f)=1, deg-(f)=2, deg(f)=3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题 1. 任意两个顶点都_________的简单图称为完全图. 2.如果G=(V,E)中任何顶点都是连通的,则称图G是
连通的;否则称G为 . 3. 如果无向图的顶点集V分成两个子集V1, V2,(即满
足V1 ∩ V2 =Φ, V1 ∪ V2 =V),使得G中任意一边的 两个端点分属于V1和V2,则称G为-------
7.凡是由奇数点组成的连通图,一定可以一笔画成. 8.凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画
完. 9.哈密顿图一定是欧拉图,而欧拉图未必是哈密顿图.
10.具有5个顶点8条边的连通图有5个不同的基本圈组. 11.连通图G的关联矩阵M的一个大子阵是非奇异的充要条件
是与这个大子阵的列相应的边组成G的一颗生成树.
6
F
17
6.求下图的最优生成树.
A
9
12
15
C
11
E
15
B
6
7 6D 8
6
F
18
7.设T是一棵树,它有两个2度顶点, 两个3度顶点,三个4度顶点,求T的树叶数
19
8.设G是无向连通图,则G是一笔画的充分 必要条件是什么?下列各图是否可以一笔画 出?
20
9、甲乙两个邮递员去送信,两人以同样的速度走 遍所有的街道,甲从A点出发,乙从B点出发, 最后都回到邮局(C点)。如果要选择最短的线 路,谁先回到邮局?
17.任何简单平面图,均有. G 3
11
二、解答题
1.同构的判定及理由
12
3.左图称作什么图?两图是否同 构?为什么?
x
y
z
x
c
a
a
b
c
z
y b
13
2、给定图 :
(1)给出图 的一个生成树 。 (2)给出图 的顶点的最大度数 。
(3)给出图 的最长链。 (4)给出图 的一个边数最多的割集。
d
f
a
e1 b
e3 e4 e6
e8
e2
e5 e
e7
e9 g
c
14
3.设G1,G2如图所示,求它们的交、并以及环和。
1
2
1
2
5
3
4
G1
3 G2
4
15
4.写出下赋权图的一颗最小生成树
a
19
b
14 12
18
7
16 e 8
5
c
3
g
d
学
21
号f
16
5.求下图的最优生成树.
A
9
12
15
C
11
E
15
B
6
的非平凡图.
5.完全二部图 Km,n 中边的个数为_________. 6.设是具有个p顶点的一棵树,则的边数一定为
___. 7.在任何图中,度数为奇数的顶点个数必为
______.
2
8.6阶完全图G的边的个数是___________. 9. 边数最少的连通图是 。 10. G是有40个点的简单图且G中任两个点之间
不存在)完美匹配. 35.在计算平面图面的次数之和时,每条边边计算了______
次. 36.一个图是平面图当且仅当它既没有收缩到K5的子图,也
没有收缩到 的子图. 37.如果一个平面图有一个面的次数为4,则该图______
(填是或不是)极大平面图.
8
三、判断题
1.若途径中的所有点互不相同,则称此途径为一条 链.
31.设M1和M2是图G的两个不同匹配,由 M1M2导出的G的边导出子图记作H,则H 的任意连通分支是下列情况之一:(1)边 在M1和M2中交错出现的偶圈;(2)边在M1 和M2中交错出现的 .
7
32.二部图G中若满足V1= V2,则G必有完美匹配. 33.(G)=2 G是 . 34.若最大匹配的边数为p(G)/2,则说明该图___(填存在或
21.无向图的关联矩阵每一行元素之和等于对应 顶点的——
5
22.一个具有6个顶点的连通图G的秩为__. 23.一个具有5个顶点的连通图G的秩____. 24.7阶完全图的边连通度是______. 25.(6,9)图G的向量空间的维数是______. 26.(5,8)图G的向量空间的维数是______. 27.连通简单图G的关联矩阵的一个大子阵是非奇异的充要
条件为与这个大子阵的列相应的边,组成G的_________. 28.G的________是使得G不连通或成为平凡图所必须删除的
顶点的最小个数. 29.设M为G的一个匹配,则M中的任意两条边都___(填是
或不是)邻接的.
6
30.设M为G的一个匹配,则M中的任意 两条边都___(填是或不是)邻接的.
有且只有1条路,则 G是 。 11.若G有32个点的连通图,且对G每条边e,G-
e非连通,则G的边数为 .
3
12.若G有n个顶点的是 k-正则图,则G的边数为 。
13.简单图 G满足qG pG 1 ,则G是 图。
14.如果连通图G的所有顶点的度数均为_________,则称 图G为欧拉图.
15.若G 是有31个点的连通图且G 中每条边都是割边,则 q(G) 。
2.若途径中的所有边互不相同,则称此途径为一条 道路.
3.任何无圈的图均是二部图. 4.两图即使满足顶点数相等、边数相等和度数相同
的顶点数相等这三个条件,也不一定同构. 5.在树中至少存在两个度为1的顶点(树叶).
9
6.G是含有56个顶点的无圈图,且对G中任两个不相邻的顶点u,v, G+uv有唯一的圈,则G的边数为55.
D● C● B● ● A
E● F●
21
10.请陈述无向图的完全关联矩阵M(G)的性质. 11.写出图G的一个生成树以及基本圈组
v1
a
v2
bd
c 4e f
v3
22
12、写出下图所示无向图的关联矩阵,并 根据大子阵找到一颗生成树
10
12.设是具有n个顶点的图,其邻接矩阵为A, 则
2,…)中的项元素等于从顶点到顶点的长度等于k的途径
的总数.
Ak (k 1,
13.8一定是8—正则图的一个特征值.
14.图的点连通度可能等于图的边连通度.
15.点连通度的数值越小,图的连通性越脆弱.
16.可扩充路的长度必为奇数,且不属于的边比属于的边 少1条.
16.G 是含有56个顶点的无圈图,且对G中任两个不相邻 的顶点u,v,G+uv有唯一的圈,则G的边数为_____;
4
17.G是Euler图G连通且每个点度数均为 ____.
18.e为G的割边 e不在G的任一___中。
19.无向连通图G是欧拉图的充分必要条件是G不 含——顶点。
20.连通图G具有欧拉路而无欧拉圈当且仅当G 恰有—个奇数度顶点.