振动试验技术论文
机械振动论文机械振动论文
![机械振动论文机械振动论文](https://img.taocdn.com/s3/m/e3eda1dd4028915f804dc2f3.png)
机械振动论文机械振动论文浅谈京石高速铁路客运专线CFG桩的施工摘要: CFG桩是水泥粉煤灰碎石桩的简称,一般有三种成桩施工方法:即振动沉管灌注成桩、长螺旋钻孔灌注成桩和长螺旋钻孔管内泵压混合料灌注成桩。
介绍成桩试验的机械选择、材料及配合比、施工过程及工艺流程。
关键词:高速铁路;CFG桩;工艺性试验工程概况:由中铁十二局集团承建的京石高铁客运专线JS-4标段第三项目经理部全长12.6公里,新建路基2.36km,采用长螺旋钻机成孔泵送混合料CFG桩施工。
1 CFG桩施工工艺及现场在各阶段的质量控制要点长螺旋钻机成孔泵送混合料施工CFG桩施工工艺及施工顺序:1)钻机就位:钻机就位后,应使钻杆垂直对准桩位中心,确保CFG桩垂直度容许偏差不大于1%。
现场控制采用在钻架上挂垂球的方法测量该孔的垂直度,也可采用钻机自带垂直度调整器控制钻杆垂直度。
2)钻进成孔:钻孔开始时,关闭钻头阀门,向下移动钻杆至钻头触地时,启动马达钻进,先慢后快,同时检查钻孔的偏差并及时纠正。
在成孔过程中发现钻杆摇晃或难钻时,应放慢进尺,防止桩孔偏斜、位移和钻具损坏。
根据钻机塔身上的进尺标记,成孔到达设计标高时,停止钻进。
3)混合料搅拌:混合料搅拌必须进行集中拌和,按照配合比进行配料,每盘料搅拌时间按照普通混凝土的搅拌时间进行控制。
混合料出厂时塌落度可控制在160mm~200mm。
4)灌注及拔管:钻孔至设计标高后,停止钻进,提拔钻杆20~30cm后开始泵送混合料灌注,每根桩的投料量应不小于设计灌注量。
钻杆芯管充满混合料后开始拔管,并保证连续拔管。
施工桩顶高程宜高出设计高程30~50cm,灌注成桩完成后,桩顶盖土封顶进行养护。
5)移机:灌注时采用静止提拔钻杆(不能边行走边提拔钻杆),提管速度控制在2-3米/分钟,灌注达到控制标高后进行至下一根桩的施工。
2 铁路客专《验标》对长螺旋钻施工CFG桩质量要求1)施工前应进行成桩工艺性试验(不少于2根试验桩),以复核地质资料以及机械设备性能、施工工艺、施打顺序是否适宜,确定混合料配合比、塌落度、搅拌时间、拔管速度等各项工艺参数,根据试桩中发现的问题修订施工工艺。
机械振动论文
![机械振动论文](https://img.taocdn.com/s3/m/dd672e14a6c30c2259019e95.png)
机械振动在机械工程中的应用成晓(江苏师范大学,江苏连云港 222000)摘要:本文综述了机械振动在机械工程中的应用。
首先分析了机械振动的危害;然后提出了控制或减小振动的主要途径;最后举例说明机械振动在机械工程中的应用。
关键词:机械振动;机械工程;振动筛Mechanical vibration and its applications in mechanicalengineeringCheng Xiao(Jiangsu Normal University ,Jiangsu, Lianyungang 222002)Abstract: This paper intends to elaborate the applications of mechanical vibration in mechanical engineering. Firstly, the reasons of mechanical vibration are analyzed. Secondly, the main methods to control and decrease the vibration are presented in detail. Finally, examples are present to show the application of mechanical vibration in Mechanical EngineeringKeywords: Mechanical vibration; mechanical engineering ; oscillating screen一机械振动机械振动也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。
在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。
比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。
无人机遥测飞行中振动测试探讨
![无人机遥测飞行中振动测试探讨](https://img.taocdn.com/s3/m/d6969e4ef121dd36a22d82a6.png)
无人机遥测飞行中振动测试探讨摘要介绍遥测技术发展现状,对无人机探测技术进行简介。
提供一种航天器微振动测试的研究方法,为无人机飞行中的振动测试以及成像质量的影响分析提供参考。
对比分析实际飞行中进行振动测试和利用振动测试系统进行振动测试两种测试方法,得出利用振动测试系统进行测试更加方便实用。
关键词无人机探测技术;振动测试;成像质量引言随着人们对图像分辨率的要求逐渐增加,使敏感设备对振动的敏感度也越来越高,诸如包括光学相机等。
这些设备的成像质量受到振动的影响,并且高分辨率遥感卫星等高性能航天器的发展受到严重制约。
因此,无人机摄像时成像模糊的问题亟待解决。
当前的研究成果多局限于微振动对成像质量影响的檢测、分析及抑制方法等,而在航空拍摄过程中,无人机受到其飞行过程中的振动和气流波动影响,使遥感摄像机成像模糊。
因此,为确保成像质量,无人机需安装一套良好的减振装置,保证其正常工作。
为了验证减振装置的效果,就需要对无人机在飞行过程中的振动情况进行分析。
据此,本文针对无人机飞行中的振动问题进行探讨。
1 无人机简介我国遥感探测技术中的航空遥感技术,对我国环境监测、资源勘查、地图测绘等领域的发展及研究具有重要意义。
遥感技术是一种目标探测技术,具有远距离、非接触性的特点,该技术通过对目标进行探测,获取探测数据,并对数据进行处理,实现对目标的定位、定性、定量和变化规律的描述。
航空遥感指的是借助无人机等飞行设备作为传感器载体在高、中、低三种不同的空中距离中进行的遥感对地探测。
无人机指用于航空遥感的各类飞机,根据飞机翼型氛围固定翼、旋转翼(直升)飞机;根据飞机作业高度分为高空或中、低空飞机等。
无人机主要作为遥感平台,根据实际需求安装相应传感器及摄像设备。
一般情况下,为了便于对地观测,在机腹设置大小、形状不同的窗口。
比如,用于航拍的多种类型摄像机,各种型号扫描仪、辐射计、测高仪等等。
中科院两架“奖状S/Ⅱ”型遥感飞机,是1986年由美国塞斯纳飞机公司生产的小型公务机改装而成的专业科学试验飞机。
地震模拟振动台及模型试验研究进展
![地震模拟振动台及模型试验研究进展](https://img.taocdn.com/s3/m/8d591249eef9aef8941ea76e58fafab069dc44ef.png)
地震模拟振动台及模型试验研究进展1. 本文概述随着城市化进程的加快和建筑工程技术的不断发展,地震灾害对人类社会的威胁日益凸显。
为了提高建筑结构的抗震能力,减少地震灾害造成的人员伤亡和经济损失,地震模拟振动台及模型试验研究成为了工程抗震领域的重要研究方向。
本文旨在综述地震模拟振动台及模型试验的研究进展,分析现有技术的优缺点,探讨未来发展趋势,为相关领域的研究和实践提供参考。
地震模拟振动台作为一种重要的试验设备,可以模拟地震波对建筑物的影响,为研究者提供一种可控、可重复的实验手段。
模型试验则是将实际建筑结构按比例缩小,通过模拟地震作用下的响应,来研究结构的抗震性能。
这两者的结合为抗震研究提供了强有力的技术支持。
本文首先介绍了地震模拟振动台的工作原理和技术特点,然后对近年来国内外在模型试验方面的研究进行了梳理,包括试验方法、试验对象和试验结果等方面的内容。
接着,本文分析了当前研究中存在的问题和挑战,如模型与原型之间的相似性、试验数据的准确性等。
本文探讨了地震模拟振动台及模型试验的未来发展趋势,包括技术革新、数据分析方法的改进以及与其他抗震技术的结合等方面。
2. 地震模拟振动台技术概述定义:地震模拟振动台是一种用于模拟地震作用的实验设备,通过在实验模型上施加特定的振动,来模拟地震时的地面运动。
原理:振动台通过驱动系统产生可控的振动波形,这些波形可以模拟实际的地震波形或特定的地震动参数。
综合模拟环境:结合温度、湿度等环境因素,进行更全面的地震模拟。
3. 地震模拟振动台的发展历程地震模拟振动台的发展可以追溯到20世纪初。
最初,地震模拟振动台主要用于建筑结构的抗震性能研究。
早期的振动台设备简单,只能模拟一维地震波,且模拟的地震波频率范围有限。
这些早期的尝试为后来的研究奠定了基础。
20世纪50年代,随着电子技术和材料科学的发展,地震模拟振动台进入了快速发展阶段。
这一时期的振动台设备开始能够模拟多维地震波,频率范围也得到扩大。
关于受迫振动、共振的实验研究
![关于受迫振动、共振的实验研究](https://img.taocdn.com/s3/m/d81b1f649b6648d7c1c746ce.png)
3.期刊论文 张义同.张岚 关于扁担的力学 -力学与实践2002,24(5)
一根简单的扁担,体现了等强度梁、固有频率、受迫振动等诸多的力学问题,对扁担的力学行为的研究揭示了扁担何以有如此优良的传递载荷的性能.
4.学位论文 马海全 机械系统中一类特殊摩擦自激振动的分析和防治 1999
该文针对这一类特殊摩擦自激振动的分析与防治,首先结合BM50磨机的实际结构和现场搜集到的相关资料,试验分析并判明产生振动的原因是因为结 构上的缺陷而导致了受迫振动和摩擦自激振动.然后根据试验分析的结果,提出该BM50磨机的简化模型并对其进行理论分析.BM50机的振动是由径向的受迫 振动和周向的摩擦自激振动共同组成的,径向受迫振动的分析结果表明,这项振动主要是因为磨机转速和磨辊的固有频麓钆洳坏保佣鹉?踉诰断虻某彻舱瘛 T诙灾芟虻哪Σ磷约ふ穸难芯恐校岢隽艘恢中碌哪Σ磷约ふ穸P筒⒍哉庵帜P徒辛硕ㄐ苑治觥W詈螅P臀⒎址匠探屑扑慊捣抡婕扑悖⒃赪indows平台上实现了 自激振动分析软件的系统集成.
物理实验 PHYSICS EXPERIMENTATION 2006,26(8) 3次
参考文献(1条)
1.贾爱英 简易共振实验演示仪[期刊论文]-物理实验 2005(3)
相似文献(9条)
1.期刊论文 李越洋.刘存海.张勇 受迫振动特性研究 -化学工程与装备2008(7)
本文采用波尔共振仪定量测定受迫振动的幅频特性和相频特性,并利用频闪方法对相位差进行了测定.研究发现,当系统发生共振时,固有频率和驱动 频率相等且相位差Φ=90°.
PH YSICS EXPERIMENTATION
V01.26 No.8 Aug..2006
关于受迫振动、共振的实验研究
基础教育研究
单晓峰
机翼振动模态试验与颤振分析
![机翼振动模态试验与颤振分析](https://img.taocdn.com/s3/m/42f10ff34693daef5ef73d59.png)
机翼振动模态试验与颤振分析1 引言高空长航时飞机近年来得到了世界的普遍重视。
由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。
大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,如机翼结构的静气动弹性发散、颤振等等。
这些问题构成飞行器设计和其它结构设计中的不利因素,甚至极为有害,解决气动弹性问题历来为飞机设计中的关键技术。
气动弹性问题又分为静气动弹性问题和动气动弹性问题。
在动气动弹性问题领域中最令人关注的是颤振问题。
颤振现象是气动力、结构弹性力和惯性力三者耦合的结果。
所以颤振的发生与机翼结构的振动特性密切相关。
在对机翼进行颤振特性的数值计算时,颤振计算结果的正确性和精确性取决于机翼各阶固有振动模态的精确性。
真实机翼的固有模态可以通过模态试验测得。
根据颤振数值计算过程的需要,参与计算的各阶模态必须正交,而试验测得的模态并不严格正交,且因为结构阻尼的存在,模态通常为复数。
有一种处理方法是通过取幅值,把各阶模态变为实模态,然后对求得的广义质量阵、刚度阵进行修正,使其变为对角阵从而方便数值计算;另一种方法是直接建立机翼的有限元模型,通过数值计算求得固有模态(满足正交性),但是计算所得模态的正确性需要通过模态试验进行验证。
在实际工程中,通常采用第二种方法,本文也采用这种方法的思路。
本文研究对象为一个大展弦比平板机翼模型:一块半展长 1 米,弦长0.12 米,厚度1.8毫米的铝板,边界条件为根部固支。
2 模态数值分析有限元模型作为颤振分析的基础,也是试验模态结果正确性验证的重要参考。
另外根据计算所得的各阶主要模态的节线位置,可以确定传感器测量点和激振点的布放位置(尽量将激振点和测量点放置在远离各阶节线的位置,如果正好在某阶节线上,则该阶模态无法激励出或测量不到)。
所以在试验前须根据实际结构建立一个能够充分反映结构质量、刚度特性的有限元模型。
使用Nastran 有限元计算软件进行根部固支状态下的振动模态计算,得到结果如表 1 所示。
振动测试技术模态实验报告
![振动测试技术模态实验报告](https://img.taocdn.com/s3/m/c27dcfa32cc58bd63186bd7e.png)
振动测试技术模态实验报告It was last revised on January 2, 2021研究生课程论文(2013-2014学年第二学期)振动测试技术研究生:模态试验大作业0 模态试验概述模态试验(modal test)又称试验模态分析。
为确定线性振动系统的模态参数所进行的振动试验。
模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。
模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。
由于振动在机械中的应用非常普遍。
振动信号中包含着机械及结构的内在特性和运行状况的信息。
振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。
同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。
模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。
模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。
这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。
为获得系统动态特性,常需要测量系统频响函数。
目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。
单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。
按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。
期刊《振动与冲击》论文模板(汇编)
![期刊《振动与冲击》论文模板(汇编)](https://img.taocdn.com/s3/m/118f6e0702768e9951e738f3.png)
□□□□□□论文题目□□□□□□□□□(三号黑体)XXX 1,XXX 2,XXX 2(小四宋体)(1.上海交通大学XXXXX学院XXXX,上海200240;2. XXXXXXXXXXXXXXXXXXXXXXX,上海200125)(小五宋体)摘要:(五号黑体)对岸桥起重机的有限元建模、约束处理作了分析与探讨, 在此基础上就岸桥起重机系统进行了模态和动态响应分析,得到了起重机系统前十阶振动频率、振型和位移响应时间历程。
该结果对岸桥起重机设计中如何避免在工作频率范围上共振现象的产生及限制在动载时过大动变形的产生有实际意义。
(小五宋体)关键词:(小五黑体)振动与波;岸桥起重机;有限元分析;动力响应中图分类号:TH212;TH213.3文献标识码:A□□□英文文题□□□(Times New Roman小四加粗)XXX 1XXX 2XXX 2(Times New Roman小四斜体)(1.Shanghai JiaoTong University, Shanghai 200240;2.Shanghai Zhenhua,Shanghai 200215) ( Times New Roman五号)Abstract:(五号加粗)A finite element model and its boundary conditions of quayside gantry crane are established in this paper. The first ten natural frequencies, the corresponding mode shapes and time-history of displacement response are given based on the analysis of the modes and dynamic response of this gantry crane system. The calculation and analysis above may be helpful for preventing the gantry crane from working on resonant area and for keeping the oversize dynamic deformation under restraint, which can be applied to design quayside gantry crane systems.Key words:vibration and wave; gantry crane; finite element analysis近年来起重运输机械制造行业采用新理论、新技术和采用新结构、新材料与新工艺后,其产品设计、性能水平和科技 含量明显提高。
振动试验夹具设计研究
![振动试验夹具设计研究](https://img.taocdn.com/s3/m/d1d2ada3284ac850ad024212.png)
振 动 引 起 的 偏 载 力 矩 Mp 和 横 振 力 矩 Mh 按 下 式计算:
Mp = Y×F1
( 2)
Mh = ( X+B) ×F2
( 3)
式 ( 2) 、 ( 3) 中: Mp—偏载力矩 ( kgf ×mm 或 kN
×m) ;
Mh—横振力矩 ( kgf ×mm 或 kN ×m) ; F1—振动时试品 ( 含夹具) 重力中心的偏载力 ( kgf 或 kN) ;
邓柯莱法推导过程的误差较大; 2) 此方法适合于 高阶固有频率远大于第一阶固有频率 ( 基频) 的系 统; 3) 利用邓柯莱法时, 子结构必须是一些较为 简单的规则结构, 以便于求解。这样就限制了邓柯 莱法的广泛应用。
随着现代结构动态设计方法的发展, 将有限元 模态分析与实验模态分析结合起来应用于夹具设计 将是一个快速、高效且满足工程精度的设计方法 [3]。
图 1 L 型夹具
图 2 T 型夹具
DIANZI CHANP IN KEKAOXING YU HUANJ ING S HIYAN
3.2 夹具材料的选择与共振频率
从性能角度出发, 材料应具有较小的密度, 较 大的刚度和较高的阻尼; 从加工角度出发, 材料应易 于加工; 从经济角度出发, 则要求材料价格较为便 宜。直接影响固有频率的因素是材料的弹性模量 E 与材料密度 ρ之比。E / ρ的值也影响共振频率, 其 值越大越好。在我们所进行的振动试验中, 一般选择 的材料为铝硅合金或者 ZL101, 而不使用钢材。
绍, 指出各设计方法存在的不足, 并阐述了夹具类型、材料选择、制造加工等对夹具应力传递特性的影响。另
外, 还给出了夹具对振动台防过冲的设计方法和改进夹具设计的建议, 并提出研究课题。
铁路振动技术实验报告
![铁路振动技术实验报告](https://img.taocdn.com/s3/m/272d470cbf1e650e52ea551810a6f524ccbfcb2a.png)
铁路振动技术实验报告引言铁路作为一种重要的交通工具,其安全性和舒适性一直是人们关注的重点。
车辆在行驶过程中会产生振动,这些振动会对列车和乘客产生一定的影响。
因此,研究和控制铁路振动成为了重要的课题之一。
本实验旨在探究铁路振动以及可能的控制方法。
实验目的1. 理解铁路振动的原理和影响因素;2. 掌握铁路振动检测和测量的方法;3. 了解和评估铁路振动控制技术的有效性。
实验装置和方法1. 实验装置:借助真实的铁路模型搭建实验场景,包括铁轨、列车模型和振动传感器;2. 实验步骤:- 在模型的适当位置安装振动传感器;- 将列车模型放置在铁轨上,使其处于运行状态;- 启动传感器进行数据采集,并记录下振动数据;- 重复实验过程,尝试不同列车速度和不同铁轨材质下的振动数据。
实验结果根据实验数据的分析和处理,我们得到如下实验结果:1. 不同列车速度下的振动数据列车速度(km/h)振动幅度(mm)50 2.580 3.2100 4.0从上表可以看出,列车速度的增加会导致振动幅度的增加,即列车速度与振动幅度呈正相关关系。
2. 不同铁轨材质下的振动数据铁轨材质振动幅度(mm)A 3.5B 3.8C 4.2从上表可以看出,不同铁轨材质对振动幅度也有一定的影响,材质C的铁轨振动幅度最大,材质A的振动幅度最小。
结果分析与讨论1. 列车速度与振动幅度的关系:列车速度的增加会导致振动幅度的增加,这是由于列车在运行过程中与铁轨之间产生的撞击和摩擦所引起的。
当列车速度较小时,振动幅度较小,当列车速度增加到一定程度后,振动幅度也随之增加。
2. 铁轨材质与振动幅度的关系:不同材质的铁轨对振动幅度有一定的影响。
不同材质的铁轨表面粗糙度、弹性模量和减震性能不同,这会导致振动传导效果的差异。
材质A的振动幅度最小,说明该材质的减震性能较好。
结论本实验通过铁路模型的搭建和振动传感器的使用,成功地分析了列车速度和铁轨材质对铁路振动的影响。
实验结果表明,列车速度的增加以及铁轨材质的不同都会导致振动幅度的增加。
机械振动课的论文
![机械振动课的论文](https://img.taocdn.com/s3/m/7214dc12a21614791711282f.png)
机械振动在生活生产中的实际应用以及共振的危害(一)、机械振动在生活生产中的实际应用机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。
在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。
比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。
以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。
先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。
比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。
顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。
例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。
又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。
输送设备运用到机械振动也是很多的。
比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。
输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。
例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。
给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。
就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。
总而言之,机械振动在现实生活生产中的应用是多种多样的,有的是直接应用,有的是间接应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动试验技术论文
摘要:振动试验技术是一门专业性很强的技术学科,需要从试验参数识别、试验控制、振动分析、故障预测与诊断、试验夹具设计等各个方面入手,加强这门试验技术研究。
关键词:随机振动试验技术振动控制
振动试验是在实验室条件下产生一个人工可控的振动环境,该环境模拟产品生命周期(制造/维修、运输、工作、其它)内的使用振动环境,使产品经受与实际使用过程的振动环境相同或相似的振动激励作用,考核产品在预期使用过程的振动环境作用下,能否达到设计所规定的各项技术要求,同时也是考核产品结构强度和可靠性的一个主要试验方法。
因此,振动试验是产品可靠性试验的重要组成部分。
1 正弦振动试验
1.1 正弦振动试验原理
振动变量是正弦函数形式的一种振动试验。
1.2 正弦振动试验方法
常用的正弦振动试验分为:定频振动和扫频振动。
定频振动是指频率一定,振动加速度(或幅值)、试验时间可变的正弦振动试验。
扫频振动即正弦扫描,指按规定振动量的正弦波,在试验频率范围内,以某种规律连续改变振动频率以激励被试件。
扫描时频率变化率称为扫描速率,扫描形式分为线性扫描和对数扫频两种。
[1]
1.3 正弦振动试验的峰值加速度要求
(1)振动环境:保证在规定频率范围内,控制传感器上的正弦峰值加速度偏差不大于规定值的±10%。
(2)振动测量:保证在试验频率范围内,振动测量系统提供传感器安装面上的正弦峰值测量数据,其偏差在振动量值的±5%之内。
(3)均方根加速度值:正弦振动均方根加速度等于0.707倍的峰值加速度。
2 随机振动试验
2.1 随机振动定义
振动变量是一种随机变化的振动试验,在任意给定时刻,其瞬时值都不能精确预知。
因此,随机振动用统计的方法来进行描述,采用频率域统计描述,即用功率谱密度函数来描述随机信号在频率域的统计特性。
[2]
3 随机振动试验技术
3.1 试验允差
随机振动规定了加速度谱密度、频率测量、横向加速度允差要求。
3.1.1 加速度谱密度
文献[3]规定在任何情况下,控制传感器上的加速度谱密度的允差应不超过±3 dB,500 Hz以上可以放宽到-6~+3 dB,但是超
过允差的累积带宽应限制在整个试验频率带宽的5%以内。
文献[4]规定500 Hz以下允差控制在-1.5~3 dB,500~2000 Hz 不大于±3 dB,最大100 Hz累积带宽之内,偏离允许达到±6 dB。
3.1.2 频率测量
在试验频率范围内,振动测量系统提供传感器安装面上频率测量偏差应在±1.25%内。
对于频率不大于25 Hz,分析带宽应小于等于2.5 Hz;对于频率大于25 Hz,分析带宽应不大于5 Hz。
3.1.3 横向加速度
在任何频率上,相互正交并与试验驱动轴正交的两个轴上的振动加速度应不大于试验轴上的加速度的0.45倍(或加速度谱密度的0.2倍)。
3.2 振动试验控制
在试验室振动试验中,试件一般通过适当的试验夹具安装在振动台,试验夹具与振动台的组合用于模拟预期使用过程中平台产生的振动环境,大多数情况下,振动使用条件所对应的振动控制点选择在试件与试验夹具的连接界面上,其代表了预期使用过程中平台对装备的振动环境激励。
在理想状态情况下,即试件相对与振动台和试验夹具可以近似作为刚体处理,如果在试件与试验夹具连接界面的振动响应将与预期使用过程一致,可以认为试件经受了符合预期使用过程的振动环境考核。
当试件的尺寸和重量较大,或固有频率较低时,由于试件与振动台、试验夹具的动力耦合(共振或反共振)作用,试验时振动环
境的模拟结果往往偏离理想的试验条件。
这样即使在试件与试验夹具连接界面的振动控制点达到了规定的振动加速度试验条件,试件上的振动响应也会与预期使用过程中装备上的振动响应不一致,从而导致试件的过试验或欠试验。
因此,在实验室振动环境试验中,需要采取适当的控制方法,以改善试件的过试验或欠试验,使得试验结果更接近预期试验情况。
振动试验控制方法可分为四种:加速度输入控制、力限控制、加速度限控制和加速度响应控制以及开环波形控制法。
[3] 表1列举了几种控制方法的对比及说明。
4 振动夹具设计
4.1 振动夹具设计要求
一个好的振动夹具,它必须具有较好的综合性能,包括结构、加工工艺性、动态传递特性等多方面考虑。
因此,振动夹具设计过程时,应考虑以下因素[1]。
(1)振动夹具能够最大限度地模拟产品的真实安装方式,既能方便地与振动台面连接,也能方便地与试件连接。
(2)尽量做到夹具与试件的组合中心到振动台面最短距离要求,并且与振动台面同轴。
(3)材料应选用比刚度大、阻尼大的材料,如:铝镁合金。
(4)结构优选选用对称封闭形,如立方体、盒型、半球形和锥形等。
夹具与振动台面连接的固定点要求圆周对称分布,同一个平面最少均布4个孔,孔的形状做成埋头带台肩的样式。
平底埋头
孔的深度大约为螺杆直径的1.5~2倍,未被扩孔的部分不得小于15 mm,以保证夹具连接处有足够的强度,避免螺栓的高频共振。
(5)夹具的结构设计时要设计传感器的安装位置,传感器安装位置要求有足够的刚度,并靠近夹具的固定点。
(6)在整个试验频段内,夹具的频率响应特性应尽量平坦,其一阶固有频率应高于试验最高频率。
如果,不能高于试验最高频率,则要求不能低于某个频率值,并且在高于这个频率时允许共振,但要限定放大因子及3 dB带宽。
(7)振动夹具的横向振动应尽量小,要求不大于轴向振动的30%。
4.2 振动夹具测试方法
(1)用正弦扫频的试验方法对夹具的传递特性进行测试,通过扫描曲线寻找其谐振频率、传递放大因子以及3 dB带宽,判断其是否满足技术要求。
(2)进行正弦扫频测试要求。
①扫频速率不大于1oct/min。
②进行测试时,要求将控制传感器置于振动夹具与振动台面的固定点处,而监测传感器置于振动夹具与试件的固定点或分界面上,并且有较大刚度的地方。
③正弦扫描测试完后,装入配重体,选择适当的控制方法,按试件振动条件要求进行振动图谱的振动测试,以保证完全满足试件在振动试验中的试验要求。
5 结语
振动试验技术是一门专业性很强的技术学科,需要从试验参数识别、试验控制、振动分析、故障预测与诊断、试验夹具设计等各个方面入手,加强这门试验技术研究。
参考文献
[1] 胡志强,法庆衍,洪宝林,等.随机振动试验应用技术[M].北京:中国计量出版社,1996.
[2] 邢天虎.力学环境试验技术[M].力学环境试验技术,西安:西北工业大学出版社,2003.
[3] 施荣明.GJB150.16A-2009《军用设备环境试验方法振动试验》[Z].
[4] GJB573A-1998《引信环境与性能试验方法》[Z].。