求递推数列通项公式和求和的常用方法

合集下载

数列求和常用方法

数列求和常用方法

数列求和常用方法数列求和是数学中的一个重要内容,它涉及到数学中的序列和级数的概念。

数列求和常用的方法有多种,包括公式求和法、递推公式法、夹逼定理法等,下面将为大家详细介绍这些方法。

一、公式求和法公式求和法是一种常用的数列求和方法,它适用于一些特殊的数列。

在应用这种方法求和时,首先需要找到数列的通项公式,然后利用该公式,通过变量的代入与简化运算,得到数列的和。

以等差数列为例,假设等差数列的首项为a1,公差为d,它的通项公式为an=a1+(n-1)d。

此时,可以根据等差数列和的公式Sn=n(a1+an)/2来求得等差数列的和。

例如,求等差数列1,4,7,10,13,16,……的前n项和。

根据等差数列的通项公式an=1+(n-1)3,可得:Sn=n(1+1+(n-1)3)/2=n(2+3n)/2=(3n²+2n)/2通过利用公式Sn=n(2+3n)/2,可以求得等差数列的和。

同样的方法,可以利用等比数列的通项公式an=a1*q^(n-1)和等比数列和的公式Sn=a1(q^n-1)/(q-1),来求解等比数列的和。

二、递推公式法递推公式法是利用数列的递推关系求解数列的和,它适用于那些不能通过通项公式求和的数列。

递推公式法通常需要利用数列的递归关系和已知的初始项来定义一个逐项相加的函数,从而得到数列的和。

例如,求斐波那契数列1,1,2,3,5,8,……的前n项和。

首先可以得到斐波那契数列的递归关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1然后可以利用这个递归关系,定义一个逐项相加的函数S(n),表示斐波那契数列的前n项和。

初始条件为S(1)=1,S(2)=2那么根据递推公式可以得到S(n)=S(n-1)+f(n),其中f(n)表示斐波那契数列的第n项。

通过递推公式法,可以求解斐波那契数列的和。

三、夹逼定理法夹逼定理法适用于求解一些无限项和的问题,它是通过将无限项和的部分项与一个已知的无限项和进行夹逼,从而求出无限项和的方法。

求数列通项公式+求数列前 N项和的常用方法

求数列通项公式+求数列前    N项和的常用方法
例题2:求数列
的前n项和Sn 解:
点拨:这道题只要经过简单整理,就可以很明显 的看出:这个数列可以分解成两个数列,一个等差 数列,一个等比数列,再分别运用公式求和,最后 把两个数列的和再求和。 三.用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使 得前后项相抵消,留下有限项,从而求出数列的前 n项和。
例题3:求数列
(n∈N*)的和 解:
点拨:此题先通过求数列的通项找到可以裂项的 规律,再把数列的每一项拆开之后,中间部分的项 相互抵消,再把剩下的项整理成最后的结果即可。
四.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于
等比数列与等差数列相乘的形式。即若在数列 {an·bn}中,{an}成等差数列,{bn}成等比数列,在 和式的两边同乘以公比,再与原式错位相减整理后 即可以求出前n项和。
例题4:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan①
则:aSn = a2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n =
求数列 前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式, 再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为 基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律, 找到适合的方法解题。
一.用倒序相加法求数列的前n项和

数列求和及求通项方法总结

数列求和及求通项方法总结

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。

例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。

二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。

数列的递推公式与求和公式推导

数列的递推公式与求和公式推导

数列的递推公式与求和公式推导在数学中,数列是指按照一定规律排列的一组数字。

数列中的每个数字称为数列的项,而数列的递推公式和求和公式是用来描述和计算数列的重要工具。

本文将介绍数列的递推公式及其推导方法,以及数列的求和公式的推导过程。

一、数列的递推公式数列的递推公式是指通过已知的前一项或前几项计算下一项的公式。

它描述了数列项之间的关系,使我们可以方便地求得任意项的值。

下面以斐波那契数列为例,介绍数列的递推公式推导。

斐波那契数列是一个经典的数列,它的定义如下:F(1) = 1F(2) = 1F(n) = F(n-1) + F(n-2),其中n>=3。

可以通过观察前几个数来猜测递推公式,但为了证明递推公式的正确性,需要使用数学归纳法。

首先,验证当n=1和n=2时,递推公式成立。

然后,假设当n=k时,递推公式也成立,即F(k) = F(k-1) + F(k-2)。

接下来,我们通过验证n=k+1时递推公式是否成立来证明递推公式的通用正确性。

当n=k+1时,根据斐波那契数列的定义可得:F(k+1) = F(k) + F(k-1) = (F(k-1) + F(k-2)) + F(k-1) = F(k) + 2F(k-1)由假设知F(k) = F(k-1) + F(k-2),代入上式可得:F(k+1) = (F(k-1) + F(k-2)) + 2F(k-1) = F(k-1) + 3F(k-1) = 4F(k-1)因此,当n=k+1时,递推公式也成立。

根据数学归纳法可知,对于任意的n,斐波那契数列的递推公式都成立。

二、数列的求和公式数列的求和公式是指计算数列前n项和的公式。

通过求和公式,我们可以在不一一相加的情况下,直接得到数列的和。

下面以等差数列为例,介绍数列的求和公式推导。

等差数列是指数列中相邻两项的差等于一个常数,记为d。

等差数列的通项公式为:a(n) = a(1) + (n-1)d,其中n为项数。

数列计算方法总结

数列计算方法总结

数列计算方法总结引言数列是数学中一系列具有特定规律的数字按一定顺序排列而成的集合。

在数学和相关领域的问题中,数列计算方法是非常重要的基础工具。

本文将总结常见的数列计算方法,包括数列的求和、通项公式、递推公式等内容。

数列的求和对于一个数列,求和是常见的操作之一。

下面介绍几种常用的数列求和方法。

等差数列求和等差数列是指数列中相邻两项之间的差都是一个常数。

求等差数列的和可以使用以下公式:$$S_n=\\frac{n}{2}(a_1+a_n)$$其中,S n是前n项和,a1和a n分别是首项和末项。

等比数列求和等比数列是指数列中相邻两项之间的比值都是一个常数。

求等比数列的和可以使用以下公式:$$S_n=\\frac{a_1(1-q^n)}{1-q}$$其中,S n是前n项和,a1是首项,n是项数,q是公比。

斐波那契数列求和斐波那契数列是指数列中每一项都等于前两项之和,即F(n)=F(n−1)+F(n−2),其中F(0)=0,F(1)=1。

求斐波那契数列的和可以使用以下公式:S n=F(n+2)−1其中,S n是前n项和。

数列的通项公式数列的通项公式是指数列中每一项的表达式。

通过求得数列的通项公式,可以方便地计算数列中任意一项的值。

等差数列的通项公式等差数列的通项公式为:a n=a1+(n−1)d其中,a n是第n项,a1是首项,d是公差。

等比数列的通项公式等比数列的通项公式为:$$a_n=a_1\\times q^{(n-1)}$$其中,a n是第n项,a1是首项,q是公比。

斐波那契数列的通项公式斐波那契数列的通项公式为:$$F(n)=\\frac{{\\left(\\frac{1+\\sqrt{5}}{2}\\right)^n - \\left(\\frac{1-\\sqrt{5}}{2}\\right)^n}}{\\sqrt{5}}$$其中,F(n)是第n项。

数列的递推公式数列的递推公式是指通过前一项计算下一项的关系式。

求数列通项公式、前n项和sn常用方法F

求数列通项公式、前n项和sn常用方法F

求数列通项公式常用方法1.归纳法:由给出已知项寻找规律 ,求同存异,猜想通项公式2.公式法:等差数列与等比数列.3.作差法:利用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n , 求n a特别的:已知前n 项积,求n a 使用(作商法).4、累加法:数列}{n a 的递推公式为)(1n f a a n n =-+型时,且{)(n f }中n 项和可求。

5、累乘法:数列}{n a 的递推公式为)(1n f a a n n =+型时,且{)(n f } 中n 项积可求。

6、构造法:形如q a p a n n+∙=-1(q p 、为常数)的形式,往往变为)(1λλ-=--n n a p a ,构成等比数列,求}{λ-na 的通项公式,再求n a .7、倒数法:形如)()()(n h a n g a n f n n++,可取倒数后换元,变为q a p a n n +∙=-18.周期法:计算出前n 项,寻找周期精题自测(1)已知数列}{n a 满足)1(23-=n n a S ,则n a =_____________(2)已知数列}{n a 满足11=a ,n n n a a 21+=+,则n a =_____________(3)已知数列}{n a 满足11=a ,)11ln(1na a n n ++=+,则n a =_____________(4)已知数列}{n a 满足11=a ,n nn a a 21=+,则n a =_____________(5)已知数列}{n a 满足11=a ,0>n a ,0)1(1221=∙+-+++n n n n a a na a n ,则n a =____________(6)已知数列}{n a 满足11=a ,121+=+n nn a a a ,则n a =_____________(7)已知数列}{n a 满足31=a ,62=a ,n n n a a a -=++12,则2013a =_____________(8)已知数列}{n a 满足333313221na a a a n n =∙++∙+∙+- ,则n a =_____________(9)已知数列的前n 项积为2n ,则当≥n 2时,则n a =_____________求前n 项和nS 常用方法1、公式法:等差数列的前n 项和公式: 等比数列的前n 项和公式:①d n n na a a n S n n 2)1(2)(11-+=+= ②⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qq a a q q a q na S n n nn )1(211+=∑=n n k nk∑=nk k 12=)12)(1(613212222++=++++n n n n 213)]1(21[+=∑=n n k nk 例1:已知3log 1log 23-=x ,求 +++++n x x x x 32的前n 项和.2、分组求和法:把一个数列分成几个可直接求和的数列.例2:求数列211,413,815,…,⎥⎦⎤⎢⎣⎡+-n n 2112)(的前n 项和。

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。

当自变量从小到大依次取值时对应的一列函数值。

由于自变量的值是离散的,所以数列的值是一群孤立的点。

(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。

(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。

2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。

(3) 解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。

在数学中,有几种方法可以求解这类问题。

一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。

这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。

k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。

解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。

二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。

该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。

解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。

利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。

三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。

该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。

十类递推数列的通项公式的求法

十类递推数列的通项公式的求法
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n

九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+

数列的求和与递推公式

数列的求和与递推公式

数列的求和与递推公式在数学中,数列是由一系列按照特定规律排列的数字组成的序列。

求解数列的和以及找到递推公式是数学中常见的问题,本文将介绍数列求和的方法以及递推公式的推导过程。

一、等差数列的求和与递推公式等差数列是指数列中相邻两项之间的差值保持相等的数列。

设等差数列的首项为a,公差为d,第n项为an。

1.1 求和公式对于等差数列来说,我们可以通过求和的方法来快速计算数列的和。

等差数列的前n项和Sn可以通过下式计算得到:Sn = (n/2) * (a + an)其中,n为项数,a为首项,an为第n项。

1.2 递推公式递推公式是求解等差数列中第n项的常用方法。

根据等差数列的性质,可以得出递推公式为:an = a + (n-1) * d其中,an为第n项,a为首项,d为公差,n为项数。

二、等比数列的求和与递推公式等比数列是指数列中相邻两项之间的比值保持相等的数列。

设等比数列的首项为a,公比为r,第n项为an。

2.1 求和公式对于等比数列而言,我们可以通过求和的公式来计算数列的和。

等比数列的前n项和Sn可以通过下式计算得到:Sn = a * (1 - r^n) / (1 - r)其中,n为项数,a为首项,r为公比。

2.2 递推公式递推公式是求解等比数列中第n项的常用方法。

根据等比数列的定义和性质,可以得出递推公式为:an = a * r^(n-1)其中,an为第n项,a为首项,r为公比,n为项数。

三、斐波那契数列的求和与递推公式斐波那契数列是一种特殊的数列,在数学和自然界中都有广泛的应用。

斐波那契数列的定义如下:首项为1,第二项为1,之后的每一项都是前两项的和。

3.1 求和公式斐波那契数列的前n项和Sn可以通过下式计算得到:Sn = Fn+2 - 1其中,Fn为斐波那契数列的第n项。

3.2 递推公式递推公式是求解斐波那契数列中第n项的常用方法。

根据斐波那契数列的定义和性质,可以得出递推公式为:Fn = Fn-1 + Fn-2其中,Fn为第n项,Fn-1为第n-1项,Fn-2为第n-2项。

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。

数列的通项公式是指能够表示数列中任意一项的公式。

数列的求和是指将数列中所有项相加的过程。

在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。

下面将介绍一些常见的方法。

一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。

通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。

1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。

设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。

通过该递推关系,可以求解等差数列的通项公式和求和。

1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。

设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。

通过该递推关系,可以求解等比数列的通项公式和求和。

1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。

设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。

二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。

例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。

2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。

通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。

2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。

该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。

三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。

对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。

通项公式及其求和方法归纳

通项公式及其求和方法归纳

通项公式及其求和方法归纳【递推公式求通项式】已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。

一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数)此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=-将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。

例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求类似题型练习:已知}{n a 满足11=a ,)1(11+=-+n n a a n n 求}{n a 的通项公式。

二、)(1n f a a n n ⋅=+型数列,(其中()f n 不是常值函数)此类数列解决的办法是累积法,具体做法是将通项变形为1()n na f n a +=,从而就有32121(1),(2),,(1)n n a a a f f f n a a a -===-将上述1n -个式子累乘,变成1(1)(2)(1)n a f f f n a =⋅⋅⋅- ,进而求解。

例2. 已知数列{}n a 中11123,(2)321n n n a a a n n --==⋅≥+,求数列{}n a 的通项公式。

类似题型练习:在数列{}n a 中, n a >0,221112,(1)n n n n a na n a a a ++==++,求n a .提示:依题意分解因式可得11[(1)]()0n n n n n a na a a +++-+=,而n a >0,所以1(1)0n n n a na ++-=,即11n na n a n +=+。

求通项公式的常用方法

求通项公式的常用方法

求通项公式的常用方法通项公式是数列中每一项与序号n之间的关系式,可通过递推关系和数列特点来确定。

下面将介绍几种常用的方法来求解通项公式。

一、等差数列等差数列是一种公差固定的数列,通项公式可以通过公差和首项求得。

1.递推法:设等差数列的首项为a₁,公差为d,则通项公式为an = a₁ + (n -1)d。

2.求和法:对于等差数列,可以根据前n项和与首项之间的关系来求解通项公式。

设前n项和为Sn,首项为a₁,公差为d,则有等差数列求和公式Sn =n/2(a₁ + an)。

二、等比数列等比数列是一种比值固定的数列,通项公式可以通过公比和首项求得。

1.递推法:设等比数列的首项为a₁,公比为r,则通项公式为an = a₁ * r^(n -1)。

2.求和法:对于等比数列,可以根据前n项和与首项之间的关系来求解通项公式。

设前n项和为Sn,首项为a₁,公比为r,则有等比数列求和公式Sn=a₁(r^n-1)/(r-1)。

三、斐波那契数列斐波那契数列是一种特殊的数列,前两项为1,之后的每一项都是前两项的和。

1.递推法:设斐波那契数列的第n项为F(n),则通项公式为F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=12.通项公式法:利用通项公式公式Fn = (Phi^n - (-Phi)^(-n))/sqrt(5),其中Phi是黄金分割比(约为1.618)。

四、多项式数列多项式数列是指通项由多项式表达的数列。

1.解线性递推关系:对于多项式数列,可以根据给定的递推关系式来推导通项公式。

具体的方法可以通过代入法、特征根法、辅助方程法等来求解。

2.拉格朗日插值法:对于已知部分数列项的数值,可以利用拉格朗日插值法求解通项公式。

该方法需要确定数列项数目与已知项数目一致。

以上是一些常见的求通项公式的方法,不同的数列类型可能需要不同的方法来求解。

在实际问题中,还可以根据数列性质和给定条件等将其转化为已知的数列类型,从而应用相应的求解方法。

数列求通项公式方法大全

数列求通项公式方法大全

数列求通项公式方法大全数列是数学中非常重要的概念之一,它在各个领域都有着广泛的应用。

在数列中,我们常常需要找到一个通项公式来表示数列中的每一项。

本文将介绍几种常用的求解数列通项公式的方法,以便读者能够更好地理解和运用这些方法。

一、等差数列的通项公式求解方法等差数列是一种每一项与前一项之差都相等的数列。

求解等差数列通项公式的方法包括以下几种:1. 直接法:已知等差数列的首项a和公差d,可以直接通过观察找出通项公式为An=a+(n-1)d。

这一方法适用于简单的等差数列。

2. 递推法:已知等差数列的首项a和公差d,可以通过递推的方式求得通项公式。

具体步骤是将首项代入通项公式,再将前一项代入,不断递推得到通项公式。

3. 求和法:利用等差数列的求和公式可以推导出通项公式。

首先求得等差数列的前n项和Sn,然后通过Sn与前一项和Sn-1之差得到通项公式。

二、等比数列的通项公式求解方法等比数列是一种每一项与前一项之比都相等的数列。

求解等比数列通项公式的方法包括以下几种:1. 直接法:已知等比数列的首项a和公比r,可以直接通过观察找出通项公式为An=a*r^(n-1)。

这一方法适用于简单的等比数列。

2. 递推法:已知等比数列的首项a和公比r,可以通过递推的方式求得通项公式。

具体步骤是将首项代入通项公式,再将前一项代入,不断递推得到通项公式。

3. 求和法:利用等比数列的求和公式可以推导出通项公式。

首先求得等比数列的前n项和Sn,然后通过Sn与前一项和Sn-1之比得到通项公式。

三、斐波那契数列的通项公式求解方法斐波那契数列是一种每一项都等于前两项之和的数列。

求解斐波那契数列的通项公式的方法有以下几种:1. 递推法:根据斐波那契数列的特点,可以通过递推的方式求得通项公式。

具体步骤是将前两项分别代入通项公式,再将前一项和前两项之和代入,不断递推得到通项公式。

2. 矩阵法:利用矩阵运算可以得到斐波那契数列的通项公式。

通过构建适当的矩阵,可以将斐波那契数列和矩阵的乘法运算联系起来,从而求解通项公式。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。

在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。

一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。

例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。

同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。

二、递推法:递推法是另一种求解数列求和问题的常用方法。

通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。

例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。

三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。

四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。

五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。

例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。


项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。

下面将介绍11种方法来推导递推数列的通项公式。

1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。

2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。

3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。

4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。

5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。

6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。

7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。

8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。

9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。

10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。

11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法 讲义 (解析版)

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法  讲义 (解析版)

数列求解通项的方法总结方法一、公式法当已知数列的类型(如已知数列为等差或等比数列)时,可以设出首项和公差(公比),列式计算。

1、等差数列通项公式: dn a a n )1(1-+=2、等比数列通项公式:例1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式 (2)当d >1时,记c n =,求数列{c n }的前n 项和T n .变式1、已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5﹣3b 2=7.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.11-=n n q a a方法二、利用前n 项和与通项的关系已知数列{ a n }前n 项和S n ,求通项公式,利用 a n ={)1()2(11=≥--n S n S S n n 特别地,当n=1的值与S 1的值相同时,合并为一个通项公式,否则写成分段的形式。

例2、(1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.求{a n }的通项公式;(2)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式.(Ⅱ)设b n =,求数列{b n }的前n 项和.变式2、(2015·四川)数列{a n }(n=1,2,3…)的前n 项和S n ,满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列的前n 项和为T n ,求T n .方法三、利用递推关系式与通项的关系类型1、累加法 形如)(1n f a a n n +=+例3、(2014·全国卷)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.变式3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列的递推公式及求和

数列的递推公式及求和

第六章 数列
【2】已知 a1 2, an 4an1 2n(n ≥ 2),则an =_4_n___2_n.
an 2n
2
an1 2n1
1,

an 2n
1
2(
an1 2n1
1).
所以数列
{
an 2n
1}是首项为2,公比为2的等比数列,
an 2n
1
2 2n1,
an
4n
2n.
an
4an1
2n
an 4n
1 2
an+1
(nN*),
解法二 :
an1
1 2
ቤተ መጻሕፍቲ ባይዱ
an
1,
an
1 2
an1
1,
an1
1 2
an2
1,
两式相减得:
an an1
1 2
(an1
an2
),
n

3
∴{an-an-1}
是以
a2-a1=
1 2
为首项,
公比为 1 2
的等比数列.
an
an1
1 2
( 1 )n2 2
( 1 )n1. 2
an a1 (a2 a1 ) (a3 a2 ) (an an1 )
an an1 1 2n2.
an a1 (a2 a1 ) (a3 a2 ) (an an1 )
=1+1+2+22+···+2n-2
1
1 2n1 1 2
2n1.
基本概念
求通项


基本数列
求和 应用
数列定义及分类 数列通项公式 数列递推公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求递推数列通项公式和求和的常用方法求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为中学中所研究的等差或等比数列,下面就求递推数列通向公式的常用方法举例一二,供参考:一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。

例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 【解析】:1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a +=,又112a =, ∴12nn a ⎛⎫= ⎪⎝⎭.反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键.跟踪训练1.已知数列{}n a 的前n 项和n S ,满足关系()1lgn S n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.二 归纳法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例二 已知数列{}n a 中,11a =,121(2)n n a a n -=+≥,求数列{}n a 的通项公式. 【解析】:11a =,121(2)n n a a n -=+≥,∴2121a a =+3=,3221a a =+7=⋅⋅⋅⋅猜测21n n a =-*()n N ∈,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性. 跟踪训练2.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对于所有自然数n ,n a 与1的等差中项等于n S 与1的等比中项,求数列{}n a 的通项公式. 三 累加法:利用1211()()n n na a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。

累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和).例三 已知无穷数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 满足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫ ⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的关键是将递推公式变形为1()n n a a f n +=+.跟踪训练3.已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.四累乘法:利用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积).例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】:1()n n n a n a a +=-,∴11n n a n a n ++=,又有321121(0,2)n n n n aa a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,满足n a n =,∴n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.跟踪训练4.已知数列{}n a 满足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是. 五构造新数列: 将递推公式n+1n a qa d =+(,q d 为常数,0q ≠,0d ≠)通过1()()n n a x q a x ++=+与原递推公式恒等变成1()11n n d d a q a q q ++=+--的方法叫构造新数列. 例五 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式. 【解析】:利用1()2()n n a x a x -+=+,求得112(1)n n a a -+=+,∴{}1n a +是首项为112a +=,公比为2的等比数列,即12n n a +=,21n n a ∴=-反思:.构造新数列的实质是通过1()()n n a x q a x ++=+来构造一个我们所熟知的等差或等比数列. 跟踪训练5.已知数列中, 11a =,1n-13n n a a -=+(2)n ≥求数列{}n a 的通项公式.六 倒数变换:将递推数列1n n n ca a a d +=+(0,0)c d ≠≠,取倒数变成1111n n d a c a c+=+的形式的方法叫倒数变换.例六 已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.【解析】:将121n n n a a a +=+取倒数得: 1112n na a +=+,1112n n a a +-=,∴1n a ⎧⎫⎨⎬⎩⎭是以111a =为首项,公差为2的等差数列.112(1)nn a =+-,∴121n a n =-. 反思:倒数变换有两个要点需要注意:一是取倒数.二是一定要注意新数列的首项,公差或公比变化了. 跟踪训练6.已知数列{}n a 中,,122nn n a a a +=+,求数列{}n a 的通项公式. 小结:求递推数列的通项公式的方法很多,以上只是提供了几种常见的方法,如果我们想在求递推数列中游刃有余,需要在平时的练习中多观察,多思考,还要不断的总结经验甚至教训. 参考答案:1. 证明:由已知可得:n 101n S =-,当2n ≥时()11910n n n n a S S --=-=,1n =时,119a S ==满足上式. ∴{}n a 的通项公式()1910n n a -=,2n ≥时110nn a a -=为常数,所以{}n a 为等比数列. 2. 解:由已知可求11a =,23a =,35a =,猜测21n a n =-.(用数学归纳法证明).3. 由已知112n n n a a +⎛⎫-= ⎪⎝⎭,∴121321()()()n n n a a a a a a a a -=+-+-+⋅⋅⋅-=21122⎛⎫+ ⎪⎝⎭112n -⎛⎫+⋅⋅⋅+ ⎪⎝⎭13122n -⎛⎫=- ⎪⎝⎭.4.2n ≥时, 123123(1)n n a a a a n a -=+++⋅⋅⋅+-,11212(1)n n n a a a n a na +-=++⋅⋅⋅+-+ 作差得: 1n n n a a na +-=,∴11n n a n a +=+,∴323a a =,434aa =,⋅⋅⋅,1n n a n a -= ∴2345n a n a =⨯⨯⋅⋅⋅⨯,21a =,∴!2n n a =(2)n ≥,∴11!22n n a n n =⎧⎪=⎨ ≥⎪⎩. 5. 312n n a -= 6. 21n a n =+数列一、 求递推数列通项公式基础类型 n n n n a a d a a q 11=+=++及类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(n n --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=na a n 11=⇒又321=a ,na n 32=∴ 例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a 。

解:123132231232)2(31)2(32)1(31)1(3a n n n n a n+-∙+⨯-⨯∙⋅⋅⋅∙+---∙+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a a a a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n类型3q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

相关文档
最新文档