2013年诺贝尔物理学奖,物理化学和化学物理,及学术的源流

合集下载

2013年诺贝尔化学奖

2013年诺贝尔化学奖
Page 3/11
2013年诺贝尔化学奖
迈克尔· 莱维特(Michael Levitt)
1947年生于南非比勒陀利亚, 为美英双重国籍。
他1971年在英国剑桥大学获 得博士学位。目前担任美国斯坦 福大学医学院结构生物学教授职 位,生物物理学家。
Page 4/11
2013年诺贝尔化学奖
亚利耶· 瓦谢尔
2013年诺贝尔化学奖
2013年诺贝尔化学奖
2013年诺贝尔化学奖10月9日在瑞典揭晓,美国 科学家马丁•卡普拉斯、迈克尔•莱维特及亚利耶•瓦谢 尔因给复杂化学体系设计了多尺度模型而共享奖项。
Page 2/11
2013年诺贝尔化学奖
马丁· 卡普拉斯(Martin Karplus) 犹太裔,1930年生于奥地利 维也纳,为美奥双重国籍。 卡普拉斯1953年在美国加州 理工获得博士学位。目前担任法 国斯特拉斯堡大学教授,以及美 国哈佛大学教授。 是一位理论化学家。 主要研究是在核磁共振谱学、 化学动态学、量子化学和生物大 分子的分子动力学模拟方面。 提出了有关耦合常数和二面 角之间关系的卡普拉斯方程 (Karplus equation)。
1940 年 生 于 以 色 列 , 为 美以双重国籍。
1969 年 获 得 以 色 列 魏 茨 曼科学研究所博士学位,目 前是美国南加州大学杰出教 授。 瓦谢尔说: “简单地说, 我们的研究就是借助电脑分 析蛋白质的结构,最3年诺贝尔化学奖
以前化学家是用塑料球和棒创造分子模型,现在则是 用计算机建模。 分子和化学反应的精确建模对于化学的进步至关重要。 化学反应的速度非常快,在几分之一毫秒间,电子就 会从一个原子核跳到另一个原子核。经典化学在这里已无 用武之地。 Karplus、Levitt的Warshel工作的突破意义在于 他们设法让牛顿的经典物理和完全不同的量子物理结合在 化学过程的建模之中。 经典物理的强项是计算简单,可用于建模非常大的分 子,但弱点是无法建模化学反应。 为了模拟化学反应,化学家不得不使用量子物理,但 量子物理需要惊人的计算量,因此只能用于小分子。 他们三人的工作结合了两者的长处,发展出同时利用 经典物理和量子物理的方法。

2013诺贝尔化学奖

2013诺贝尔化学奖

马丁·卡普拉斯(Martin Karplus)美国和奥地利双重国籍,是一位在奥地利出生的美国理论化学家,犹太裔。

主要研究是在核磁共振谱学、化学动态学、量子化学和生物大分子的分子动力学模拟方面。

提出了有关耦合常数和二面角之间关系的卡普拉斯方程(Karplus equation)。

1930年3月15日出生于维也纳,1950年取得哈佛大学的文学学士学位,1953年获加州理工学院的博士学位,师从莱纳斯·卡尔·鲍林。

1953年至1955年,在牛津大学查尔斯·库尔森(Charles Coulson)教授的指导下进行博士后研究。

1979年起,担任哈佛大学的西奥多·威廉·理查兹(Theodore William Richards)化学教授。

2013年10月9日获得2013年诺贝尔化学奖。

在卡普拉斯还是一个孩子时,他的家庭逃离了纳粹统治下的奥地利。

在移民美国之前,这个家庭在维也纳凭借着“一个长久聪慧而成功的犹太家庭”而闻名。

他的祖父,约翰那·保罗·卡普拉斯(Johann Paul Karplus 1866-1936)是一位可尊敬的维也纳大学的精神病学家。

通过婚姻关系,他成为了著名的社会学家,哲学家和音乐学家西奥多·W·阿道诺(Theodor W. Adrono)的侄子和物理学家罗伯特·冯·李本(Robert von Lieben)的侄孙。

他的兄弟,罗伯特·卡普拉斯(Robert Karplus)是一个来自加利福尼亚大学伯克利分校的国际上广泛认可的物理学家和教育家。

他的主要著作有:Atoms & Molecules: An Introduction for Students of Physical Chemistry (M. Karplus and R. N. Porter, Benjamin, 1970), Proteins: A Theoretical Perspective of Dynamics, Structure, & Thermodynamics, Adv. Chem. Phys. LXXI (C. L. Brooks III, M. Karplus, and B. M. Pettitt, John Wiley & Sons, 1988)和A Guide to Biomolecular Simulations (O. M. Becker and M. Karplus, Springer, 2006).阿里耶·瓦谢勒(Arieh Warshel)阿里耶·瓦谢勒拥有美国和以色列双重国籍,他于1940年出生于英国统治下的巴勒斯坦(现属以色列)。

诺贝尔化学奖百年史话 第五章 物理化学

诺贝尔化学奖百年史话 第五章 物理化学
• 能斯特把成绩的取得归功 于导师奥斯特瓦尔德的培 养,因而自己也毫无保留 地把知识传给学生 • 学生中先后有三位诺贝尔 物理奖获得者(米利肯 1923,安德森1936年,格 拉泽1960年)。 • 师徒五代相传获诺贝尔奖 前无古人。 • 1951年,他的骨灰移葬格 丁根大学
5.5 创立表面化学
• 朗缪尔( Irving Langmuir ), 美国化学家
(1895-1927)
5.2 创立电离学说
• 解释溶液中的元素是如何 被电解分离的现象
• 研究温度对化学反应速度 的影响,得出著名的阿伦 尼乌斯公式 • 提出了等氢离子现象理论 • 分子活化理论 • 盐的水解理论 • 对宇宙化学、天体物理学 和生物化学等也有研究。
5.2 创立电离学说
• 1884年以《电解质的导电性研究》论文申请博士,答辩后 被评为保留通过的四等。
5.6 创立耗散结构理论
• 耗散结构理论:用热力学和统 计物理学的方法,研究耗散结 构形成的条件、机理和规律的 理论。 • 耗散结构理论揭示复杂系统中 的自组织运动规律,具有强烈 方法论功能的新兴学科 • 理论、概念和方法不仅适用于 自然现象,同时也适用于解释 社会现象 • 关键词:远离平衡态、非线性 、开放系统、涨落、突变
5.4 能斯特定律
热力学第三定律(the third law of thermodynamics)是对 熵的论述: • 一般当封闭系统达到稳定平衡 时,熵应该为最大值,在任何 自发过程中,熵总是增加; • 在绝热可逆过程中,熵增等于 零。 • 在绝对零度,任何完美晶体的 熵为零
5.4 能斯特定律
奥斯特瓦尔德
5.2 创立电离学说
• 年轻的阿伦尼乌斯刻苦钻研,具有 很强的实验能力,长期的实验室工 作,养成了他对任何问题都一丝不 苟、追根究底的钻研习惯。 • 他对所研究的课题,往往都能提出 一些具有重大意义的假说,创立新 颖独特的理论。 • 电离理论的创建,是阿伦尼乌斯在 化学领域最重要的贡献。

历届诺贝尔化学奖获得者

历届诺贝尔化学奖获得者

历届诺贝尔化学奖获得者诺贝尔奖(Nobel prizewinners in chemistry)是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔(1833-1896)的部分遗产作为基金创立的5项奖金之一。

诺贝尔奖包括金质奖章、证书和奖金支票。

历届诺贝尔化学奖获奖者名单1901范特霍夫(Jacobus Hendricus Van‘Hoff) 荷兰人(1852–1911) 研究化学动力学和溶液渗透压的有关定律一八八五年,范特霍夫又发表了使他获得诺贝尔化学奖的另一项研究成果《气体体系或稀溶液中的化学平衡》。

此外,他对史塔斯佛特盐矿所发现的盐类三氯化钾和氯化镁的水化物进行了研究,利用该盐矿形成的沉积物来探索海洋沉积物的起源。

1902埃米尔·费歇尔(Emil Fischer) 德国人(1852–1919) 研究糖和嘌呤衍生物的合成埃米尔·费歇尔,德国化学家,是一九零二年诺贝尔化学奖金获得者。

他的研究为有机化学广泛应用于现代工业奠定了基础,后曾被人们誉为”实验室砷明。

”1903阿伦尼乌斯(Svante August Arrhenius) 瑞典人(1859–1927) 提出电离学说在生物化学领域,阿伦尼乌斯也进行了创造性的研究工作。

他发表了《免疫化学》、《生物化学定量定律》等著作,并运用物理化学规律阐述了毒素和抗毒素的反应。

阿伦尼乌斯是当时公认的科学巨匠,为发展科学事业建立了不可磨灭的功勋,因而也获得了许多荣誉。

他被英国皇家学会接受为海外会员,同时还获得了皇家学会的大卫奖章和化学学会的法拉第奖章。

1904威廉·拉姆赛(William Ramsay) 英国人(1852–1916) 发现了稀有气体他就是著名的英国化学家—成廉·拉姆赛爵士。

他与物理学家瑞利等合作,发现了六种惰性气体:氦、氖、氙、氩、氪。

由于他发现了这些气态惰性元素,并确定了它们在元素周期表中的位置,他荣获了一九零四年的诺贝尔化学奖。

历年诺贝尔物理学奖

历年诺贝尔物理学奖

J.斯坦伯格
英国 粒子对称结构进行论证
1989 N.F.拉姆齐
美国
W.保罗
德国
H.G.德梅尔特 美国
发明原子铯钟及提出氢微波 激射技术 创造捕集原子的方法以达到 能极其精确地研究一个电子 或离子
1990 J.杰罗姆 H.肯德尔 R.泰勒
美国 美国 加拿大
发现夸克存在的第一个实验 证明
年份 获奖者 1991 P.G.德燃纳 1992 J.夏帕克
德国 法国
获奖原因
发现标识元素的次级伦琴 辐射
研究辐射的量子理论,发 现基本量子,提出能量量 子化的假设,解释了电磁 辐射的经验定律
发现阴极射线中的多普勒 效应和原子光谱线在电场 中的分裂
发现镍钢合金的反常性以 及在精密仪器中的应用
年份 获奖者
国籍
获奖原因
1921 A.爱因斯坦
德国
对现物理方面的贡献,特 别是阐明光电效应的定律
发明点燃航标灯和浮标灯 的瓦斯自动调节器
在低温下研究物质的性质 并制成液态氦
发现伦琴射线通过晶体时 的衍射,既用于决定X射 线的波长又证明了晶体的 原子点阵结构
用伦琴射线分析晶体结构
年份 获奖者 1917 C.G.巴克拉 1918 M.V.普朗克
1919 J.斯塔克 1920 C.E.吉洛姆
国籍 英国 德国
1922 N.玻尔
丹麦 研究原子结构和原子辐射, 提出他的原子结构模型
1923 R.A.密立根
美国
研究元电荷和光电效应,
通过油滴实验证明电荷有
最小单位
1924 K.M.G.西格班 瑞典
伦琴射线光谱学方面的发 现和研究
1925 J.弗兰克 G.L.赫兹
德国 德国

历年诺贝尔物理学奖

历年诺贝尔物理学奖

历年诺贝尔物理学奖1、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。

历年诺贝尔化学奖获得者及其获奖原因

历年诺贝尔化学奖获得者及其获奖原因

历年诺贝尔化学奖获得者及其获奖原因1901年范霍夫(Jacobus Henricus van't Hoff,1852—1911) 荷兰人,第一个诺贝尔化学奖获得主-范霍夫研究化学动力学和溶液渗透压的有关定律。

1902年E.费歇尔(Emil Fischer,1852—1919) 德国人,研究糖和嘌呤衍生物的合成。

1903年阿累尼乌斯(Svante August Arrhenius,1859—1927) 瑞典人,提出电离学说。

1904年威廉·拉姆赛(William Ramsay,1852—1916) 英国化学家,发现了稀有气体。

1905年拜耳(Adolf von Baeyer,1835—1917) 德国人,研究有机染料和芳香族化合物1906年莫瓦桑(Henri Moissan,1852—1907) 法国人,制备单质氟1907年爱德华·布赫纳(Edward Buchner,1860--1917) 德国人,发现无细胞发酵现象1908年欧内斯特·卢瑟福(Ernest Rutherford,1871—1937) 英国物理学家,研究元素蜕变和放射性物质化学1909年弗里德里希·奥斯瓦尔德(Friedrich Wilhein Ostwald,1853—1932) 德国物理学家、化学家,研究催化、化学平衡、反应速率。

1910年奥托·瓦拉赫(Otto Wallach,1847—1931) 德国人,研究脂环族化合物1911年玛丽·居里(Marie Curie,1867—1934)(女) 法国人,发现镭和钋,并分离镭。

第一位诺贝尔化学奖女科学家-玛丽·居里1912年维克多·梅林尼亚(Victor Grignard,1871—1935) 法国人,发现用镁做有机反应的试剂。

萨巴蒂埃(Paul Sabatier,1854—1941) 法国人,研究有机脱氧催化反应。

历年诺贝尔物理学奖得主(1901-2018)

历年诺贝尔物理学奖得主(1901-2018)

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位)1902年亨得里克·洛仑兹荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰1903年亨利·贝克勒法国“发现天然放射性”皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究”玛丽·居里法国1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)1905年菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究”1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究"1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究”1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法”1909年古列尔莫·马可尼意大利“他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律”1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象”1915年威廉·亨利·布拉格英国“用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射”1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展”1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象”1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现”1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现”1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作”1924年卡尔·曼内·乔奇·塞格巴恩瑞典“他在X射线光谱学领域的发现和研究”[3]1925年詹姆斯·弗兰克德国“发现那些支配原子和电子碰撞的定律”古斯塔夫·赫兹德国1926年让·佩兰法国“研究物质不连续结构和发现沉积平衡”1927年阿瑟·康普顿美国“发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性”1945年沃尔夫冈·泡利奥地利“发现不相容原理,也称泡利原理”1946年珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现”1947年爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现”1948年帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现”1949年汤川秀树日本“他以核作用力的理论为基础预言了介子的存在”1950年塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现”1951年约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作”欧内斯特·沃吞爱尔兰1952年费利克斯·布洛赫美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果”爱德华·珀塞尔美国1953年弗里茨·塞尔尼克荷兰“他对相衬法的证实,特别是发明相衬显微镜”1954年马克斯·玻恩英国“在量子力学领域的基础研究,特别是他对波函数的统计解释”瓦尔特·博特德国“符合法,以及以此方法所获得的研究成果”1955年威利斯·尤金·兰姆美国“他的有关氢光谱的精细结构的研究成果”波利卡普·库施美国“精确地测定出电子磁矩”1956年威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应”约翰·巴丁美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器"尼古拉·根纳季耶维奇·巴索夫苏联亚历山大·普罗霍罗夫苏联1965年朝永振一郎日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响”朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法”1967年汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现”1968年路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态”1969年默里·盖尔曼美国“对基本粒子的分类及其相互作用的研究发现”1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用”路易·奈耳法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用”1971年伽博·丹尼斯英国“发明并发展全息照相法”1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS理论”利昂·库珀美国约翰·罗伯特·施里弗美国1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子”小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异性”乔治·斯穆特美国2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6] 弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)”天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。

2013年诺贝尔化学奖简介

2013年诺贝尔化学奖简介

Combining the best of both worlds
Previously when scientists wanted to simulate molecules on computers, they had software at their disposal that was based upon either classical Newtonian physical theories or quantum physics. Both had their strengths and weaknesses. The classical programs could calculate and process large chemical molecules. They would only display molecules in a state of rest, but gave chemists a good representation of how the atoms were positioned in the molecules. However, you could not use these programs to simulate chemical reactions. During the reaction, the molecules are filled with energy; they become excited. Classical physics simply have no understanding for such states, and that is a severe limitation. When scientists wanted to simulate chemical reactions, they had to turn to quantum physics; the dualistic theory where electrons can be both particles and waves simultaneously and where Schrödinger’s famous cat, hidden in its box, can be both alive and dead. The strength of quantum

诺贝尔物理学奖六十年

诺贝尔物理学奖六十年

2011年诺贝尔物理学奖获奖者为美国加州大学伯克利分校教授索尔·佩尔马特,澳大利亚国立大学教授布莱恩·施密特,以及美国约翰斯·霍普金斯大学教授亚当·里斯。

他们的贡献是,通过对超新星的观测证明宇宙在加速膨胀、变冷。

2010年诺贝尔物理学奖获奖者为英国曼彻斯特大学科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。

他们在2004年制成石墨烯材料。

石墨烯是目前已知材料中最薄的一种,被普遍认为会最终替代硅,从而引发电子工业的再次革命。

2009年诺贝尔物理学奖获奖者为英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯。

高锟获奖是由于在“有关光在纤维中的传输以用于光学通信方面”作出了突破性成就,而两位美国科学家的主要成就是发明半导体成像器件——电荷耦合器件(CCD)图像传感器。

2008年诺贝尔物理学奖获奖者为美国籍科学家南部阳一郎和日本科学家小林诚、益川敏英。

南部阳一郎的贡献是发现了亚原子物理学中的自发对称性破缺机制,而小林诚和益川敏英的贡献是发现了有关对称性破缺的起源。

2007年,法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因发现“巨磁电阻”效应而获诺贝尔物理学奖。

2006年,美国科学家约翰·马瑟和乔治·斯穆特因发现了宇宙微波背景辐射的黑体形式和各向异性而获奖。

2005年,美国科学家罗伊·格劳伯、约翰·霍尔和德国科学家特奥多尔·亨施因为“对光学相干的量子理论的贡献”和对基于激光的精密光谱学发展作出了贡献而获奖。

2004年,诺贝尔物理学奖归属美国科学家戴维·格罗斯、戴维·波利策和弗兰克·维尔切克。

他们发现了粒子物理强相互作用理论中的渐近自由现象。

2003年诺贝尔物理学奖——超导和超流体理论研究领域的卓越贡献2003年度诺贝尔物理奖授予拥有俄罗斯和美国双重国籍的科学家阿列克谢·阿布里科索夫、俄罗斯科学家维塔利·金茨堡以及拥有英国和美国双重国籍的科学家安东尼·莱格特,以表彰他们由于在超导和超流体理论研究领域所作出的开创性贡献。

近五年诺贝尔物理学奖简介

近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介获奖年度:2012年获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J.Wineland)获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法国籍。

他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。

大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。

获奖原因瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。

塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。

在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。

对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。

但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。

因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。

通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。

这套新方法允许他们检验、控制并计算粒子。

两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。

他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。

就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。

2013年诺贝尔化学奖简介

2013年诺贝尔化学奖简介
参 考 文 献
[ ] 北京师范大学无机化学教研室等编 . 无机化学 ( 下册 ) 1 .第4 版 , 北京 : 高等教育出版社 ,2 0 0 3:5 2 5-5 2 7 点燃
檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲檲
2 0 1 3 年诺贝尔化学奖简介
点燃
( OH) 2 和 NH 3 , 具体化学反应方程式为 : ( M H2O 3 M OH) NH3 ↑ g g 3N 2 +6 2 ↓ +2 由实验 2 也 可 推 知 镁 条 在 NO 2 中燃烧的化学 反应方程式为 : 1 1 M +4 NO 8 M O+M g g g 2 3N 2 +N 2 实际上 , 除了 C、 H2 、 M g 可在 NO 2 中继续燃 烧外 , 其他一些具有一定还原性的物质均可在 NO 2 气体中燃烧 , 比如硫 、 红 磷 等 。 这 一 实 验 事 实 告 诉 我们 : 除了 O 2 可 以 助 燃 之 外 ,NO 2 气体也具有良 好的助燃性 。
刘亚军
( ) 北京师范大学化学学院 1 0 0 8 7 5
0 月 9 日北 京 时 间 下 午 1 7:4 5揭晓了2 0 1 3 年 度 的 诺 贝 尔 化 学 奖。美 国 3 位 科 学 瑞典皇家科学院于 1 ) 、迈克尔 · 莱维特 ( )和阿里耶·瓦谢勒 ( 家 , 马丁 · 卡 普 拉 斯 ( M a r t i n K a r l u s M i c h a e l L e v i t t A r i e h p ) 共享此项奖并将平分总共 8 约1 0 0 万瑞典克朗 ( 2 0 万美元 ) 的奖金 。 W a r s h e l 这 3 位化学家获奖的原因是给复杂化学体系设计了多尺度模型 。 通 俗 的 理 解 , 就 是 化 学 家 可 以 在 计 算 机上模拟化学实验 , 让传统的实验室化学实验走上了信息化的快车道 , 对大 的 复 杂 体 系 的 研 究 不 再 仅 仅 依 靠实验 , 理论计算的强有力配合已成为不可或缺的手段 。 具体地说 , 多尺 度 模 型 开 启 了 经 典 物 理 和 量 子 化 学繁荣合作的大门 。 经典物理学方法创建的模型优势在于计算简单且能为 大 分 子 建 模 , 但 其 无 法 模 拟 化 学 反应 。 而量子化学由于其巨大的计算量而只能应付小分子反应 。 从 2 0世纪7 0 年 代,瓦 谢 勒 和 卡 普 拉 斯 在 多尺度模型技术方向开始合作并开发了相应的计算机程序 。 该程序通过对量子 ( 用来描述体系的关键部分 ) 方法和经典 ( 用来描述体系的其余部分 ) 方法的组合来描述复杂化学体系 。 莱 维 特 和 瓦 谢 勒 进 一 步 发 展 了 这个方法使之计算更大的体系如蛋白质成为可能 。 多尺度模型对人们 理 解 蛋 白 折 叠 、 催 化 、 电 子 转 移 和 药 物设计提供了新手段和新思路 。 如对蛋白质功能及其降解的理解使人们对一些 疾 病 如 老 年 痴 呆 症 有 了 进 一 步认识 。 当然 , 理论计算是无法完全代替实验的 。 从理论模拟获得的结 论 最 终 需 要 实 验 的 证 实 , 但 无 疑 为 实 验 节省了成本 , 提供了线索 。 理论和实践研究为相辅相成和互相促进的关系 。 无独有偶 ,2 0 1 3 年度的诺贝尔 和平奖也与化学相关 。2 0 1 3 年诺贝尔和平奖授予禁止化学武器组织 , 以表彰其在全面销毁化学武器方面所 作出的杰出贡献 。2 化学 ” 是把双刃剑的最好的例子 : 化学在造福 0 1 3 年的诺贝尔化学奖和和平奖是说明 “ 人类的同时 , 不适当的使用也可能为人类带来极大的灾难 。

2013诺贝尔物理学奖

2013诺贝尔物理学奖

2013诺贝尔奖】物理学奖点评:希格斯之后,美欧物理谁争先?kingmagic2013-10-09 08:30编者按:瑞典皇家科学院于2013年10月8日北京时间18:45分,授予弗朗索瓦·恩格勒(François Englert)和彼得·希格斯(Peter W. Higgs)诺贝尔物理学奖,获奖原因是他们提出了希格斯机制。

就算证实了希格斯机制,物理学家却发现,前路依旧彷徨。

图片来源:(文/ Marcus Chown)7月4日,是美国的独立日。

2012年的美国独立日,却是欧洲科学界辉煌的一天——瑞士日内瓦郊外的大型强子对撞机(LHC),在这一天宣布发现了希格斯粒子。

不过,对诺贝尔奖获得者利昂·莱德曼(Leo Lederman)而言,这是美国科学界黯淡的一日。

他曾是美国费米国家加速器实验室的主任,同时也是将希格斯玻色子戏称为“上帝粒子”(God Particle)的始作俑者。

在与美国年轻的粒子物理学家克里斯托弗·希尔(Christopher Hill)合著的《超越上帝粒子》一书中,莱德曼哀叹美国政客的短视。

他认为,正是美国政府在1993年决定关闭超导超级对撞机(Superconduction Supercollider),让美国从基础物理高能研究的前线鸣金收兵。

不过,虽然美国国会可能确实没有莱德曼和希尔所说的“领袖范儿”,但将之全部归究于美国国会也有欠公允。

当时,超导超级对撞机计划在美国得克萨斯州的华兹堡地下挖一条巨大的圆形隧道,而那边厢的大型强子对撞机则提出要利用已有的地下环形隧道。

要将接近光速的粒子束约束在这么小的赛道上,只有超导电磁铁产生的磁场才能做到,而在LHC提出那会,超导电磁铁还只存在于科幻小说中。

简单点说,欧洲科学家展现出的,正是美国科学界在阿波罗登月计划期间表现出的那种超凡的胆识和敢干的精神。

结果,颇为讽刺的是,他们最终向凑钱投入的欧洲各国政府展示的总预算,反倒大大低于美国这边的天文数字。

诺贝尔物理学奖

诺贝尔物理学奖

诺贝尔和诺贝尔物理学奖诺贝尔(Alfred Bernhard Nobel,1833—1896)是一位瑞典发明家的儿子,他从小健康欠佳,因此主要靠家庭教师教育。

他曾在彼得堡学习工程,也曾到美国,在伊里克逊(John Ericsson)指导下学习了大约一年。

诺贝尔在他父亲的工厂里做实验时,发现当把甘油炸药分散在漂白土或木浆之类的惰性物质中时,可以更安全地处理。

他还发明了其它炸药和雷管,并取得了这些发明的专利权。

诺贝尔因炸药的制造和巴库油田的开发而得到了一笔巨额财产。

他终生未婚,被认为是一个有自卑感和孤独感的人。

他对同伴常抱一种嘲笑态度,但他为人心肠慈善,对人类的未来满怀希望。

诺贝尔留下9百万美元的基金,他在遗嘱中写道:“这些基金的利息每年以奖金的形式分发给那些在前一年中对人类作出最大贡献的人,上述利息分为相等的五部分:一部分奖给在物理学领域有最重要发现和发明的人;一部分奖给在化学上有最重要发现和改革的人;一部分奖给在生理学或医学上有最重要发现的人;一部分奖给文学领域内著有带理想主义倾向的最杰出作品的人;一部分奖给在促进国家之间友好、取缔或裁减常备军以及举行和促进和平会议方面作出显著贡献的人。

“物理学奖和化学奖由瑞典科学院颁发,生理学或医学奖由斯德哥尔摩的加罗琳斯卡研究院颁发,文学奖由斯德哥尔摩研究院颁发,和平奖由挪威议会推选出的一个五人委员会颁发。

”诺贝尔的遗产留给了一个当时并不存在的基金会。

1897年元月,当他的遗嘱宣读后,他的某些亲属曾对此提出了争议。

一些被委派负责颁发奖金的机构(因事先都未曾商量)开始时也对承担这一困难任务感到犹豫,三年后问题才得到解决,1900年6月作为遗产合法继承者的诺贝尔基金会成立,1901年12月颁发了第一届诺贝尔奖。

诺贝尔提出奖金只授予“前一年间”所做的工作这一规定,从一开始就未实行。

这是因为推选委员会考虑到要确认一项成果对物理学的贡献的价值,往往需要许多年。

诺贝尔奖不授予毕生的工作,而授予那些有特殊成果的工作。

历年诺贝尔化学奖名单

历年诺贝尔化学奖名单

历年诺贝尔化学奖名单自1901年以来,诺贝尔化学奖已经颁发了许多杰出科学家和化学家,以表彰他们对化学领域的突出贡献。

以下是一些历年的诺贝尔化学奖获得者及其贡献的列表:1. 1901年:雅各布斯·冯特(Jacobus H. van 't Hoff):他被认为是物理化学的奠基人之一,他的著作对于理解溶液、化学反应速率和化学平衡有着重要影响。

2. 1911年:玛丽·居里(Marie Curie):她成为第一个获得两次诺贝尔奖的人,一次是与丈夫皮埃尔·居里共同获得的物理学奖,另一次是因为她的放射性研究,这为放射性元素的发现和研究打下了基础。

3. 1954年:林纳斯·鲍林(Linus Pauling):他因为对化学键和化学结构的研究而获奖,为现代化学的理论基础做出了重要贡献。

4. 1980年:保罗·伯格(Paul Berg):他通过重组DNA技术的开发,为基因工程的发展奠定了基础,这一技术对于遗传学和生物技术的发展有着重要意义。

5. 1995年:马里奥·莫洛纳(Mario Molina)、弗朗西斯·谢尔(F. Sherwood Rowland)和保罗·约翰·克鲁岑(Paul J. Crutzen):他们的研究揭示了氟氯烃类化合物对臭氧层的破坏作用,对于全球环境保护工作产生了深远影响。

6. 2005年:罗伯特·格鲁布斯(Robert Grubbs)、理查德·舍岛(Richard R. Schrock)和约翰·曼(Yves Chauvin):他们的研究在有机合成领域做出了重大突破,尤其是开发了沃尔夫-克什烯反应和金属卡宾反应,为有机化学的发展提供了新的方法和工具。

以上只是一部分历年诺贝尔化学奖的获得者和他们的贡献。

每年的诺贝尔化学奖都代表了化学领域取得的重大突破和创新。

这些奖项激励着科学家们不断探索和推动化学科学的发展,为人类的福祉和社会进步作出贡献。

历年诺贝尔物理学奖

历年诺贝尔物理学奖

历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖—— W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究2002年诺贝尔物理学奖——天体物理学领域的卓越贡献(资料来源:山东大学物理系张承踞老师)。

【历届诺贝尔奖得主(六)】1966年物理学奖,化学奖,生理学或医学奖,文学奖和和平奖

【历届诺贝尔奖得主(六)】1966年物理学奖,化学奖,生理学或医学奖,文学奖和和平奖

1966年12月10日第六十六届诺贝尔奖物理学奖法国科学家卡斯特勒因发现、研究原子中赫兹共振的光学方法获诺贝尔物理学奖.卡斯特勒(AlfredKastler,1902-1984)因发现和发展研究原子中赫兹共振的光学方法,获得了1966年度诺贝尔物理学奖。

我们知道,原子能级在磁场中会发生劈裂,为辨认和了解这些磁支能级,卡斯特勒(右图)等人发现和发展了双共振方法——即使原子的光学频率的共振和射频电磁波(赫兹波)的磁共振同时发生的方法。

对于原子激发态的磁支能级之间的磁共振,由于激发态的粒子数非常少,不可能直接观察到。

当用一束极化的光来使原子激发时,并不是激发态的所有磁支能级都能得到相等数目的粒子,而且这些磁支能级之间的辐射跃迁也不是各向同性的,在某个特定方向的辐射将是部分偏振的。

此时,若再施加一个射频场,引起磁支能级之间的辐射跃迁,那么通过研究重新发射的光就可以探测激发态中磁支能级的射频跃迁。

对于原子基态的能级之间的共振,因信号非常微弱,难于直接观察,当用一束极化的光照射时,只有其中一个磁支能级吸收光跃迁到激发态,然后激发态又会自发辐射回到基态,这样就增加了基态各磁支能级之间的布居数,极大地增强了磁支能级之间的磁共振信号。

卡斯特勒的方法大大增加了探测磁共振信号的灵敏度,使人们多了一个研究原子能级结构的精密手段,而且从他的工作中已经产生了有价值的实用仪器,例如,在一万年中误差仅为一秒的原子钟和能够测量像地球周围磁场那样弱的磁场的磁强计。

化学奖美国科学家马利肯因创立化学结构分子轨道学说获诺贝尔化学奖。

马利肯(1896~1986)Mulliken,RobertSanderson美国化学家,物理学家。

美国科学院院士。

1896年6月7日生于马萨诸塞州纽伯里波特,1986年10月3日卒于阿灵顿。

1917年获麻省理工学院学士学位。

1921年获芝加哥大学物理化学博士学位。

1921~1925年,在全国研究理事会任职。

1926~1928年执教于纽约大学,后回芝加哥大学,历任物理学教授、物理学和化学教授。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年诺贝尔物理学奖,物理化学和化学物理,及
学术的源流
2013.10.29
/blog-176-737164.html
在博文《2013诺贝尔化学奖、物理化学和化学物理,及学术上的尾巴摇狗》之后本来准备写一篇《2013年诺贝尔物理学奖,物理化学和化学物理,以及学术的源流》,为了收集材料拖了几天,结果遇上了具有中国特色的南京大学王牧和闻海虎之争的大热,只好避几天风头再来炒冷饭。

博文《2013诺贝尔化学奖、物理化学和化学物理,及学术上的尾巴摇狗》链接:/blog-176-732783.html 2013年诺贝尔物理学奖又是物理化学和化学物理的胜利
2013年的诺贝尔物理学奖,说来说去又算得上是物理化学和化学物理的胜利。

为什么这样说呢?
2013年诺贝尔物理学奖获得者Peter Higgs的博士老板Charles Coulson是所谓应用数学家和理论化学家,他的主要科学贡献在于应
用量子价键理论去研究分子结构,动力学和化学反应性。

Peter Higgs 的博士论文题目是Some Problems in the Theory of Molecular Vibrations(《分子振动理论中的一些问题》),这是典型的物理化学和化学物理研究内容,也是俺比较具有特长的研究领域。

另外,今年获得诺贝尔化学奖的Martin Kaplus也在Charles Coulson的研究组做过博士后。

Karplus和Higgs算是师出同门,当然是物理化学和化学物理的门。

wiki百科Charles Coulson介绍链接:
/wiki/Charles_Coulson
wiki百科Peter Higgs介绍链接:
/wiki/Peter_Higgs
Peter Higgs在University of Edingburgh他自己的网站上介绍说,“In 1954, he was awarded a PhD for a thesis entitled 'Some Problems in the Theory of Molecular Vibrations', work which signalled the start of his life-long interest in the application of the ideas of symmetry to physical systems.”也就是说,Higgs是在研究分子振动的理论中学到了关于对称性的思想然后才开始了他一生中把对称性思想应用到物理体系中
去的兴趣。

Peter Higgs在Edingburgh大学的网站链接:
/higgs/peter-higgs
更有意思的是,Higgs在他整个科学生涯中一共只发表了20篇左右的论文。

他早期发表的几篇文章也是发表在Journal of Chemical Physics(化学物理会志)上。

不过他的这几篇JCP文章到现在也没有几个引用,所以他还算不得成功的化学物理学家。

问题是尽管Peter Higgs做不了成功的物理化学家和化学物理学家,却并不阻碍他成为物理学家并且获得诺贝尔物理学奖。

在这一点上,Higgs和爱因斯坦到算得上是一路的。

2007年我有一篇博文叫做《爱因斯坦是个化学家》,有兴趣的人可以去看全文。

其中有这样一段话:
人们一直觉得爱因斯坦是物理学的天才。

他引入的许多思想,对当时不少“正统”的物理学家来讲是出乎意料的。

通过Ball的文章,我们可以了解到可能正是爱因斯坦的思想发展的物理化学源流,使得他有别于一般的物理学家。

当然,爱因斯坦作为一个物理学家的不足之处,可能也正是来源于他的这个物理化学背景。

物理学家们一般认为自己要优于化学家和生物学家,爱因斯坦恰恰证明,真正伟大的科学是综合的和交叉的,而不只是局限于某一个学科。

爱因斯坦一开始是作为物理化学家而受到训练的,所以他的博士论文,以及他开始寻找的教职都是与物理化学有关的。

《爱因斯坦是个化学家》博文链接:
/blog-176-341.html
不管怎么说,Peter Higgs和Einstein一样,并不是典型的物理学家出生的物理学家。

我这里把Peter Higgs获得2013年的诺贝尔物理学奖说成是物理化学和化学物理的胜利,并不是想要抬高自己所在的学科,而是希望说明真正伟大的科学具有共同的来源,而且是真正伟大的科学是综合的和交叉的,我们最不需要的就是那些看不到科学的源与流的狭隘的科学观。

Biology is the retirement plan for physicist
事实上,自从1944年薛定谔写了那本著名的小册子What is life 之后,就有无数的物理学家进入了生命科学领域,给生命科学的研究带来了天翻地覆的变化。

北大生命科学院饶毅教授的师爷Max Delbruck,就是理论物理学出生的生物学家,在获得理论物理的博士之后,他于30年代后期就转入果蝇的研究,获得了1969年的诺贝尔生理学奖。

记得若干年前听朱棣文的学术报告,其中他说到:“Biology is the ideal retirement plan for physicist.(生物学是物理学家退休后的理想职业。

)”朱棣文和他近来的学生们和博士后们(比如庄小威)现在在生物学研究上做得风生水起,可见他的确是这样身体力行的。

物理学和生命科学结合如此紧密,那么化学又在哪里呢?
物理化学和细胞生物学是同门师兄
没有人会不同意芝加哥大学化学系教授Stuart Rice是地地道道
的物理化学家或者化学物理学家,而Science前主编和美国国家科学院前院长Bruce Alberts是地地道道的生命科学家。

Stuart Rice一直是Advances in Chemical Physics的主编,1999年美国国家科学奖章获得者。

Bruce Alberts是著名的Molecular Biology of the Cell教科书的主要著者之一。

Rice和Alberts之间的直接联系是他们都是著名的物理化学家和生物化学家前哈佛大学化学教授和哈佛大学生物化学和分子生物学
系的创始人和首任系主任Paul Doty博士研究生。

Paul Doty是Joseph Edward Mayer在哥伦比亚大学化学系做教授时候的研究生。

Joseph Edward Mayer当然是地地道道的物理化学家,他是那个说“(自然)科学要么是物理化学,要么是核物理" 的物理化学家G.N.Lewis的博士生,还是获得1963年诺贝尔物理学奖的Maria Goeppert Mayer的丈夫。

更有意思的是,Joseph Mayer还是美国物理学会1973-1975年的会长。

Joseph Mayer跟我也有点关系,我的博士导师的博士后导师,跟Paul Doty一样,也是当年Joseph Mayer在哥伦比亚大学化学系做教授时候从他那里获得的博士学位。

Stuart Rice是鼎鼎有名的物理化学家。

我跟他只是在11年前在长江上游过几天的交往,这在我2009年的博文《做研究生的感觉》中有过描述。

Bruce Alberts我只是若干年前在清华大学施一公教授主持的一个报告会上见过。

当我最近知道他从Paul Doty那里获得博士
学位的事实之后,还是对他居然和Stuart Rice之间的同门师兄弟关系感到很是吃惊。

这也更让我去思考现代物理、化学和生命科学之间的紧密的源流和发展关系。

《做研究生的感觉》博文链接:
/blog-176-210278.html
wiki百科Bruce Alberts介绍链接:
/wiki/Bruce_Alberts
wiki百科上Paul M. Doty教授的简介链接:
/wiki/Paul_Doty
中国学术界的源流问题
自然科学的学科与人体的血管一样,向上流会汇聚到心脏,向下流会分叉到最细的毛细血管。

如果没有血液的反复循环,人体只会失去生命。

血液循环不畅,人体会缺乏生命的活力。

现代科学研究中的分工的确是越来越细,不过在一个健康的学术环境中,人们对于知识和学术源流的了解和认识是不应该很狭隘的。

在一个缺乏对学术源流缺乏比较清楚的认识的环境中,人们在研究中自然会缺少追求不同学科之间的沟通和交流的习惯,也会习惯性地缺乏对研究的重要性和基础性的认识,人们也会更加拘泥于狭隘的学科
划分来教育训练学生和开展研究,直至以邻为壑。

如果人们对科学的源流理解相当狭隘,又怎样能够做到学术上的交叉和融合呢?
说了在这么多,最后只想抛砖引玉地问一句:今天中国学术界,究竟有多少人认为这是个问题呢?。

相关文档
最新文档