北师大版初一数学上册3.2代数式(二)
北师大版数学七年级上册3.2 第1课时 代数式2教案与反思
3.2 代数式路漫漫其修远兮,吾将上下而求索。
屈原《离骚》江南学校李友峰第1课时代数式教学目标:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.有谁知道胡主席乘坐的是什么品牌的车吗?生:国产红旗大轿车.师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.同学们知道是谁吗?生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)师:(多媒体展示一张奚仲造车的图片.)师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?生:2个,4个,2x个.师:板书2x.设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题)下面请同学们快速完成导学案的第一题.二、自主探索,合作交流.1.温故而知新填空:⒈边长为a cm的正方形的周长是 cm,面积是cm2.2 . 钢笔每支2元,铅笔每支0.5元,m支钢笔和n支铅笔共____________元.⒊温度由2℃下降t℃后是℃.⒋小亮用t秒走了s米,他的速度是为米/秒生:(完成填空,如有疑难可在小组内交流、讨论.)生1:通过实物投影展示答案:4a , a2 , 2m +0.5n , t -2, t s 生2:第2、3题应该加上括号.师:板书正确答案.师:观察上面的这些式子有什么特点?生:(以小组为单位,进行组内交流、讨论.) 生1:含有数、字母、生2:含有运算符号.师:像2x,4a , a2 , 2m +0.5n , t -2,ts 等式子都是代数式(algebraic e x pression).单独一个数或一个字母也是代数式.师: 你还能举几个代数式的例子吗?生1:2,m,a ﹢b …生2: m-n,5, 2n …师:真棒.面再来考考你的眼力,请同学们快速完成导学案 : 自主探索,合作交流的第1题.2.考考你的眼力:师:下列各式中些是代数式?哪些不是?(1)m +5 (2)a +b =b +a (3)0(4) x 2+3x +4 (5)x +y >1(6)生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.(2)单独的一个数或字母也是代数式.师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:用代数式表示(1) f 的11倍再加上2可以表示为_____________.(2)数a 与它的的和可以表示为_________.(3)一个教室有2扇门和4扇窗户,n个这样的教室共有___________扇门和_________扇窗户.(4)小华、小明的速度分别为x米/秒,y米/秒,6分钟后它们一共走了米.生:(完成填空并回答,如有疑难可在小组内交流、讨论.)生1: 11f+2 ,a+a,2n,4n,6(x+y)生2:(4)小题也可以写成(6x+6y)生3:第(2)小题也可以写成1a,师: 1a通常写成a,带分数写成假分数.师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢?生: 以小组为单位,进行组内交流、讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;生2:在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.生3:带分数一定要写成假分数.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的代数式符合要求吗?生:自我检查,同位之间互查.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式的方法.师:我们知道了代数式,会列代数式,现在我们就来共同探究一下生活中的数学. 请同学们完成导学案的探究一.三、合作探究,拓展新知.内容:讨论教材上的例题.分析需要使用代数式表达信息的原因.通过解决具体问题,让学生感受代数式求值的含义.探究一:学习要求:请认真读题并完成题后的填空:1. (1)某公园的门票价格是:成人票每人10元,儿童票每人5元.一个旅游团有x名成人和y名儿童,用代数式表示这个旅游团应付的门票费.(分析:x名成人的门票费为;y名儿童的门票费为;解:这个旅游团应付的门票费为 .(2)如果这个旅游团有37名成人和15名儿童,那么应付门票费多少元?(分析:这个旅游团有37名成人即字母 =37;儿童15名即 =15;分别把它们代入(1)中的代数式,即可求出应付门票费)解: (学生口述)生: (先独立思考,再小组内交流后回答问题.)生: (通过实物投影展示答案.)生1:(1) x名成人的门票费为10x, y名儿童的门票费为5y,这个旅游团应付的门票费为,(10x+5y)元.生2:(2) 如果这个旅游团有37名成人和15名儿童,那么应付门票费445元. 师: 在回答(2)题时,我们要注意解题的格式.(板书解题过程,并加以强调.) 师:刚才我们解决了生活中的一个问题,下面我们再来探究一下生物世界的奥秘吧.请同学们快速完成导学案的探究二.探究二:1.请认真读题,参照1题的答题格式,完成下题的解答过程.----相信你能行!在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后加上3,就近似地得到该地当时的气温(℃).(1)用代数式表示该地当时的气温;(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约是多少?(结果保留整数)生: 先独立思考,再小组内交流后回答问题.x生1: 口答1. 用x表示蟋蟀1分钟叫的次数,则该地当时的气温为(7+3) ℃.生2: 通过实物投影展示(2)小题答案.设计意图:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x=80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.教学效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.小组讨论:代数式10x+5y还可以表示什么?想一想, 比一比!看谁说的既多又准!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)①如果用x(元)1支铅笔的价格,用y(元)1个练习本的价格,那么10x+5y 可以表示的总钱数②如果,那么生:(先完成①小题,然后仿照上题完成②小题.)生1:老师有 x张10元,有y 张5元的钱,则(10x+5y)元就表示老师有多少钱. 生2:一辆车以x千米/小时的速度行驶了10小时,然后又以y千米/小时的速度行驶了5小时,则 (10x+5y)千米表示这辆车所走的路程.生3:某种数学资料每本要10元,英语资料每本要5元,小明买了x本数学资料,y本英语资料,则( 10x+5y)元表示共用了多少钱.师:同学们真棒,举出这么多代数式10x+5y所表示的实际背景.设计意图:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x+5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.四、拓展延伸讨论回答下列问题:1.写出一个你最喜欢的一个两位数.2.一个两位数的个位数字是a,十位数字是2,请用代数式表示这个两位数;3.一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数如何用代数式表示一个三位数?生:( 以小组为单位,进行组内交流、讨论后回答问题.)生1: 通过实物投影展示答案1.我喜欢362.这个两位数是20+a3.这个两位数是10b+a4.设这个三位数的个位数字是a,十位数字是b,百位数字是c,这个三位数是100c+10b+a.生2: 通过实物投影展示答案1.我喜欢96 ,第2,3题答案和上面的同学相同,第4题.设这个三位数的个位数字是x,十位数字是y,百位数字是z,这个三位数是100z+10y+x.师: 总结:两位数表示:10十位数字+个位数字三位数表示: 100百位数字+10十位数字+个位数字设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;让学生进一步把握本章的重点,明确学习的方向.教学效果:学生分层次独立完成,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1,2,3题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.五、小结回顾:师:请同学们谈一谈,通过本节课的学习,你有哪些收获?(生1、生2、生3自发站起来谈学习收获,教师作出点评、补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六、作业:1. P108 读一读“代数”的由来2. P109 第1题板书设计:教学反思:本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展.当然本节课在教学过程中也有遗憾的地方,在今后的教学中,我将努力克服自己在教学中的不足之处,争取在今后的教学工作中做到更好.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
北师大七年级数学上册--第三单元 3.2 《代数式》 课件
当a>0,b>0时,a=6,b=8,则a+b=14 当a<0,b<0时,a=-6,b=-8,则a+b=-14
作业:P85第1题和第3题
• 1、完成习题3.3 • 2、预习:3.3 整式 • 认真完成作业和练习是提高学习成绩的 第一步
(3)当h=20米时,比较物体在地球上和月球上自由下
落所需的时间。 地球上大约要2秒钟,月球上大约要5秒钟
思考题 1.已知x=2,y=-4,代数式ax3+by+5=189。 求当x=4,y=1/2时,代数式3ax-24by2+49的值。
把x=2,y=-4 代入得:a×23+b(-4)+5=199 即:8a-4b+5=189:得4(2a-b)=184;得(2a-b)=46 把x=4,y=1/2代入得:12a-24b(1/2)2+49 =12a-6b+49=6(2a-b)+49=6×46=276
10x+5y还能表示什么?
(1)如果用x(元/kg)表示大米的价格,用y(元/kg) 表示食油的价格,那么10x+5y就表示小强的妈妈 购买10kg大米和5kg食油所用的费用;
(2)如果用x(cm3/个)表示某种正方体的体积,用y(cm3/个) 表示某种长方体的体积,那么10x+5y就表示10个这样的正方体和5 个这样的长方体的体积和; (3)如果用x(kg)表示一张课桌的质量,用y(kg)表示一个凳 子的质量,那么10x+5y就表示10张课桌和5个凳子的质量和。
参观花展:门票:成人10元/人;学生5元/人。 (1)一个旅游团有成人x人、学生y人,请你根据上图确定该旅游 团应付多少门票费? (2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?
(名师整理)最新北师大版数学7年级上册第3章第2节《代数式》精品课件
返
摆一摆 得结论
如图所示,搭一个正方形需要4根火柴棒.
(4) 如果用x表示所搭正方形的个数, 那么搭x个 这样的正方形需要多少根火柴?
…
第1个 第2个
4根 3根
x 第100个
3根
4 3(1x001)
…
第1个 第2个 2根 2根
x 第100个
2根
21x00 (1x00 1)
返
…
先 摆
第1个
1.在具体情境中,进一步理解字母表示数的 意义.
2.能解释一些简单代数式的实际背景或几何 意义.
3.在具体情境中,能求出代数式的值,并解 释它的实际意义.
儿歌欣赏
一只青蛙一张嘴,两只眼睛四条腿,一声扑通跳下水; 两只青蛙两张嘴,四只眼睛八条腿,二声扑通跳下水; 三只青蛙三张嘴,六只眼睛十二条腿,三声扑通跳下水; …………
3根
4 + 3 x(100 – 1 ) = 301
第1个 第2个 2根 2根
…
第100个 2根
2 x 100 + ( 100 + 1 ) = 301
返
先 摆
第1个
1 根
3根
1 + 3 x 100 = 301
…
第100个
3根
…
第1个 4根
第100个 4根
4 x 100 - ( 100 - 1 ) = 301
(1)按上面的方式,搭2个正方形需要__7__根火柴, 搭3个正方形需要_1__0_根火柴. (2) 搭10个这样的正方形需要3__1根火柴?
摆一摆 找规律
如图所示,搭一个正方形需要4根火柴棒.
(3)搭100个这样的正方形需要多少根火柴, 说说你是怎样得到的?
北师大版七年级上册数学 3.2 第2课时 代数式的求值 优秀教案
第2课时 代数式的求值1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法.2.会利用代数式求值推断代数式反映的规律.3.能解释代数式求值的实际应用.一、情境导入谁说数学学不好,这不,先前数学成绩很差的小胡,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是小胡设计的一个程序.当输入x 的值为3时,你能求出输出的值吗?二、合作探究探究点一:直接代入法求代数式的值当a =12,b =3时,求代数式2a 2+6b -3ab 的值. 解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得. 解:原式=2×(12)2+6×3-3×12×3=12+18-92=14. 方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来.探究点二:利用程序图求代数式的值有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是 W.解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2.方法总结:这种程序运算的特点是程序有多个分支,要先对输入的数据进行判断,再选择适当的某个分支按照指明的程序进行运算.探究点三:整体代入法求值(湘西州中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A.0B.-1C.-3D.3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解.因为x -2y =3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A.方法总结:整体代入法是数学中一种重要的方法,同学们应加以关注.探究点四:代数式在实际问题中的应用如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m ,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积;(2)计算当a =3,b =1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a 、b 的代数式表示水渠横断面面积;(2)把a =3、b =1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a +b )b (m 2); (2)当a =3,b =1时水渠的横断面面积为12(3+1)×1=2(m 2). 方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.。
陕西省宝鸡市渭滨区七年级数学上册 3.2 代数式(2)教案 (新版)北师大版-(新版)北师大版初中七
2.代数式(二)一、学生起点分析本节课是教材第三章《整式及其加减》的第二节第2课时,学生在前1课时已经初步了解了代数式和代数式值的概念,通过对代数式实际意义的解释,降低了抽象的字母表示数的难度,本节课学生将会很快的掌握求代数式值的方法,更好的感受抽象的字母和具体的数之间的关系。
一开始的两个数值转换机显得生动有趣,难度也不大,所以学生主动参与意识更强,课堂氛围更浓烈,分析能力和综合思维能力会有一定程度的提高。
二、教学任务分析本课时的教学内容一开始就用两个数值转换机直奔教学主题――求代数式的值。
因为内容生动有趣,难度也不大,虽然两个数值转换机的运算顺序不同,列出的代数式也不同,但是学生结合上一节的内容很自然地正确写出两个不同的代数式,再通过具体的字母的值来求代数式的值,然后通过一个表格,让学生感受不同的代数式在字母取相同值的代数式的值的不同,并感知代数式的值随字母变化时值的变化情况,激发学生学习兴趣,渗透变量之间的关系,渗透字母的取值和代数式值对应的思想。
教学中要充分利用学生的积极性,争取学生主动参与,通过丰富有趣的类比让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,教学过程中要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.在代数式求值过程中,初步感受函数的对应思想;2.感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。
教学重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.教学难点:正确地求出代数式的值.三、教学过程分析本节课由五个教学环节组成,它们是①旧知归纳,直奔主题②创设背景,理解概念③习题精选意义升华④练习交流,巩固提高.其具体内容与分析如下:第一环节旧知归纳,直奔主题内容:回顾上节课所学习代数式和代数式值的概念,介绍数值转换机。
目的:通过复习上一节知识内容,直接点出本节主题,在于降低教学难度,向学生介绍数值转换机,激发学生兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.目的在于引导学生体验字母取值和代数式值的对应思想。
最新北师大版七年级数学上册《代数式》同步练习题及答案
3.2 代数式(1)一、填空题1.小丁期中考试考了a 分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了____分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a 厘米,两个月不理发,她的头发长为_____厘米.3.妈妈买了一箱饮料共a 瓶,小丁每天喝1瓶,_______天后喝完. 4.代数式(x+y )(x -y)的意义是___________.5.小明有m 张邮票,小亮有n 张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有_______张邮票. 二、判断题1.3x+4-5是代数式.( )2.1+2-3+4是代数式.( ) 3.m 是代数式,999不是代数式. ( ) 4.x>y 是代数式.( ) 5.1+1=2不是代数式.( )三、选择题1.下列不是代数式的是( ) A.(x+y)(x -y)B.c=0C.m+nD.999n+99m2.代数式a 2+b 2的意义是( ) A.a 与b 的和的平方 B.a+b 的平方 C.a 与b 的平方和D.以上都不对3.如果a 是整数,则下面永远有意义的是( ) A.a1B.221a C.21aD.11a 4.一个两位数,个位是a ,十位比个位大1,这个两位数是( ) A.a(a+1)B.(a+1)aC.10(a+1)aD.10(a+1)+a四、解答题1.小明今年x 岁,爸爸y 岁,3年后小明和爸爸的年龄之和是多少?2.小丁和小亮一起去吃冰糕,小丁花了m 元,小亮花了n 元,已知每个冰糕0.5元,小丁和小亮各吃了几个?3.2 代数式(2)一、填空题 1.用代数式表示.(1)“x 的5倍与y 的和的一半”可以表示为_____.(2)南平乡有水稻田m 亩,计划每亩施肥a 千克;有玉米田n 亩,计划每亩施肥b 千克,共施肥_____千克.(3)有三个连续的整数,最小数是m ,则其他两个数分别是_____和_____. (4)全班总人数为y ,其中男生占56%,那么女生人数是_____. 2..用语言描述下列代数式的意义.(1)(a+b)2可以解释为_____. (2)3x+3可以解释为_____ . 二、选择题1.某班共有x 个学生,其中女生人数占45%,那么男生人数是 . A .45% x B .(1-45%)x C .%45x D .%451-x2.若电话的月租是16元,每次市内通话费平均0.3元,每次长途通话费平均1.8元,半年内市内电话打了m 次,长途电话打了n 次,则半年内应付话费( )元.A .0.3m+1.8nB .16mnC .16+0.3m+1.8nD .16×6+0.3m+1.8n 3.单独完成一件事情,甲需要m 天,乙需要n 天,则两人一起做需要( )天完成. A .n m +1 B .n m 11+ C .mn n m + D .nm mn+ 三、解答题1.一种树苗的高度与生长年数之间的关系如下表所示:(树苗原高是100 cm)(1)填出第4年树苗可能达到的高度. (2)请用含a 的代数式表示高度h.(3)用你得到的代数式求生长了10年后的树苗可能达到的高度.2.某电影院有20排座位,已知第一排有18个座位,后面一排比前一排多2个座位,请写出计算第n排的座位数,并求出第19排的座位数.3.2 代数式(1)一、1.(1+b%)a 2.a+2 3.a 4.x 与y 的和乘以x 与y 的差 5.n+2m 二、1.√ 2.√ 3.× 4.× 5.√ 三、1.B 2.C 3.C 4.D 四、1.x+y+6 2.小丁:5.0m 小亮:5.0n 3.2 代数式(2)一、1.(1)21(5x+y) (2)(am+bn) (3)m+1 m+2 (4)(1-56%)y 2.(1)(a+b)2可以解释为:a 与b 的和的平方,或a 、b 两数和的平方.(2)3x+3可以解释为:x 的3倍与3的和,或者:小彬每分钟走x 米,小亮每分钟比小彬多走1米,那么3x+3表示小亮3分钟走的路程. 二、1.B 2. C 3. D三、1.(1)第4年树苗可能达到的高度是160 cm.(2)h=100+15a(3)将a=10代入100+15a ,得 100+15×10=100+150=250 (cm),因此,这种树苗生长10年后可能达到的高度是250 cm. 2.第n 排的座位数是[18+2(n -1)]个,将n=19代入[18+2(n -1)]中,得:18+2×(19-1)=54.因此,第19排的座位数为54个.。
最新北师大版数学七年级上册《3.2 代数式(第2课时)》精品教学课件
②a3+b3 =33+23 =27+8
=35.
=35 通过比较①②两式的计算结果,不难发现:
(a+b)(a2-ab+b2)=a3+b3
课堂检测
拓广探索题
如图是某市设计的长方形休闲广场,两端是两个半圆形 的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.
(1)用图中所标字母表示广场空地(图中阴影部分)的面积; (2)若休闲广场的长为80 m,宽为40 m,求广场空地的面积. (计算结果保留π)
课堂检测
拓广探索题
解:(1)广场空地的面积为xy-π
x 2
2
-π
x 4
2=xy-156πx2.
(2)当x=40,y=80时,
xy-156πx2=40×80-156π×402=3 200-500π. 因此广场空地的面积为(3 200-500π)m2.
机器1的输出结果 -15 -6 -3 -1.44 -1 12 24
机器2的输出结果 -30 -21 -18 -16.44 -16 -3 9
探究新知
练一练 填写下表,并观察下列两个代数式的值的变化情况.
n 1 2 3 45 6 7 8 5n+6 11 16 21 26 31 36 41 46
n2 1 4 9 16 25 36 49 64 (1)随着n的值逐渐变大,两个代数式的值如何变化?
原式=2×2+5×(-1)=4-5=-1.
(2) 当 a=2 , b=-1 时 ,
原式=22-2×2×(-1)+(-1)2=4+4+1=9.
课堂检测
3.2代数式 第2课时 教案(北师大版七年级上)
(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后你的身高。
展示教材中的“数值转换机”.要求学生:⑴写出图1.的输出结果;⑵找出图
教
学
过
程
二、例题点拨,实践探究
2.的转换步骤。
讨论“议一议”.在讨论过程中,鼓励学生根据已有的信息作估计,判断变化特征和趋势,并给出适当的说理过程。
三、随堂练习,突破难点
班级同学按4个同学一组进行分组。第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个结果对吗?
四、师生交流,归纳小结
教师启发学生回顾本课学习内容,总结收获,布置作业。
布置作业
练习册代数式(2)
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
3.2代数式(第2课时)
教学
目标
知识与技能:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
过程与方法:经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
情感与态度:通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
教
北师大版2024新版七年级数学上册课件:3.2 课时2 去括号
典型例题
例2 先化简,再求值: 3x2+(2x2-3x)-(-x+5x2),其中x=314.
解:原式=3x2+2x2-3x+x-5x2 =-2x.
当x=314时,原式=-2×314=-628.
课堂练习
1.把a-(-2b+c)去括号正确的是( B )
A.a-2b+c
B.a+2b-c
C.a-2b-c
A.①②④
B.②④
C.①③
D.③④
课堂练习
4.化简: (1)(x+2y)-(-2x-y).
(2)6a-3(-a+2b).
解:(1)原式=x+2y+2x+y =3x+3y.
(2)原式=6a+3a-6b =9a-6b.
课堂练习
5.已知x+4y=-1,xy=-5, 求(6xy+7y)+[8x-(5xy-y+6x)]的值. 解:原式=6xy+7y+8x-(5xy-y+6x)
=6xy+7y+8x-5xy+y-6x =2(x+4y)+xy. 当x+4y=-1,xy=-5时, 2(x+4y)+xy=2×(-1)+(-5)=-7. 所以所求值为-7.
课堂练习
6.已知一个三角形的三边长分别为(3x-5)cm,(x+4)cm, (2x-1)cm. (1)用含x的式子表示三角形的周长; 解:周长为(3x-5)+(x+4)+(2x-1)
去括号前后,括号里各项的符号有什么变化?
探究新知
观察比较两式等号两边画横线的变化情况. (1)4+ 3(x-1) =4+ 3x-3 (2)4x -(x-1) =4x -x+1
去括号前后,括号里各项的符号有什么变化?
探究新知
观察比较两式等号两边画横线的变化情况. (1)4+ 3(x-1) =4+ 3x-3 (2)4x -(x-1) =4x -x+1
北师大版七年级数学上册 3 2代数式(第二课时) 同步导练(含答案)
3.2代数式(二)基础导练1. 代数式2a-b 表示的意义是_____________________________.2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________.⑵a 、b 两数的和的平方与它们差的平方和________________.3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米.4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律用自然数n(n ≥1)表示出来______________________.6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________,当a=5时,这个两位数为_________.7. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ).A . 0.7a 元B .0.3a 元C .a 310 元D . a 710元 8. 根据下列条件列出的代数式,错误的是( ). A . a 、b 两数的平方差为a 2-b 2 B . a 与b 两数差的平方为(a-b)2C. a 与b 的平方的差为a 2-b 2 D . a 与b 的差的平方为(a-b)29. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( ).A . –2005B . 2005C . -1D . 110. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( ).A . ( mx+ny )元B . (m+n)(x+y) C. (nx+my )元 D . mn(x+y) 元11. 当x=-2,y=3时,代数式4x 3-2y 2的值为( ).A . 14B . –50C . –14D . 50 能力提升12. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值.13. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平方. 14.人在运动时的心跳速率通常和人的年龄有关.如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a).⑴ 正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少? ⑵ 一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?15. 给出下列程序:⇒ ⇒若输入x=1时,输出的值为-2,求输入x=-2时,输出的值是多少?参考答案:1.2a 与b 的差2.⑴(1+10%)x ⑵(a+b)2 +(a-b)23. 2.1+0.3n 5.14.1.6+0.5(n-2)6.n 2+n=n(n+1) 6.10(a-3)+a 257.D8.C9.C 10.A 11.B 12. ∵3a 2-2a +6=8 13. b 2-4ac=(-21)2-4×(-1)×23=425 ∴ 3a 2-2a=2 ∵(±25)2=425 ∴1232=-a a ∴425是±25的平方. ∴.2111232=+=+-a a 14. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数164次.⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险.15.4.。
七年级数学上册 第三章 整式及其加减 3.2 代数式(二)教学课件 (新版)北师大版
n2 Copyr1igh4t 20094-201161 As25pos3e6 Pty49Ltd6.4
(1)随着n的值逐渐变大,两个代数式的值如何变化? (2)估计一下,哪个代数式的值先超过100.
K12课件
5
二、新课讲解
练一练:
如右图: (1)标出未注明的边的长度;
0.5x
y 0.5x
2x
(2)阴影部分的周E长va是lu:ation only. ; x ted(w3i)th阴A影sp部os分e的.S面lid积e是s f:or .NET 3.5;Client 2Pyrofile 5.2
=6×(-2-3)
=6X(-5)
=-30
K12课件
4
二、新课讲解
议一议
填写下表,并观察下列两个代数式的值的变化情况:
n
1 2 E3valua4tion 5only.6 7 8
ted w5nit+h6Aspo1s1e.1S6lid2e1s 313.536Clie4n1 t P4r6ofile 5.2
上图是一组“数值转化机”,请写出上图中的输出
结果和运算过程.并填写下表.
K12课件
2
二、新课讲解
输入
-2 - 0 0.2 1/3 5/2 4.5
1/2
6
ted wi机 出th 结A器s果p1o的se输.SlEidveaslufaotrio.NnEoTnl3y..5 Client Profile 5.2 Copyright 2004-2011 Aspose Pty Ltd.
机器2的输 出结果
K12课件
3
二、新课讲解
解:当x=-2时,6x-3
=6×(-2)-3 注意添加运
北师大版初一上册数学第三章整式及其加减:代数式教案
集体备课教案米/时,请依照这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t 小时呢?1.摸索:(1)若正方形的边长为a,则正方形的面积是,体积是W.(2)设n表示一个数,则它的相反数是;(3)铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是元.(4)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为千米.2.观看所列代数式包含哪些运算,有何共同的运算特点.二、合作探究探究点一有下列式子:x2,m-n>1,p+q,12,2021。
2ab,s=πR代数式的识别分析:代数式是用运算符号(加、减、乘、除、乘方等)把数和字母连接而成的式子;而用“=”,“≠”,“<”,“>”,“≤”,“≥”等关系符号连接而成的式子都不是代数式.2.代数式的书写规则(1)含有乘法运算的代数式的书写规则①字母与字母相乘,乘号一样省略不写,字母的排列顺序一样按字母表的顺序.如a ×b 写成ab .②数与字母相乘,乘号一样也省略不写,但数一定要写在字母的前面,而且当数是带分数时一定要化为假分数.如a ×8要写成8a ,不要写为a 8;513×m 要写为163m ,不要写成513m .切记,数字与数字相乘,不能省略乘号,如6×5不能写成65.③带括号的式子与字母的地位相同.如a ×(b-3)能够写为a (b -3),也能够写成(b -3)a ;(m -1)×2可写为2(m -1),但不要写成(m -1)2.(2)含有除法运算的代数式的书写规则当代数式中含有除法运算时,一样不用“÷”号,而改用分数线.如x 与y 的商一样写为x y ,而不写成x ÷y ;因为分数线具有括号的作用,因此分数线又称括线.如m 与n 的和除以2的商能够列为m +n 2,而不要列为(m +n )2.(3)含有单位名称的代数式的书写规则①若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位,如甲的身高为x cm ,乙比甲矮6 cm ,那么乙的身高应写成(x -6) cm ,而不能写成x -6 cm.②若代数式是积或商的形式,则无需加括号,直截了当在代数式后面写出单位即可.如10p 千米,a -2b5千克等.【例2】 下列各式中符合代数式书写要求的个数为( ).①514x 2y ②y ×3 ③ab ÷2 ④a 2-b 6[来源:学|科|网]A .4B .3C .2D .1探究点二:列代数式用代数式表示:(1)x与2的平方和;(2)x与2的和的平方;(3)x的平方与2的和;(4)x与2的平方的和.探究点三:代数式的意义下列代数式能够表示什么?(1)2a-b;(2)2(a-b).探究点四:依照实际问题列代数式用代数式表示下列各式:(1)王明同学买2本练习册花了n元,那么买m本练习册要花多少元?(2)正方体的棱长为a,那么它的表面积是多少?体积呢?.教学反思。
北师大版数学七年级上册3.2 第2课时 代数式的求值2教案与反思
3.2 代数式知人者智,自知者明。
《老子》棋辰学校陈慧兰第2课时代数式的求值知识技能目标1.了解代数式的值的概念;2.会求代数式的值.过程性目标1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;2.探索代数式求值的一般方法.教学过程一.创设情境现在,我们请四位同学来做一个传数游戏.游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?二.探究归纳1.引导学生得出游戏过程实际是一个计算程序(如下图):当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x+1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.2.代数式的值的概念像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.三.实践应用例1当a=2,b=-1,c =-3时,求下列各代数式的值:(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4.(3)当a =2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2= 4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换a = 3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们过学习,将来有能力证实它的正确性.例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(元).若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2 = 2.42(亿元).答:该企业明的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3当x=-3时,多项式mx3+nx-81的值是10,当x= 3时,求该代数式的值.解当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-1=10, 所以27m+3n=-91.则当x=3,mx3+nx-81=( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
北师大版七年级数学上册优秀教学案例:3.2.2代数式
1.设计有针对性的问题,引导学生围绕问题展开思考,逐步揭示代数式的本质特征。
2.鼓励学生提出问题,培养学生的质疑精神和问题意识。
3.引导学生运用已有的知识解决实际问题,提高学生的知识运用能力。
(三)小组合作
1.合理分组,确保每个小组成员都能在合作中发挥自己的特长。
2.明确分工,让每个学生在合作过程中都有责任和任务。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我将根据学生的年龄特点、认知水平和学习需求,继续探索更多有效的教学方法和手段,为学生的全面发展奠定坚实基础。同时,我将关注学生的个体差异,尊重学生的个性发展,让每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
4.教学方法灵活多样:本节课运用了讲授、讨论、实践等多种教学方法,使学生在轻松愉快的氛围中掌握代数式的相关知识,提高了学生的学习效果。
5.教学评价关注全面发展:本节课采用多元化的评价方式,关注学生的知识掌握程度、思维品质、情感态度等方面的发展,使每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
2.要求学生在作业中运用本节课所学知识解决实际问题,提高学生的知识运用能力。
3.鼓励学生进行自我反思,发现自己的优点和不足,调整学习策略。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将关注学生的年龄特点、认知水平和学习需求,灵活运用各种教学方法和手段,充分调动学生的学习积极性,激发学生的思维潜能,培养学生的数学素养。同时,我将关注学生的个体差异,尊重学生的个性发展,让每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
2.运用多媒体教学手段,创设生动活泼的学习情境,激发学生的学习兴趣,提高学生的学习积极性。
北师大版七年级上册数学 3.2.2代数式求值 课件(共22张PPT)
输入
-2 0
1
5
图 3-2 的
输出
图 3-3 的
输出
讲授新知
输入 图3-2的输出 图3-3的输出
输入x ×6
6x
-3 输出6x-3
图3-2
-2 0 1 5 -15 -3 3 27 -30 -18 -12 12
输入x -3
x-3 ×6
输出6(x-3) 图3-3
议一议 填写下表,并观察下列两个代数式的值的变化情况 (1)随着n的值逐渐变大,两个代数式的值如何变化? (2)估计一下,哪个代数式的值先超过100?
2.数字与字母相乘,字母与字母相乘时,中间的乘号可以省 略不写,并且数字放在字母的前面. 如: a的5倍,写作:5a 不要写成a 5.
小结
5.如果代数式后面带有单位名称,是乘除运算结果的直 接将单位名称写在代数式后面,若代数式是带加减运算 且须注明单位的,要把代数式括起来,后面注明单位.
想一想
代数式10x+5y还可以表示什么? 如果用x(m/s)表示小明跑步的速度,用y(m/s)表示 小明走路的速度,那么10x+5y表示他跑步10s和走路5s所 经过的路程; 如果用x和y分钟表示1元硬币和5角硬币的枚数,那么 10x+5y就表示x枚1元硬币和y枚5角硬币共是多少角钱。
n
12 3 4 5 6 7 8
5n+6
n²
议一议 n 12 3 4 5 6 7 8
5n+6 11 16 21 26 31 36 41 46 n² 1 4 9 16 25 36 49 64
(1)随着n的值逐渐变大,两个代数式的值也增大 (2)n²的值先超过100
由代数式求值可以推断每个代数式所反映的规律, 不同的代数式反映的规律不同
北师大版七年级数学上3.2.2代数式(二).docx
初中数学试卷
鼎尚图文**整理制作
3.2.2代数式(二)
一、基础练习 1.填表:
a 0 -1 2 2
13
a+2 a-2 (a+2)(a-2)
a 2
-4
2.小王利用计算机设计了一个计算程序,输入与输出的数据如下表:
输入 1
2
3
4
5
… 输出
21 52 103 174
26
5 …
当输入数据8时,输出的数据是 ( ) A .
618 B .638 C .658 D .67
8 3.填写下表,并回答有关问题:
x x 1 … -3 -2 -1 0 1 2 3 … x 2 x 2
-4
s 1
…
…
s 2
请认真观察你所填写的数字,看看有没有什么规律?然后猜想,如果x 1与x 2互为相反数,那么s 1与s 2的关系为___________. 二、能力提升
.某同学在1月份栽了一棵树,每个月测量一交树的高度,得到下列表格:
月份 1 2 3 4 … x 树高(cm)
110
120
130
140
…
?
⑴按照表格的规律,6月份树的高度为________cm ;
⑵第x个月时,树的高度为_________cm;
⑶在第_________月后,树的高度会超过185cm.。
北师大版七年级数学《3.2代数式(2)》
X6
6x -3
输出
6x-3
输入
-2
机器1的输出结果
-1/2 0
-3 x-3
X6
输出
6(x-3)
0.26 1/3 5/2 4.5
机器2的输出结果
解:当x=-2时,6x-3
注意添加运算 符号和括号
=6X(-2)-3
=-12-3
=-15
当x=-2时,6(x-3)
=6X(-2-3)
2.已知ab>0,且a、b的绝对值分别为6、8,求 a+b的值。
课堂小结
1、代数式的定义
代数式就是用基本的运算符号把数、表示数的字母连接
而成的式子,单独一个数或一个字母也是代数式。
2、代数式的写法
(1)数字与字母、字母与字母、数字或字母与括号相乘时, 乘号通常简写作 “·“ 或者省略不写;
(2)在实际问题中含有单位时,如果最后运算结果是和或差 的形式时,要把整个的代数式括起来再写单位。
试一试
1.当n=-3时,分别求代数式n 2和- n 2的值.
解:当n=-3时, n2=(-3)2=9 当n=-3时, -n2=-(-3)2=-9
0.5x
(2) 2x+2x+2y+2y+2y=4x+6y (3) 2x·2y- 0.5xy=3.5xy
巩固练习
思考题
1.已知x=2,y=-4,代数式ax3+by+5=1997 当x=-4,y=1/2时,求代数式3ax-来自4by3+4986的值。
=6X(-5)
=-30
议一议:填表,看谁填得又快又准
n
1 23 456 7 8
北师大版-数学-七年级上册-3.2《代数式(2)》课时作业
初中-数学-打印版初中-数学-打印版 3.2《代数式(2)》课时作业:基础题目:1.已知m =1,n =0,则代数式m +n 的值为( )A .-1B .1C .-2D .22.当a =3,b =2时,a 2+2ab +b 2的值是( )A .5B .13C .21D .253.当a =2时,代数式3a -1的值是________.4.当x =-2,y =3时,代数式2x 2-3y 的值是________.综合提高题目5.人们通常用c 表示摄氏温度,f 表示华氏温度,c 与f 之间的关系式为c =59(f -32),当华氏温度为59度时,摄氏温度为( )A .-15度B .15度C .112.6度D .95.8度6.在三角形的面积公式S =12ah 中,a 表示底边长,h 表示底边上的高,若a =3.2 cm ,h =5 cm ,则S =________cm 2.7.当a =13,b =9时,下列代数式的值为24的是( ) A .(3a +2)(b -1) B .(2a +1)(b +10)C .(2a +3)(b -1)D .(a +2)(b +11)8.下列说法正确的有( )①代数式的值只与代数式本身有关;②一个含有字母的代数式,只有一个值;③代数式x 2+x -1的值为-1.A .0个B .1个C .2个D .3个9.当x =-1时,代数式|5x +2|和代数式1-3x 的值分别为M 、N ,则M 、N 之间的关系为( )A .M >NB .M =NC .M <ND .以上三种情况都有可能中考真题链接题目答案:1.B2.D3.54.-15.B6.87.A 8.A 9.C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章整式及其加减
2. 代数式(二)
宜昌市十四中黄厚琴
一、学生起点分析
本节课是教材第三章《整式及其加减》的第二节第2 课时,学生在前1课时已经初步了解了代数式和代数式值的概念,通过对代数式实际意义的解释,降低了抽象的字母表示数的难度,本节课学生将会很快的掌握求代数式值的方法,更好的感受抽象的字母和具体的数之间的关系。
一开始的两个数值转换机显得生动有趣,难度也不大,所以学生主动参与意识更强,课堂氛围更浓烈,分析能力和综合思维能力会有一定程度的提高。
二、教学任务分析本课时的教学内容一开始就用两个数值转换机直奔教学主题――求代数式的值。
因为内容生动有趣,难度也不大,虽然两个数值转换机的运算顺序不同,列出的代数式也不同,但是学生结合上一节的内容很自然地正确写出两个不同的代数式,再通过具体的字母的值来求
代数式的值,然后通过一个表格,让学生感受不同的代数式在字母取相同值的代数式的值的不同,并感知代数式的值随字母变化时值的变化情况,激发学生学习兴趣,渗透变量之间的关系,渗透字母的取值和代数式值对应的思想。
教学中要充分利用学生的积极性,争取学生主动参与,通过丰富有趣的类比让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,教学过程中要注重培养学生正确运用数学语言进行表达和交流的能力.
根据以上分析, 确定本节课的教学目标如下:
1. 在代数式求值过程中,初步感受函数的对应思想;
2. 感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。
教学重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.教学难点:正确地求出代数式的值.
三、教学过程分析
本节课由五个教学环节组成,它们是① 旧知归纳,直奔主题② 创设背景,理解概念③ 习题精选意义升华④ 练习交流, 巩固提高. 其具体内容与分析如下:
第一环节旧知归纳,直奔主题
内容:
回顾上节课所学习代数式和代数式值的概念,介绍数值转换机。
目的:
通过复习上一节知识内容,直接点出本节主题,在于降低教学难度,向学生介绍数值
转换机,激发学生兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容•目的在于引导学生体验字母取值和代数式值的对应思想。
效果:
学生在通过上一节知识的回顾,知道代数式和代数式值的概念,而当老师提出数值转
换机时,学生明显的充满了兴趣,一个个摩拳擦掌跃跃欲试,极大地调动了学生学习数学的积极性•通过两个不同的数值转换机(运算顺序不同,列出代数式会不同,代入相同字母的值时所求代数式值也不同)进一步提高学生的兴趣。
第二环节创设背景,理解概念
内容:
讲解教材中的议一议,填表,看谁算的又快有准。
C
填写下表,并观察下列两个代数式的值的变化惜况.
(1)随着什的值逐渐变大T两个代数式的值如何变化?
(2)估计一下,哪个代数式的偉先超过100?
目的:
经过这个填表问题,学生进一步感受到求代数式值的过程和方法,进一步理解代数式值
的概念,并感知字母和代数式值之间的对应思想。
通过比一比,看谁算得又快有准极大地调
动学生学习的主动性、积极性。
效果:
本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,在回答教材上表格下面的两个问题后,老师可以适当增加问题,比如:如果这两个代数式分别表示甲乙两家公司给一个打工者所发的总工资( n代表他上班的总天数),你将选择在哪家公司打工?
事实上,学生们非常有兴趣,说甲乙的都有,还有学生说要根据打工天数的多少分情况讨论,这个题,显然可以向学生渗透数学里面分类讨论的思想。
同时,根据学生的学习情况,可以
适当加问:当n=-3时,分别求n2、-n2的值,进一步让学生理解两个不同代数式的含义。
第三环节习题选讲意义升华内容:课后习题3.3的第2题。
2.如右图:
(1)标出未注明的边的长度;
(2)阴影部分的周长是:____________________
(3)阴澎部分的面积是:____________________
(4)S x = 5.5, y = 4时,阴彫部分的周长
是______ ,面积是_______ .
目的:
根据老师们平时的教学经验,课后的这个第2题是学生做的最差的一道题。
作为初学
者,学生刚刚知道了代数式和代数式值的意义,会求代数式的值,而这题中涉及到合并同类
项的内容,在课堂上老师适当引导,可以给以后的合并同类项埋下伏笔,制造悬念,提高学生的学习兴趣。
效果:
教学中,学生只要写出表示周长和面积的代数式就可以,没有合并也是对的,但是老师可以提出来,像这样的代数式我们还可以合并成另外一种样子,具体是怎么合并的,有什么要求,我们在以后的学习中会学到。
学生往往露出很惊奇的表情,很想知道是怎么合并的,显然提高了学生的学习兴趣。
第四环节练习交流,巩固提高
内容:
解决教材中的随堂练习等。
同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容。
布置作业。
目的:
本环节的目的就是为了检测学生的达标情况和巩固练习,同时为学有余力的学生设置了
试一试、想一想等有创新思维的问题,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生熟练计算代数式的值并感知字母和代数式值的对应思想。
通过小
结让学生进一步把握本章的重点,明确学习的方向
师生交流、归纳小结的目是让学生准确全面的表述自己的观点,培养及时归纳知识的
习惯.
效果:
学生分层次独立完成课中随堂练习,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1 题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.
四、教学反思与点评
《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容。
本节课一开始就直奔主题,提出数值转换机,并要求学生根据两个不同的数值转换机列出不同的代数式,并求相同字母下代数式的值。
进而引出议一议,让学生通过表格中大量的计算,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力。
通过表后面的设问,以及老师的设问,让学生感受到学习的兴趣,感受到这题并不是简单的计算问题,还要从中发现一些规律,老师的设问更是和生活联系在一起,培养学生的分析能力、渗透分类讨论的数学思想。
通过习题选讲,学生进一步理解求代数式值含义,并对后面的合并同类项充满了好奇和兴趣。
在课堂练习中,给出了不同层次的问题,分层次对学生提出要求,做到了让每个学生都有成就感,让每个学生都能学到不同的数学。
回顾本节课的教学,有以下几点作的比较成功:
第一,根据课程标准把握教材. 新的课程标准要求,淡化格式化计算程序,注重知识的形成过程和学生对概念的感知和理解,如通过学生的表格计算,让学生熟练掌握代数式值的概念,通过习题选讲,让学生对后面的学习充满好奇。
第二,恰当设问,提高学生的学习兴趣。
如议一议中设计的第三问:如果这两个代数式分别表示甲乙两家公司给一个打工者所发的总工资(n 代表他上班的总天数)。
你将选择在
哪家公司打工?事实上不,设计到打工发工资的问题学生是很感兴趣的,这个问题提出的时候,教室里炸开了锅,有说甲乙的还有的提出根据打工天数或者自己的需要来分情况讨论的,恰当的让学生感受到代数式值随字母变化的变化规律,同时渗透了分类的思想。
第三,整个教学过程中,体现了学生为主体的教学理念,教师只是教学活动的参与者、引导者,不论哪个环节,学生活动始终是占主体地位.
第四,在课堂练习中分层次安排内容、分层要求,使他们人人具有成就感,充分体现了人文关怀,体现了面向全体学生。