七下数学每日一练:角的运算练习题及答案_2020年单选题版
七下数学每日一练:对顶角、邻补角练习题及答案_2020年综合题版
![七下数学每日一练:对顶角、邻补角练习题及答案_2020年综合题版](https://img.taocdn.com/s3/m/809ef09c2af90242a995e544.png)
七下数学每日一练:对顶角、邻补角练习题及答案_2020年综合题版答案答案答案2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题~~第1题~~(2019长兴.七下期末) 如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,∠1与∠2互补(1) 试判断直线AB 与直线CD 的位置关系,并说明理由(2) 如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH(3) 如图3,在(2)的条件下,连结PH ,在GH 上取一点K ,使得∠PKG=2∠HPK ,过点P 作PQ 平分∠EPK 交EF 于点Q ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)考点: 对顶角、邻补角;垂线;平行线的判定与性质;~~第2题~~(2019余杭.七下期末) 如图,在三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,且∠CDE=∠B .(1) 若DF ⊥AB ,试判断DF 与DE 是否垂直,并说明理由.(2) 若FD 平分∠BFE ,∠FDE+3∠AFE=180°,求∠BFE 的度数.考点: 对顶角、邻补角;平行线的性质;~~第3题~~(2019东海.七下期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H 。
已知∠1=52°,∠2=128°。
(1) 求证:BD ∥CE ;(2) 若∠A=∠F ,试判断∠C 与∠D 的数量关系,并说明理由。
考点: 对顶角、邻补角;平行线的判定与性质;~~第4题~~(2019覃塘.七下期末) 已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .答案答案(1) 若∠AOC=36°,求∠BOE 的度数;(2) 若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3) 在(2)的条件下,请你过点O 画直线MN ⊥AB ,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出∠E OF 的度数.考点: 对顶角、邻补角;~~第5题~~(2019通化.七下期中) 如图所示,已知∠1=135 ,∠2=135(1) 求证:AB ∥CD .(2) 已知∠3=140 ,求∠4的度数考点: 对顶角、邻补角;平行线的判定与性质;2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
2020年初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数
![2020年初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数](https://img.taocdn.com/s3/m/d1b7cad60066f5335b81216d.png)
证法1:如图甲,延长履7到"过。画CE//BA.
.:CE俄图所知),
A Z5=Z1, ZJ=Z2(两直线平行,同位角、内错角相等).
又VABCD= ZBCA+Z2+ Z1 = 180°(平角的定义),
A ZJ+ Z54-ZACB=180°(等量代换).
如图乙,过如上任一点尸,画FH//AC. FG//AB.这种添加辅助线的方法能证明N
在△疤中,得26=105°・
12.如图所示,在△故:中,ZJ=80° , Z5=30° ,以?平分/ACB, DE//AC.
⑴求所的度数: ⑵求2>DC的度数.
解(1)在鬼中,ZJ=80° , Z5=30° ,
AZACB= 180°-ZJ-Z5=70° .
.: DE〃 AC, :.ZDE8=ZACB=1。.
作者:非成败
作品编号:92032155GZ5702241547853215475102
时间:202012.13
七年级下册数学几何析题以及练习题(附答案)
9. (2011-扬州)如图,C岛在X岛的北偏东60。方向,在5岛的北偏西45°方向,则
从C岛看4月两岛的视角ZACB=
答案105°解析 如图,.••(60°+匕湖 +(45° +ZJ5d=180° ,:.ZCAB-\-ZABC=75a,
又VZ1 = Z2(已知), .・.匕2=匕"(等量代换J,:.FG// BC\).
解 在同一平而内,垂直于同一直线的两条直线互相平行:两直线平行,同位角相 等:内错角相等,两直线平行.
14.如图,己知三角形物T,求证:ZJ+Z5+ZC=180° .
分析:通过画平行线,将4、NC作等角代换,使各角之和恰为一平角,依辅助 线不同而得多种证法,如下:
七年级数学下册《角》单元测试卷(含答案解析)
![七年级数学下册《角》单元测试卷(含答案解析)](https://img.taocdn.com/s3/m/1fafb91bf011f18583d049649b6648d7c1c70813.png)
七年级数学下册《角》单元测试卷(含答案解析)1.如图所示,∠AOB是平角,OC是射线,OD、OE分别是∠AOC、∠BOC的角平分线,若∠COE=28°,则∠AOD的度数为()A.56°B.62°C.72°D.124°2.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④3.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°4.如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中①90°﹣∠α;②∠β﹣90°③(∠α+∠β)④(∠β﹣∠α)其中正确的有()A.1个B.2个C.3个D.4个5.如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°.则图中互余的角、互补的角各有()对.A.3,3 B.4,7 C.4,4 D.4,56.若∠1与∠2互余,∠2与∠3互补,则∠1与∠3的关系是()A.∠1=∠3 B.∠1与∠3互余 C.∠1与∠3互补D.∠3﹣∠1=90°7.通常我们把时钟的时针与分针所成的角叫做钟面角,若某整点时刻,钟面角∠α恰好是∠α的补角的2倍,此时对应的时间应是()A.8点B.4点C.6点D.8点或4点8.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20°B.40°C.20°或40° D.30°或10°9.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON的大小是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.90°﹣∠AOC10.一副三角板,如图所示叠放在一起,则∠AOB+∠COD=()A.180°B.150°C.160°D.170°11.如图,从O点引出6条射线OA、OB、OC、OD、OE、OF,且∠AOB=80°,∠EOF=160°,OE、OF分别是∠AOD、∠BOC的平分线.则∠COD的度数为度.12.如图,已知OA⊥OB于点O,∠BOC=20°20′,那么∠AOC=°′.13.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC=°14.已知一个角的补角是它的余角的4倍,那么这个角的度数是.15.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.16.计算:48°39′+67°31′=.17.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.18.若∠AOB=75°,∠AOC=27°,则∠BOC=.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON 的度数是.20.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为.21.如图,已知点O是直线AB上的一点,∠BOC=40°,OD、OE分别是∠BOC、∠AOC的角平分线.(1)求∠AOE的度数;(2)写出图中与∠EOC互余的角;(3)∠COE有补角吗?若有,请把它找出来,并说明理由.22.如图,直线AB、CD相交于点O,OA是∠EOC的平分线,∠EOD=100°,(1)请指出∠BOC的一个补角;(2)求出∠BOD的度数.23.如图,OB为∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD为多少度?(2)如果∠AOE=140°,∠COD=30°,那么∠AOB为多少度?24.如图所示,∠AOB=90°,OE是∠AOC的平分线,OD是∠BOC的平分线,若∠BOC=30°.求:(1)∠DOE的度数;(2)若没有绘出∠BOC的度数,你能否求出∠DOE的度数?请说明理由;(3)在(2)的条件下,若∠AOB=α,求∠DOE的度数,你能从中发现什么规律?25.如图1,将一副三角板的直角顶点C叠放在一起.观察分析:(1)若∠DCE=35°,则∠ACB=;若∠ACB=150°,则∠DCE=;猜想探究:(2)请你猜想∠ACB与∠DCE有何关系,并说明理由;拓展应用:(3)如图2,若将两个同样的三角尺60°锐角的顶点A重合在一起,请你猜想∠DAB与∠CAE有何关系,请说明理由;(4)如图3,如果把任意两个锐角∠AOB、∠COD的顶点O重合在一起,已知∠AOB=α,∠COD=β(α、β都是锐角),请你直接写出∠AOD与∠BOC的关系.26.已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由;(3)若∠BOC=α,∠AOC=β,则∠DOE与∠AOB是否互补,并说明理由.27.学习千万条,思考第一条.请你用本学期所学知识探究以下问题:Ⅰ.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°,若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数.Ⅱ.已知点A、O、B不在同一条直线上,∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,用含α,β的式子表示∠MON的大小.参考答案与解析1.解:∵OE平分∠BOC,∴∠BOC=2∠COE=56°.∴∠AOC=180°﹣∠BOC=124°.∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC=62°.故选:B.2.解:①45°﹣30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④90°+45°=135°,可以用一副三角板画出来;⑤145°不可以用一副三角板画出来;故选:D.3.解:如图,上午8点整时,钟表表面的时针与分针的夹角是4×30°=120°故选:D.4.解:∵∠α和∠β互补,∴∠α+∠β=180°,∴∠α=180°﹣∠β,于是有:∠α的余角为:90°﹣∠α,故①正确,∠α的余角为:90°﹣∠α=90°﹣(180°﹣∠β)=∠β﹣90°,故②正确,∠α的余角为:90°﹣∠α=∠α+∠β﹣∠α=∠β﹣∠α,故④正确,而(∠α+∠β)=90°,而∠α不一定是直角,因此③不正确,因此正确的有①②④,故选:C.5.解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,互补的角有∠AOC和∠BOC,∠DOE和∠BOC,∠COE和∠AOD,∠BOD和∠AOD,∠AOE和∠BOE,∠AOE和∠COD,∠COD和∠BOE共7对.故选:B.6.解:由题意得,①∠1+∠2=90°,②∠2+∠3=180°②﹣①得,∠3﹣∠1=180°﹣90°=90°,故选:D.7.解:根据题意有∠α=2(180﹣∠α),解得∠α=120°,则此时对应的时间应是8点或4点.故选:D.8.解:∠BOC在∠AOB内部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB﹣∠BON=30°﹣10°=20°;∠BOC在∠AOB外部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB+∠BON=30°+10°=40°.故选:C.9.解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=∠BOA=90°=45°.故选:A.10.解:由已知,得∠AOC=90°,∠BOD=90°,∴∠AOB+∠COD=∠AOD+∠COD+∠BOC+∠COD=∠AOC+∠BOD=180°.故选:A.11.解:设∠AOE=α,∠BOF=β,∵∠AOB=80°,∠EOF=160°,∴∠AOE+∠BOF=360°﹣∠AOE﹣∠BOF=360°﹣80°﹣160°=120°.∵OE、OF分别是∠AOD、∠BOC的平分线.∴∠AOD=2α,∠BOC=2β.∴∠COD=360°﹣∠AOB﹣∠AOD﹣∠BOC=360°﹣80°﹣120°×2=40°.故答案为40.12.解:∵OA⊥OB,∴∠AOB=90°,∵∠BOC=20′20′,∴∠AOC=90°﹣20°20′=69°40′,故答案为:69,40.13.解:①当OC平分∠AOB时,∠AOC=∠AOB=15°;②当OA平分∠BOC时,∠AOC=∠AOB=30°;③当OB平分∠AOC时,∠AOC=2∠AOB=60°.故答案为:15或30或60.14.解:设这个角为x,则补角为(180°﹣x),余角为(90°﹣x),由题意得,4(90°﹣x)=180°﹣x,解得:x=60,即这个角为60°.故答案为:60°.15.解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.16.解:39′+31′=70′=1°10′,故48°39′+67°31′=116°10'.故答案为:116°10'.17.解:(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC=,又∵∠AOB=70°,∴∠AOC==35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.18.解:(1)射线OC在∠AOB的内部时,如图1所示:∵∠AOB=75°,∠AOC=27°,∠AOB=∠AOC+∠BOC,∴∠BOC=∠AOB﹣∠AOC=75°﹣27°=48°;(2)射线OC在∠AOB的外部时,如图2所示:∵∠AOB=75°,∠AOC=27°,∠BOC=∠AOB+∠AOC,∴∠BOC=75°+27°=102°,综合所述,∠BOC的度数为48°或102°,故答案为48°或102°.19.解:∵OM是∠DOC平分线,ON是∠COB的平分线,∴∠COM=∠DOM=∠COD,∠BON=∠CON=∠BOC,∵∠BOC+∠COD=∠BOD=90°,∴∠COM+∠CON=∠BOD=45°=∠MON,故答案为:45°20.解:如图1,当射线OP在∠AOB的内部时,设∠AOP=3x,则∠BOP=2x,∵∠AOB=∠AOP+∠BOP=5x=17°,解得:x=3.4°,则∠AOP=10.2°;如图2,当射线OP在∠AOB的外部时,设∠AOP=3x,则∠BOP=2x,∵∠AOP=∠AOB+∠BOP,又∵∠AOB=17°,∴3x=17°+2x,解得:x=17°,则∠AOP=51°.故∠AOP的度数为10.2°或51°.故答案为:10.2°或51°.21.解:(1)∵∠BOC=40°,∴∠AOC=140°,∵OE是∠AOC的角平分线,∴∠AOE的度数为:140°÷2=70°;(2)∵OD、OE分别是∠BOC、∠AOC的角平分线,∴∠AOE=∠EOC,∠COD=∠BOD,∴∠EOC+∠COD=90°,∴∠BOD+∠EOC=90°,∴图中与∠EOC互余的角有∠COD,∠BOD;(3)∠COE有补角,理由:∵∠AOE=∠EOC,∠AOE+∠BOE=180°,∴∠COE+∠BOE=180°,∴∠COE有补角是∠BOE.22.解:(1)∠BOC的补角为:∠AOC(或∠BOD、∠AOE)(2)根据“同角的补角相等”得∠BOD=∠AOC.∵∠EOD=100°,∠EOD+∠EOC=180°,∴∠EOC=180°﹣∠EOD=180°﹣100°=80°,∵OA是∠EOC的平分线,∴∠AOC=∠EOC=40°.∴∠BOD=40°.23.解:(1)如图,∵OB为∠AOC的平分线,OD是∠COE的平分线,∴∠AOB=∠BOC,∠DOE=∠DOC,∴∠BOD=∠BOC+∠DOC=∠AOB+∠DOE=40°+30°=70°;(2)如图,∵OD是∠COE的平分线,∠COD=30°,∴∠EOC=2∠COD=60°.∵∠AOE=140°,∠AOC=∠AOE﹣∠EOC=80°.又∵OB为∠AOC的平分线,∴∠AOB=∠AOC=40°.24.解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OE是∠AOC的平分线,OD是∠BOC的平分线,∴∠COE=∠AOC=×120°=60°,∠COD=∠BOC=×30°=15°,∴∠DOE=∠COE﹣∠COD=60°﹣15°=45°;(2)若∠BOC的度数没有给出,则∠AOC=∠AOB+∠BOC=90°+∠BOC,∵OE是∠AOC的平分线,OD是∠BOC的平分线,∴∠COE=∠AOC=×(90°+∠BOC)=45°+∠BOC,∠COD=∠BOC,∴∠DOE=∠COE﹣∠COD=45°+∠BOC﹣∠BOC=45°;(3)由图可知,∠AOC=∠AOB+∠BOC,∵OE是∠AOC的平分线,OD是∠BOC的平分线,∴∠COE=∠AOC=(∠AOB+∠BOC),∠COD=∠BOC,∴∠DOE=(∠AOB+∠BOC)﹣∠BOC=∠AOB,∵∠AOB=α,∴∠DOE=α.规律:无论∠BOC的大小如何变化,∠DOE始终为∠AOB的一半.25.解:(1)(1)若∠DCE=35°,∵∠ACD=90°,∠DCE=35°,∴∠ACE=90°﹣35°=55°,∵∠BCE=90°,∴∠ACB=∠ACE+∠BCE=55°+90°=145°;若∠ACB=150°,∵∠BCE=90°,∴∠ACE=150°﹣90°=60°,∵∠ACD=90°,∴∠DCE=90°﹣60°=30°,故答案为:145°,30°;(2)∠ACB+∠DCE=180°,理由:∵∠ACE+∠ECD=90°,∠ECD+∠DCB=90°,∴∠ACE+∠ECD+∠ECD+∠DCB=180°,∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠ECD=180°;(3)∠DAB+∠EAC=120°,理由:∵∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∴∠DAE+∠EAC+∠EAC+∠CAB=120°,∵∠DAE+∠EAC+∠CAB=∠DAB,∴∠DAB+∠EAC=120°;(4)∠AOD+∠BOC=α+β,理由是:∵∠AOD=∠DOC+∠COA=β+∠COA,∴∠AOD+∠BOC=β+∠COA+∠BOC,=β+∠AOB,=α+β.26.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°,(2)∠DOE与∠AOB互补,理由如下:∵∠DOC=∠BOC=×70°=35°,∠COE=∠AOC=×50°=25°.∴∠DOE=∠DOC+∠COE=35°+25°=60°.∴∠DOE+∠AOB=60°+70°+50°=180°,∴∠DOE与∠AOB互补.(3)∠DOE与∠AOB不一定互补,理由如下:∵∠DOC=∠BOC=α,∠COE=∠AOC=β,∴∠DOE=∠DOC+∠COE=α+β=(α+β),∴∠DOE+∠AOB=(α+β)+(α+β)=(α+β),∵α+β的度数不确定∴∠DOE与∠AOB不一定互补.27.解:Ⅰ(1)∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,∴射线OC表示的方向为北偏东60°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°;Ⅱ.如图1:∵∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=∠AOB=α,∠CON=∠BON=∠COB=β,∴∠MON=∠BOM+∠CON=,如图2,∠MON=∠BOM﹣∠BON=;如图3,∠MON=∠BON﹣∠BOM=,∴∠MON为或或。
(完整版)七年级数学角练习题及答案
![(完整版)七年级数学角练习题及答案](https://img.taocdn.com/s3/m/5a43ad63f8c75fbfc77db2e8.png)
七年级数学角练习题及答案一、选择题1.A.15°B.20°C.85°D.105°答案:A 北A?4题图东西?B 南题图题图6、×=×=11°31′26″×3=33°93′78″=34°34′18″15.AOD25. 如图14,将一副三角尺的直角顶点重合在一起.若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.若叠合所成的∠BOC=n°,则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,一个机器人从点O出发,每前进2米就向左转体45°.假设机器人从O点出发时,身体朝向正北方向,试用1厘米代表1米,在图中画出机器人走过6米路程后所处的位置,并指明点A在点O的什么方向上?机器人从出发到首次回到O点,共走过了多远的路程?数学七年级上第4章直线与角检测题一、选择题1.如图,,若∠1=40°,则∠2的度数是AO第1题图A.20°B.40°C.50°D.60°.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是1B第2题图 A BCD3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,?,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点.已知=65°,则的补角等于A.125°B.105°C.115°D.95°.下列说法正确的个数是①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形. A.①②B.①③ C.②③ D.①②③6. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是 A.∠2=∠B.C.D.以上都不对7. 在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝8. 下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有A. ①②B. ①③C. ②④D. ③④9. 如图,下列关系式中与图不符合的式子是 A.C. B.D.第9题图10. 下列叙述正确的是A.180°的角是补角 B.110°和90°的角互为补角 1C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题 11.已知=67°,则的余角等于度.12. 如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=. 13.有下列语句:①在所有连接两点的线中,直线最短;②线段③取直线是点与点的距离;的中点;,得到射线,其中正确的是 .第12题图④反向延长线段14. 要在墙上钉一根木条,至少要用两个钉子,这是因为:. 15. 一个角的补角是这个角的余角的3倍,则这个角的度数是 . 16. 已知直线上有A,B,C三点,其中AB=cm,BC=cm,则AC=_______. 17. 计算:180°2313′6″__________. 18.若线段MN=_______.,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则三、解答题19. 将下列几何体与它的名称连接起来.圆锥三棱锥圆柱正方体球长方体20.如图所示,线段AD=cm,线段AC=BD=cm ,E、F分别是线段AB、CD的中点,求EF.第20题图21.如图,已知画直线画射线三点.;;2找出线段画出的中点,连结的平分线与;相交于,与相交于点.第21题图第22题图22. 如图,的度数.23. 火车往返于A、B两个城市,中途经过4个站点,不同的车站往返需要不同的车票.共有多少种不同的车票?如果共有≥3)个站点,则需要多少种不同的车票?°,°,求、24. 如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?第24题图3第4章直线与角检测题参考答案1.C 解析:∵,∴ ∠∠1∠290°,∴ ∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为,故6条直线最多有=15交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=cm,因为O是线段AC的中点,所以OA=OC= cm.OB=AB-OA=5-4=1. 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,故本选项错误;,正确;,正确.故选C.,而10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确. 11.2312. 121° 解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC?∠BOC=78°?35°?43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.13.④ 解析:∵ 在所有连接两点的线中,线段最短,∴ ①错误;∵ 线段点的距离,∴ ②错误;∵ 直线没有长度,∴ 说取直线向延长线段,得到射线的长是点与的中点错误,∴ ③错误;∵ 反正确,∴ ④正确.故答案为④.14.两点确定一条直线15.45° 解析:设这个角为,所以,根据题意可,所以416.cm或cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,.17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″.18. 解析:.19.分析:正确区分各个几何体的特征. 解:圆锥三棱锥圆柱正方体球长方体20.解:如题图,∵ 线段AD=cm,线段AC=BD=cm,∴ BC?AC?BD?AD?4?4?6?2. ∴ AB?CD?AD?BC?6?2?4. 又∵ E、F分别是线段AB、CD的中点, ∴ EB?112AB,CF?2CD ,∴ EB?CF?1122CD?12?2.∴ EF?EB?BC?CF?2?2?4. 答:线段EF的长为cm.21.分析:根据直线是向两方无限延长的画出直线即可;根据射线是向一方无限延长的画出射线即可;找出的中点,画出线段即可;画出∠的平分线即可.解:如图所示.5。
七下数学每日一练:对顶角、邻补角练习题及答案_2020年压轴题版
![七下数学每日一练:对顶角、邻补角练习题及答案_2020年压轴题版](https://img.taocdn.com/s3/m/6edb7bd66529647d26285229.png)
七下数学每日一练:对顶角、邻补角练习题及答案_2020年压轴题版答案答案答案2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题~~第1题~~(2019端州.七下期中) 如下图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=25°,求∠COE、∠AOE 、∠AOG 的度数.考点: 角的平分线;对顶角、邻补角;垂线;~~第2题~~(2019成都.七下期中) 已知,如图,把直角三角形的直角顶点放在直线 上,射线平分.(1) 如图,若 ,求的度数.(2) 若 ,则的度数为.(3) 由(1)和(2),我们发现和 之间有什么样的数量关系?(4) 若将三角形 绕点 旋转到如图所示的位置,试问 和 之间的数量关系是否发生变化?请说明理由.考点: 角的平分线;对顶角、邻补角;~~第3题~~(2019江苏.七下期中) 在△ABC 中,∠ACB =90°,BD 是△ABC的角平分线,P 是射线AC 上任意一点 (不与A 、D 、C 三点重合),过点P 作PQ ⊥AB ,垂足为Q ,交线段BD 于E.(1) 如图①,当点P 在线段AC 上时,说明∠PDE =∠PED.(2) 画出∠CPQ 的角平分线交线段AB 于点F ,则PF 与BD 有怎样的位置关系?画出图形并说明理由.考点: 角的平分线;对顶角、邻补角;垂线;平行线的判定;~~第4题~~(2019长兴.七下期末) 如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,∠1与∠2互补答案(1) 试判断直线AB 与直线CD 的位置关系,并说明理由(2) 如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH(3) 如图3,在(2)的条件下,连结PH ,在GH 上取一点K ,使得∠PKG=2∠HPK ,过点P 作PQ 平分∠EPK 交EF 于点Q ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)考点: 对顶角、邻补角;垂线;平行线的判定与性质;~~第5题~~(2017江阴.七下期中) 如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补.(1) 试判断直线AB 与直线CD 的位置关系,并说明理由;(2) 如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3) 如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK=∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.考点:角的平分线;对顶角、邻补角;平行线的判定与性质;三角形内角和定理;答案2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
七下求角度数习题及答案
![七下求角度数习题及答案](https://img.taocdn.com/s3/m/8041dc4f6d85ec3a87c24028915f804d2b1687e2.png)
七下求角度数习题及答案七下求角度数习题及答案角度是几何学中非常重要的概念,它可以帮助我们描述物体之间的相对位置和方向。
在七年级的数学课程中,我们学习了许多关于角度的知识,包括角的定义、角的度量单位以及角的分类等等。
为了帮助大家更好地掌握这些知识,下面我将给大家提供一些七下求角度数的习题及答案。
1. 问题:已知一条直线上的两个角互补,其中一个角的度数是30°,求另一个角的度数。
解答:互补角是指两个角的度数之和为90°。
已知其中一个角的度数是30°,那么另一个角的度数可以通过90°减去30°得到,即90°-30°=60°。
所以另一个角的度数是60°。
2. 问题:已知一条直线上的两个角互补,其中一个角的度数是x°,求另一个角的度数。
解答:根据互补角的定义,两个角的度数之和为90°。
已知其中一个角的度数是x°,那么另一个角的度数可以通过90°减去x°得到,即90°-x°。
所以另一个角的度数是90°-x°。
3. 问题:已知一个角的度数是40°,求它的补角和余角的度数。
解答:补角是指两个角的度数之和为90°,而余角是指两个角的度数之和为180°。
已知一个角的度数是40°,那么它的补角的度数可以通过90°减去40°得到,即90°-40°=50°。
它的余角的度数可以通过180°减去40°得到,即180°-40°=140°。
所以它的补角的度数是50°,余角的度数是140°。
4. 问题:已知一个角的补角的度数是60°,求这个角的度数。
解答:补角是指两个角的度数之和为90°。
七年级数学下册《角》单元测试卷(附答案解析)
![七年级数学下册《角》单元测试卷(附答案解析)](https://img.taocdn.com/s3/m/b1909ed3900ef12d2af90242a8956bec0975a511.png)
七年级数学下册《角》单元测试卷(附答案解析)一.选择题1.下列角中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C.D.2.如图所示,用量角器度量∠MON,可以读出∠MON的度数为()A.60°B.70°C.110°D.115°3.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A.60°B.70°C.80°D.85°4.如图,射线OA的方向是北偏东30°,若∠AOB=90°,则射线OB的方向是()A.北偏西30° B.北偏西60° C.东偏北30° D.东偏北60°5.如图,用三角板比较∠A与∠B的大小,其中正确的是()A.∠A>∠B B.∠A<∠BC.∠A=∠B D.没有量角器,无法确定6.若∠α=5.12°,则∠α用度、分、秒表示为()A.5°12′B.5°7′12″C.5°7′2″D.5°10′2″7.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A.B.C.D.8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对9.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′10.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是()A.27°40′B.62°20′C.57°40′D.58°20二.填空题11.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,若∠ACB=85°,则C处在B处的北偏东度方向.12.52°45′﹣32°46′=°′.13.如图,锐角的个数共有个.14.钟面上8点30分时,时针与分针的夹角的度数是.15.如图,AOB为一直线,OC,OD,OE是射线,则图中大于0°小于180°的角有个.16.计算:23.5°+12°30′=°.17.如图,∠AOB=90°,OD,OE分别是∠BOC和∠AOC的平分线,若∠BOE=30°,则∠DOE 的度数为.18.如图,在∠AOE的内部从O引出3条射线,那么图中共有个角;如果引出5条射线,有个角;如果引出n条射线,有个角.19.图中一共有个角.20.比较大小:直角锐角;38.51°38°50′1″.三.解答题21.如图,在钟面上,点O为钟面的圆心,以点O为顶点按要求画出符合下列要求的角(角的两边不经过钟面上的数字):(1)在图1中画一个锐角,使锐角的内部含有2个数字,且数字之差的绝对值最大;(2)在图2中画一个直角,使直角的内部含有3个数字,且数字之积等于数字之和;(3)在图3中画一个钝角,使钝角的内部含有4个数字,且数字之和最小;(4)在图4中画一个平角,使平角的内部与外部的数字之和相等;(5)在图5中画两个直角,使这两个直角的内部含有的3个数字之和相等.22.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的3倍多20°,求∠BOC的度数是多少?23.雨后初晴,小方同几个伙伴八点多上山采蘑菇,临出门他一看钟,时针与分针正好是重合的,下午两点多他回到家里,一进门看钟的时针与分针方向相反,正好成一条直线,问小方采蘑菇是几点去,几点回到家的,共用了多少时间?24.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.26.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?27.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?参考答案与解析一.选择题1.解:在选项A、B、D中,如果用∠C表示,容易使人产生歧义,无法让人明确到底表示哪个角;只有选项C能用∠1,∠ACB,∠C三种方法表示同一个角,不会使人产生歧义.故选:C.2.解:由图形所示,∠MON的度数为70°,故选:B.3.解:10×30+40×0.5﹣6×40=320﹣240=80(°),故选:C.4.解:如图所示:∵OA是北偏东30°方向的一条射线,∠AOB=90°,∴∠1=90°﹣30°=60°,∴OB的方向角是北偏西60°.故选:B.5.解:由图可得,∠A<45°,∠B>45°,∴∠A<∠B,故选:B.6.解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60″=5°7′12″.故选:B.7.解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.8.解:∵∠α=40.4°=40°24′,∠β=40°4′,∴∠α>∠β.故选:B.9.解:∵OC平分∠DOB,∴∠BOC=∠DOC=25°35′,∵∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣25°35′=64°25′.故选:C.10.解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:C.二.填空题11.解:∵B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,∴∠BAC=45°+15°=60°,∵∠ACB=85°,∴∠ABC=180°﹣60°﹣85°=35°,∴C处在B处的北偏东45°+35°=80°,故答案为80.12.解:52°45′﹣32°46′=19° 59′.故答案为:19,59.13.解:以OA为一边的角∠AOB=20°,∠AOC=20°+30°=50°,∠AOD=20°+30°+50°=100°(钝角舍去),以OB为一边的角∠BOC=30°,∠BOD=50°+30°=80°,以OC为一边的角∠COD=50°.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.14.解:∵8点30分,时针在8和9正中间,分针指向6,中间相差两个半大格,而钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分时,时针与分针的夹角的度数为:30°×2.5=75°.故答案为:75°.15.解:大于0°小于180°的角有∠AOE,∠AOD,∠AOC,∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠COB.共9个.故答案为:9.16.解:23.5°+12°30′=23.5°+12.5°=36°.故答案为:36.17.解:∵∠AOB=90°,∠BOE=30°,∴∠AOE=90°﹣30°=60°,∵OE平分∠AOC,∴∠COE=∠AOE=60°,∴∠BOC=60°﹣30°=30°,∵OD平分∠BOC,∴∠BOD=∠BOC=15°,∴∠DOE=∠BOD+∠BOE=45°;故答案为:45°.18.解:引出3条射线,那么图中共有10个角;如果引出5条射线,有21个角;如果引出n 条射线,有(n+1)(n+2)个角.19.解:图中的角有:∠AOB、∠AOC、∠AOD、∠BOC、∠BOD、∠COD这6个,故答案为:6.20.解:直角=90°,锐角大于0°而小于90度.故直角>锐角;38.51°=38°30′36″<38°50′1″.三.解答题21.解:如图所示,(1)如图1,∠AOB即为所求;(2)如图2,∠AOB即为所求;(3)如图3,∠COD即为所求;(4)如图4,∠DOE即为所求;(5)如图5,∠EOF和∠MON即为所求.22.解:设∠BOC=x°,则∠AOC=(3x+20)°,∠AOB=∠AOC+∠BOC=x°+(3x+20)°=(4x+20)°=180°,解得x=40,答:∠BOC的度数是40°23.解:设8点x分时针与分针重合,则所以:x﹣=40,解得:x=43.即8点43分时出门.设14点y分时,时针与分针方向相反.所以:y﹣=10+30,解得:y=43.即14点43分时回家所以14点43分﹣8点43=6小时.故共用了6小时.24.解:(1)∵OB的方向是北偏西40°,OA的方向是北偏东15°,∴∠NOB=40°,∠NOA=15°,∴∠AOB=∠NOB+∠NOA=55°,∵∠AOB=∠AOC,∴∠AOC=55°,∴∠NOC=∠NOA+∠AOC=70°,∴OC的方向是北偏东70°;故答案为:北偏东70°;(2)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.又∵射线OD是OB的反向延长线,∴∠BOD=180°.∴∠COD=180°﹣110°=70°.∵∠COD=70°,OE平分∠COD,∴∠COE=35°.∵∠AOC=55°.∴∠AOE=90°.25.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.26.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.27.解:由分析知:(1)①图中有2条射线,则角的个数为:=1(个);(2)②图中有3条射线,则角的个数为:=3(个);(3)③图中有4条射线,则角的个数为:=6(个);(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为个.。
2020年人教版七下期末复习专题《角的计算》(含答案)
![2020年人教版七下期末复习专题《角的计算》(含答案)](https://img.taocdn.com/s3/m/98ec0aaa0b4e767f5bcfce58.png)
2020年人教版七下期末复习专题《角的计算》1.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.2.如图,OE为∠COA的平分线,∠AOE=60°,∠AOB=∠COD=16°.(1)求∠BOC的度数;(2)比较∠AOC与∠BOD的大小.3.如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.(1)①若m=60,则射线OC的方向是.(直接填空)②请直接写出图中所有与∠BOE互余的角及与∠BOE互补的角.(2)如图2,若射线OA是∠BON的平分线,①若m=70,则∠AOC= .(直接填空)②若m为任意角度,求∠AOC的度数.(结果用含m的式子表示)4.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=_______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.5.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.6.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.7.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.8.如图所示,点A,O,B在同一条直线上,∠BOC=40°,射线OC⊥射线OD,射线OE平分∠AOC.求∠DOE的大小.9.如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°.求∠AOC与∠EOD的度数.10.∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?11.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n度得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.12.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?13.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?14.如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC= .(用含α与β的代数式表示)15.如图(甲),∠AOC和∠DOB都是直角.(1)如果∠DOC=28°,那么∠AOB的度数是多少?(2)找出图(甲)中相等的角.如果∠DOC≠28°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?若∠DOC越来越大,则∠AOB又如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.参考答案1.解:∵∠2=2∠1,∴∠1=0.5∠2.∵∠3=3∠2,∴∠1+∠2+∠3=0.5∠2+∠2+3∠2=180°,解得∠2=40°,∴∠3=3∠2=120°.∵∠3+∠COE=180°,∠DOE+∠COE=180°,∴∠DOE=∠3=120°.2.解:(1)因为OE平分∠AOC,所以∠COA=2∠AOE=120°,所以∠BOC=∠AOC-∠AOB=120°-16°=104°.(2)因为∠BOD=∠BOC+∠COD=104°+16°=120°,所以∠AOC=∠BOD.3.解:(1)①n=90°﹣60°=30°,则射线OC的方向是:北偏东30°,故答案是:北偏东30°;②与∠BOE互余的角有∠BOS,∠COE,与∠BOE互补的角有∠BOW,∠COS.(2)①∠BON=180°﹣70°=110°,∵OA是∠BON的平分线,∴∠AON=∠BON=55°,又∵∠CON=90°﹣70°=20°,∴∠AOC=∠AON﹣∠CON=55°﹣20°=35°.故答案是:35°;②∵∠BOS+∠BON=180°,∴∠BOS=180°﹣∠BON=180°﹣m°.∵OA是∠BON的平分线,∴∠AON=∠BON=(180°﹣m°)=90°﹣m°.∵∠BOS+∠CON=m°+n°=90°,∴∠CON=90°﹣m°,∴∠AOC=∠AON﹣∠CON=90°﹣m°﹣(90°﹣m°)=90°﹣m°﹣90°+m°=m°.4.解:(1)42°30′;(2)如图,AOD或COE,47°30′;5.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.6.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=×∠BOC=×70°=35°∠AOE=×∠AOC=×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.7.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD ﹣∠BOC=90°﹣45°=45°,∠BOD=3∠DOE ;∴∠DOE=15°,∴∠COE=∠COD ﹣∠DOE=90°﹣15°=75°;故答案为75°. 8.解:∵点A ,O ,B 在同一条直线上,∠BOC=40°,∴∠AOC=140°.∵射线OE 平分∠AOC , ∴∠EOC=70°.∵射线OC ⊥射线OD , ∴∠COD=90°,∴∠DOE=∠EOC+∠COD=160°.9.解:∵OF ⊥CD ,∴∠COF=90°,∴∠BOC=90°﹣∠BOF=65°,∴∠AOC=180°﹣65°=115°,∵OE ⊥AB ,∴∠BOE=90°,∴∠EOF=90°﹣25°=65°,∴∠EOD=90°﹣65°=25°. 10.解:由AO ⊥BO ,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°. 由OE 平分∠AOC ,OF 平分∠BOC ,得∠COE=∠AOC=×150°=75°, ∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE ﹣∠COF=75°﹣30°=45°. 11.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC=13∠AOB=13×60°=20°.(2)①∵∠AOB=90°,OC ,OD 是∠AOB 的两条三分线, ∴∠BOC=∠AOD=13∠AOB=13×90°=30°,∴∠COD=∠AOB -∠BOC -∠AOD=90°-30°-30°=30°.②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时, 如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°, ∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°; 当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时, 如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°, ∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°. 综上所述,n=40或50.12.解:13.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.联立解得y=52°.即∠EOF是52度.14.解:15.解:(1)因为∠AOC=∠DOB=90°,∠DOC=28°所以∠COB=90°﹣28°=62°所以∠AOB=90°+62°=152°(2)相等的角有:∠AOC=∠DOB,∠AOD=∠COB如果∠DOC≠28°,他们还会相等(3)若∠DOC越来越小,则∠AOB越来越大;若∠DOC越来越大,则∠AOB越来越小(4)如图,画∠GOE=∠HOF=90°,则∠HOG=∠FOE即,∠HOG为所画的角。
(完整版)七年级数学《角》练习题及答案
![(完整版)七年级数学《角》练习题及答案](https://img.taocdn.com/s3/m/a1f72772770bf78a64295459.png)
七年级数学《角》练习题及答案一、选择题1.下列说法正确的是( )A.两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2. 下列4个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )3.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角4、右图中,小于平角的角有( )A.5个B.6个C.7个D.8个5. 如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=( )A.155 °B.205 °C.85°D.105°6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=( )A .60°B .15° C.45° D.70°二、填空题:7. 角也可以看作由 旋转面形成的图形。
8. 2周角= 1平角=9. 1°的_____ 是1′10. 1周角= 平角= 直角= ;南东75︒40︒O A 4题图 5题图 6题图11. 换算:42°27′= °,68°45′36″= °;12.2点15分,钟表的时针与分针所成的锐角是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。
2020年人教版七下期末复习专题《角的计算》(含答案)
![2020年人教版七下期末复习专题《角的计算》(含答案)](https://img.taocdn.com/s3/m/98ec0aaa0b4e767f5bcfce58.png)
2020年人教版七下期末复习专题《角的计算》1.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.2.如图,OE为∠COA的平分线,∠AOE=60°,∠AOB=∠COD=16°.(1)求∠BOC的度数;(2)比较∠AOC与∠BOD的大小.3.如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.(1)①若m=60,则射线OC的方向是.(直接填空)②请直接写出图中所有与∠BOE互余的角及与∠BOE互补的角.(2)如图2,若射线OA是∠BON的平分线,①若m=70,则∠AOC= .(直接填空)②若m为任意角度,求∠AOC的度数.(结果用含m的式子表示)4.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=_______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.5.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.6.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.7.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.8.如图所示,点A,O,B在同一条直线上,∠BOC=40°,射线OC⊥射线OD,射线OE平分∠AOC.求∠DOE的大小.9.如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°.求∠AOC与∠EOD的度数.10.∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?11.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n度得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.12.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?13.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?14.如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC= .(用含α与β的代数式表示)15.如图(甲),∠AOC和∠DOB都是直角.(1)如果∠DOC=28°,那么∠AOB的度数是多少?(2)找出图(甲)中相等的角.如果∠DOC≠28°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?若∠DOC越来越大,则∠AOB又如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.参考答案1.解:∵∠2=2∠1,∴∠1=0.5∠2.∵∠3=3∠2,∴∠1+∠2+∠3=0.5∠2+∠2+3∠2=180°,解得∠2=40°,∴∠3=3∠2=120°.∵∠3+∠COE=180°,∠DOE+∠COE=180°,∴∠DOE=∠3=120°.2.解:(1)因为OE平分∠AOC,所以∠COA=2∠AOE=120°,所以∠BOC=∠AOC-∠AOB=120°-16°=104°.(2)因为∠BOD=∠BOC+∠COD=104°+16°=120°,所以∠AOC=∠BOD.3.解:(1)①n=90°﹣60°=30°,则射线OC的方向是:北偏东30°,故答案是:北偏东30°;②与∠BOE互余的角有∠BOS,∠COE,与∠BOE互补的角有∠BOW,∠COS.(2)①∠BON=180°﹣70°=110°,∵OA是∠BON的平分线,∴∠AON=∠BON=55°,又∵∠CON=90°﹣70°=20°,∴∠AOC=∠AON﹣∠CON=55°﹣20°=35°.故答案是:35°;②∵∠BOS+∠BON=180°,∴∠BOS=180°﹣∠BON=180°﹣m°.∵OA是∠BON的平分线,∴∠AON=∠BON=(180°﹣m°)=90°﹣m°.∵∠BOS+∠CON=m°+n°=90°,∴∠CON=90°﹣m°,∴∠AOC=∠AON﹣∠CON=90°﹣m°﹣(90°﹣m°)=90°﹣m°﹣90°+m°=m°.4.解:(1)42°30′;(2)如图,AOD或COE,47°30′;5.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.6.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=×∠BOC=×70°=35°∠AOE=×∠AOC=×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.7.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD ﹣∠BOC=90°﹣45°=45°,∠BOD=3∠DOE ;∴∠DOE=15°,∴∠COE=∠COD ﹣∠DOE=90°﹣15°=75°;故答案为75°. 8.解:∵点A ,O ,B 在同一条直线上,∠BOC=40°,∴∠AOC=140°.∵射线OE 平分∠AOC , ∴∠EOC=70°.∵射线OC ⊥射线OD , ∴∠COD=90°,∴∠DOE=∠EOC+∠COD=160°.9.解:∵OF ⊥CD ,∴∠COF=90°,∴∠BOC=90°﹣∠BOF=65°,∴∠AOC=180°﹣65°=115°,∵OE ⊥AB ,∴∠BOE=90°,∴∠EOF=90°﹣25°=65°,∴∠EOD=90°﹣65°=25°. 10.解:由AO ⊥BO ,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°. 由OE 平分∠AOC ,OF 平分∠BOC ,得∠COE=∠AOC=×150°=75°, ∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE ﹣∠COF=75°﹣30°=45°. 11.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC=13∠AOB=13×60°=20°.(2)①∵∠AOB=90°,OC ,OD 是∠AOB 的两条三分线, ∴∠BOC=∠AOD=13∠AOB=13×90°=30°,∴∠COD=∠AOB -∠BOC -∠AOD=90°-30°-30°=30°.②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时, 如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°, ∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°; 当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时, 如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°, ∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°. 综上所述,n=40或50.12.解:13.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.联立解得y=52°.即∠EOF是52度.14.解:15.解:(1)因为∠AOC=∠DOB=90°,∠DOC=28°所以∠COB=90°﹣28°=62°所以∠AOB=90°+62°=152°(2)相等的角有:∠AOC=∠DOB,∠AOD=∠COB如果∠DOC≠28°,他们还会相等(3)若∠DOC越来越小,则∠AOB越来越大;若∠DOC越来越大,则∠AOB越来越小(4)如图,画∠GOE=∠HOF=90°,则∠HOG=∠FOE即,∠HOG为所画的角。
七年级数学角度的计算(专题)(含答案)
![七年级数学角度的计算(专题)(含答案)](https://img.taocdn.com/s3/m/34b58aaa5acfa1c7ab00ccd4.png)
角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。
七年级数学角度计算专项练习题及答案
![七年级数学角度计算专项练习题及答案](https://img.taocdn.com/s3/m/c996440b777f5acfa1c7aa00b52acfc789eb9f97.png)
七年级数学角度计算专项练习题及答案1. 角度的定义和计算角度是指由两条射线或线段所围成的部分,可以用度进行表示。
角度的计算主要有以下几个方面:(1) 同界角:同界角是指角的顶点和两边分别相等的角。
如果两个角是同界角,那么它们的度数也相等。
(2) 互补角:互补角是指两个角的度数加起来等于90度。
例如,30度的互补角是60度。
(3) 补角:补角是指两个角的度数加起来等于180度。
例如,80度的补角是100度。
(4) 相邻补角:相邻补角是指两个角的度数加起来等于180度,并且这两个角共享一条边。
例如,120度和60度是相邻补角。
2. 角度计算的基本步骤计算角度时,我们需要根据给定的信息进行分析,然后采取适当的计算方法。
下面是角度计算的基本步骤:(1) 首先,仔细观察题目中给出的图形和信息,理解题目所求的具体内容。
(2) 其次,在图形上标出已知的角度和线段长度。
(3) 根据已知信息,应用与角度计算相关的定理和公式进行计算。
(4) 最后,检查计算结果是否符合题目要求,并进行合理的解释。
3. 角度计算专项练习题及答案:现在我们来进行一些角度计算的练习,解答如下:题目一:在直线AB上,两点C和D分别位于B的两侧,且∠ACD = 40度,∠CBD = 70度,求∠ABC的度数。
解答:根据角度相加定理,可以得知∠ABC = ∠ACD + ∠CBD = 40度 + 70度 = 110度。
题目二:在平行线AB和CD之间,直线AC和BD相交于点O,如果∠AOC = 50度,求∠DOB的度数。
解答:由于直线AC和BD是平行线AB和CD的交线,所以根据同位角定理可知∠AOC = ∠DOB。
因此,∠DOB的度数也是50度。
题目三:在平行四边形ABCD中,∠C = 110度,求∠A和∠B的度数。
解答:根据平行四边形的性质可知,对角线是互补角。
所以,∠A + ∠C = 180度,∠B + ∠C = 180度。
由此可得,∠A = 180度 - ∠C = 180度 - 110度 = 70度,∠B = 180度 - ∠C = 180度 - 110度 = 70度。
人教版七年级数学下册《相交线中求角》专项练习题-附含答案
![人教版七年级数学下册《相交线中求角》专项练习题-附含答案](https://img.taocdn.com/s3/m/5aae986bb5daa58da0116c175f0e7cd184251883.png)
人教版七年级数学下册《相交线中求角》专项练习题-附含答案【例题讲解】如图 直线AB CD 相交于点O OE 平分∠BOD OF 平分∠COE .(1)若∠AOC =76° 求∠BOF 的度数;(2)若∠BOF =36° 求∠AOC 的度数;(3)请探究∠AOC 与∠BOF 的数量关系.)BOD ∠=又OE 平分180142DOE =︒-∠︒ OF 平分33EOF =∠-∠︒.)OE 平分∠COE ∠ BOE ∴∠BOE x ∠= 则2COA x ∠= EOF ∠180AOC COF +∠︒=︒ 解得:)由(1)知(180DOE ︒-∠【综合解答】1.如图 直线AB 、CD 相交于点O OE 把BOD ∠分成两部分(1)直接写出图中AOC ∠的对顶角为________ BOE ∠的邻补角为________;(2)若AOC 70∠=︒ 且BOE EOD ∠∠:=2:3 求AOE ∠的度数.2.如图 直线AB 、CD 、EF 相交于点O OG 平分∠COF ∠1=30° ∠2=45°.求∠3的度数.【答案】∠3=52.5°【详解】试题分析:先求出∠EOD的度数从而得出∠COF=105° 再根据OG平分∠COF 可得∠3的度数.试题解析:∠∠1=30° ∠2=45°∠∠EOD=180°﹣∠1﹣∠2=105°∠∠COF=∠EOD=105°又∠OG平分∠COF∠∠3=∠COF=52.5°.考点:对顶角、邻补角.3.如图直线AB、CD相交于点O∠DOE=∠BOD OF平分∠AOE.(1)判断OF与OD的位置关系并说明理由;(2)若∠AOC:∠AOD=1:5 求∠EOF的度数.4.如图 直线AB CD 相交于点O EO AB ⊥ 垂足为O .(1)若35EOC ∠=︒ 求AOD ∠的度数;(2)若2BOC AOC ∠=∠ 求DOE ∠的度数.【答案】(1)125°;(2)150°【分析】(1)把COB ∠的度数计算出来 再根据对顶角的性质即可得到答案;(2)根据2BOC AOC ∠=∠ 设AOC x ∠= 2BOC x ∠=得到60BOD AOC ∠=∠=︒ 最后根据EO AB ⊥即可得到答案;【详解】解:(1)EO AB ⊥90EOB ∴∠=︒909035125COB EOC ∴∠=︒+∠=︒+︒=︒125AOD COB ∴∠=∠=︒;(2)2BOC AOC ∠=∠∴设AOC x ∠= 2BOC x ∠=又180BOC AOC ∠+∠=︒2180x x ∴+=︒60x ∴=︒60BOD AOC ∴∠=∠=︒又EO AB ⊥90EOB ∴∠=︒6090150DOE BOD EOB ∴∠=∠+∠=︒+︒=︒.【点睛】本题主要考查了对顶角的性质(对顶角相等)和邻补角的性质熟练掌握邻补角的性质和对顶角的性质是解题的关键.5.如图直线AB CD相交于O点OM平分∠AOB(1)若∠1=∠2 求∠NOD的度数;(2)若∠BOC=4∠1 求∠AOC与∠MOD的度数.【答案】(1)90°;(2)∠AOC=60°;∠MOD=150°.【分析】(1)根据角平分线的性质可得∠1+∠AOC=90° 再利用等量代换可得∠2+∠AOC=90° 利用邻补角互补可得答案;(2)根据条件可得90°+∠1=4∠1 进而可得求出∠1=30° 从而可得∠AOC的度数再利用邻补角互补可得∠MOD的度数.【详解】(1)∠OM平分∠AOB∠∠1+∠AOC=90°.∠∠1=∠2 ∠∠2+∠AOC=90° ∠∠NOD=180°﹣90°=90°;(2)∠∠BOC=4∠1 ∠90°+∠1=4∠1 ∠∠1=30° ∠∠AOC=90°﹣30°=60° ∠MOD=180°﹣30°=150°.【点睛】本题考查了角平分线和邻补角关键是掌握邻补角互补.6.如图直线AB CD EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60° ∠BOF=90° 求∠AOF和∠FOC的度数.【答案】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠FOC=150°.【分析】(1)根据邻补角的定义(两个角有一条公共边它们的另一条边互为反向延长线具有这种关系的两个角)可得∠COE的邻补角有∠COF和∠EOD两个角;(2)根据对顶角的定义(一个角的两边分别是另一个角两边的反向延长线且这两个角有公共顶点)可得∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)由∠BOF=90°可得:AB∠EF 所以∠AOF=90° 由∠AOC=∠BOD可得:∠AOC =60° 由∠FOC=∠AOF+∠AOC即可求出∠FOC的度数;【详解】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠∠BOF=90°∠AB∠EF∠∠AOF=90°又∠∠AOC=∠BOD=60°∠∠FOC=∠AOF+∠AOC=90°+60°=150°.7.如图直线AB、CD相交于点O OE平分∠BOD OF平分∠COE.(1)若∠AOC=76° 求∠BOF的度数;(2)若∠BOF=36° 求∠AOC的度数;8.如图 直线AB 、CD 相交于点O OE 平分BOC ∠ 90COF ∠=.(1)若∠AOF =50° 求∠BOE 的度数;(2)若∠BOD :∠BOE =1:4 求∠AOF 的度数.【答案】(1)70BOE ∠=;(2)70AOF ∠=.【分析】(1)根据补角 余角的关系 可得∠COB 根据角平分线的定义 可得答案;(2)根据邻补角 可得关于x 的方程 根据解方程 可得∠AOC 再根据余角的定义 可得答案.【详解】(1)∠∠COF 与∠DOF 是邻补角∠∠COF =180°−∠DOF =90°.∠∠AOC 与∠AOF 互为余角∠∠AOC =90°−∠AOF =90°−50°=40°.∠∠AOC 与∠BOC 是邻补角∠∠COB =180°−∠AOC =180°−40°=140°.∠OE 平分∠BOC(2)∠BOD:∠BOE=1:4设∠BOD=∠AOC=x∠BOE=∠COE=4x.∠∠AOC与∠BOC是邻补角∠∠AOC+∠BOC=180°即x+4x+4x=180°解得x=20°.∠∠AOC与∠AOF互为余角∠∠AOF=90°−∠AOC=90°−20°=70°.【点睛】此题考查角平分线的定义对顶角、邻补角解题关键在于掌握其性质定义.9.如图∠1=∠2 ∠1+∠2=162° 求∠3与∠4的度数.【答案】∠3=54°∠4=72°【详解】试题分析:本题首先根据方程思想求出. ∠1、∠2的度数再根据对顶角、邻补角的关系求出∠3与∠4的度数.试题解析:由已知∠1=∠2 ∠1+∠2=162°解得:∠1=54° ∠2=108°.∠∠1与∠3是对顶角∠∠3=∠1=54°.∠∠2与∠4是邻补角∠∠4=180°﹣∠2=72°.考点:1二元一次方程组;2对顶角;3邻补角.10.如图直线AB CD相交于点O EO∠AB垂足为O.(1)若∠COE =35° 则∠AOD 的度数为_________°(直接写出结果);(2)若∠AOD +∠COE =170° 求∠COE 的度数. 【答案】(1)125(2)40°【分析】(1)先根据两角互余求出∠AOC 的度数 再利用邻补角即可求出∠AOD 的度数;(2)设AOC x ∠= 则AOC BOD x ∠=∠= 再利用周角列出方程 解出x 的值之后再利用互余即可求出∠COE 的度数.(1)解:∠∠COE =35° EO ∠AB∠90AOE COE AOC ∠=∠+∠=︒∠903555AOC ∠=︒-︒=︒.又∠∠AOD 是∠AOC 的邻补角∠180125AOD AOC ∠=︒-∠=︒.(2)解:设AOC x ∠= 则AOC BOD x ∠=∠=∠360AOD COE AOC BOD BOE ∠∠+∠+∠+∠=︒+即170902360x ︒+︒+=︒解得50x =︒.∠905040COE ∠=︒-︒=︒.【点睛】本题考查了两角互余的关系和邻补角以及周角 解题的关键是熟练掌握互余、互补的概念和对顶角相等以及周角为360︒ 互余是指两角之和为90° 互补是指两角之和为180° 并且熟知两个角有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 叫做邻补角. 11.如图 直线AB CD 相交于点O OE 把BOD ∠分成两部分.(1)直接写出图中AOD ∠的对顶角为______ DOE ∠的邻补角为______.(2)若=90AOC ∠︒ 且:2:3BOE EOD ∠∠=.求EOC ∠的度数.【答案】(1)BOC ∠ EOC ∠;(2)126゜【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出∠BOD 的度数 再根据∠BOE :∠EOD =2:3求出∠BOE 和∠EOD 的度数 即可求出∠EOC 的度数.【详解】解:(1)AOD ∠的对顶角为BOC ∠ DOE ∠的邻补角为EOC ∠.(2)∠∠BOE :∠EOD =2:3 设2BOE x ∠= 3EOD x ∠=则590BOD AOC x ∠=∠==解得:18x =.∠354DOE x ∠==.∠180126EOC DOE ∠=-∠=.【点睛】本题主要考查了对顶角与邻补角的定义 解题的关键在于能够熟练掌握相关知识进行求解.12.如图 直线AB 和CD 相交于点O OE 把∠AOC 分成两部分且∠AOE :∠EOC =3:5 OF 平分∠BOE .(1)若∠BOD =80° 求∠BOE ;(2)若∠BOF =∠AOC +14° 求∠EOF .【答案】(1)150°;(2)78°13.如图 直线AB CD 相交于点O OE AB ⊥ 垂足为O .(1)直接写出图中AOC ∠的对顶角为 BOD ∠的邻补角为 ;(2)若:1:2BOD COE ∠∠= 求AOD ∠的度数.【答案】(1)BOD ∠;BOC ∠ AOD ∠;(2)150°【分析】(1)根据对顶角、邻补角的定义寻找对顶角和邻补角即可;(2)设∠BOD=x 则∠COE=2x 再根据∠BOD 与∠COE 互余可求得x 的值 从而得出∠AOC 的大小 进而得出∠AOD 的大小.【详解】(1)∠AOC 的对顶角为:∠BOD∠BOD 的邻补角为:∠BOC ∠AOD(2)∠:1:2BOD COE ∠∠=设∠BOD=x 则∠COE=2x∠OE∠AB∠∠EOB=90°∠∠COE+∠BOD=90° 即x+2x=90°解得:x=30°∠∠BOD=∠COA=30°∠∠AOD=150°【点睛】本题考查角度的简单推导 解题关键是利用对顶角相等和补角为180°转化求解.14.如图 直线MD 、CN 相交于点O OA 是∠MOC 内的一条射线 OB 是∠NOD 内的一条射线 ∠MON =70°.(1)若∠BOD =12∠COD 求∠BON 的度数;(2)若∠AOD =2∠BOD ∠BOC =3∠AOC 求∠BON 的度数. 【答案】(1)75°(2)54°【分析】(1)先由对顶角相等求出∠COD =70° 再由已知条件求出∠BOD 的度数 根据邻补角的定义与角的和差进行求解即可;(2)设∠AOC =x ° 则∠BOC =3x ° 利用角的和差即可解得x 进而求解.(1)∠∠MON =70°∠∠COD =∠MON =70°15.如图直线AB、CD相交于点O OE∠AB 且∠DOE=5∠COE 求∠AOD的度数.【答案】120°【分析】由OE∠AB可得∠EOB=90° 设∠COE=x 则∠DOE=5x 而∠COE+∠EOD=180° 即x+5x=180° 得到x=30° 则∠BOC=30°+90°=120° 利用对顶角相等即可得到∠AOD的度数.【详解】解:∠OE∠AB∠∠EOB=90°设∠COE=x 则∠DOE=5x∠∠COE+∠EOD=180°∠x+5x=180°∠x=30°∠∠BOC=∠COE+∠BOE=30°+90°=120°∠∠AOD=∠BOC=120°.。
人教版角的计算(初一学生必练,附有答案详解)
![人教版角的计算(初一学生必练,附有答案详解)](https://img.taocdn.com/s3/m/36471f3b2e3f5727a5e962ed.png)
单元练习(角的运算)姓名:___________班级:___________一、解答题1.如图,已知∠AOB:∠BOC=3:5,OD、OE分别是∠AOB和∠BOC的平分线,若∠DOE=60°,求∠AOB和∠BOC的度数.2.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.3.如图,点M为AB中点,BN=12AN,MB=3 cm,求AB和MN的长.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.5.一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?6.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.7.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.参考答案1.∠AOB=45°,∠BOC =75°.【解析】设∠AOB=3x°,∠BOC=5x°,由角平分线则可得∠DOE=4x°,根据∠DOE=60°,即可得出x 的值,即可求得∠AOB和∠BOC的度数.试题解析:∵∠AOB:∠BOC=3:5,∴设∠AOB=3x°,∠BOC=5x°,∵OD、OE分别是∠AOB和∠BOC的平分线,∴∠BOD=12∠AOB=1.5x°,∠BOE=12∠BOC=2.5x°,∴∠DOE=∠BOD+∠BOE=4x°,∵∠DOE=60°,∴4x=60,∴x=15,∴∠AOB=45°,∠BOC=75°.2.112.5°【解析】试题分析:本题考查了角的和差及一元一次方程的应用,设∠COD=x°, ∠AOB=3x°,根据∠AOB=∠BOD+∠AOC-∠COD列方程求解.解:设COD x∠=︒,6090AOC BOD∠=∠=,,60AOD x∴∠=-,9060150AOB x x∴∠=+-=-,AOB∠是DOC∠的3倍,1503x x∴-=,解得37.5x=,337.5112.5AOB∴∠=⨯=.3.MN=1【解析】试题分析:先根据点M为AB中点,MB=3 cm,求出AB的长;再根据AN+BN=AB和BN=12AN ,可求出BN 的长,然后根据MN =MB -NB 求出MN 的长. 解:∵点M 为AB 中点,∴ AB =2MB =6,∴ AN +NB =6.∵ BN =12AN , ∴ 2BN +NB =6,∴ NB =2,∴ MN =MB -NB =1.4.(1)∠COD =70°;(2)∠COD =25°.【解析】【分析】(1)根据互补的意义得到180AOB BOC ∠+∠=︒,则可计算出180140BOC AOB ∠=︒-∠=︒,然后根据角平分线的定义可得到COD ∠的度数; (2)根据互余的意义得到90AOB BOC ∠+∠=︒,则可计算出9050BOC AOB ∠=︒-∠=︒,然后根据角平分线的定义可得到COD ∠的度数.【详解】解:(1)AOB ∠与BOC ∠互补,180AOB BOC ∴∠+∠=︒,18040140BOC ∴∠=︒-︒=︒, OD 是BOC ∠的平分线,1702COD BOC ∴∠=∠=︒; (2))AOB ∠与BOC ∠互余,90AOB BOC ∴∠+∠=︒,904050BOC ∴∠=︒-︒=︒, OD 是BOC ∠的平分线,1252COD BOC ∴∠=∠=︒. 【点睛】本题考查了余角和补角:如果两个角的和等于90︒(直角),就说这两个角互为余角;如果两个角的和等于180 (平角),就说这两个角互为补角;等角的补角相等.等角的余角相等.5.x=57°【解析】【分析】设这个角为x,根据余角和补角的定义列出方程,解方程即可得出答案.【详解】设这个角为x,由题意得,3(90°﹣x)=180°﹣x﹣24°,解得x=57°.答:这个角的度数为57°【点睛】本题考查了余角和补角的定义及角的计算.熟练应用补角和余角的定义并根据题中的“一个角的余角的3倍比这个角的补角少24°”,建立方程是解题的关键.6.(1)n=20;(2)∠α与∠β互余,理由见解析【解析】【分析】(1)根据补角的性质,可得∠α、∠β,根据解方程,可得答案;(2)根据余角的定义,可得答案.【详解】解:(1)由∠α、∠β都是∠γ的补角,得∠α=∠β,即(2n+5)°=(65﹣n)°.解得n=20;(2)∠α与∠β互余,理由如下:∠α=(2n+5)°=45°,∠β=(65﹣n)°=45°,∵∠α+∠β=90°,∴∠α与∠β互为余角.【点睛】本题主要考查补角和余角的性质,解决本题的关键是要熟练掌握补角和余角的性质. 7.(1)∠BOD =138°;(2)∠COE=21°.【解析】【分析】(1)根据平角的定义即可得到结论;(2)根据余角的性质得到∠COD=48°,根据角平分线的定义即可得到结论.【详解】(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∠BOD=69°,∴∠DOE=12∴∠COE=69°﹣48°=21°.【点睛】本题考查了余角和补角的知识,属于基础题,互余的两角之和为90°,互补的两角之和为180°是需要同学们熟练掌握的内容.。
七下数学每日一练:角的运算练习题及答案_2020年解答题版
![七下数学每日一练:角的运算练习题及答案_2020年解答题版](https://img.taocdn.com/s3/m/07ab8e833968011ca2009149.png)
七下数学每日一练:角的运算练习题及答案_2020年解答题版
答案答案答案答案答案2020年七下数学:图形的性质_图形认识初步_角的运算练习题
~~第1题~~
(2019红岗.七下期中) 如图,已知∠AOC=∠BOD=75°,∠BOC=30°,分别求∠AOB ,∠COD 和∠AOD 的度数 。
考点: 角的运算;~~第2题~~(2019
安康.七下期中) 如图,已知直线AB 、CD 交于点O ,且∠1∶∠2=2∶3,∠AOC=60°,求∠2的度数。
考点: 角的运算;对顶角、邻补角;~~第3题~~
(2019高安.
七下期中) 如图所示,直线AB 与直线CD 交于点O ,OE ⊥AB ,OF 平分∠AOC ,若∠BOD=70°.你能否求出∠DOF 的度数吗?
考点: 角的运算;角的平分线;对顶角、邻补角;~~第4题~~(2018
钦州.七下期末) 如图,直线AB 与CD 相交于点O ,OE 平分∠BOC ,∠AOD =110°,求∠AOE 的度数.
考点: 角的运算;角的平分线;对顶角、邻补角;~~第5题~~
(2018
榆社.七下期中) 如图,直线AB 、CD 相交于点O ,射线OM ,ON 分别平分∠AOC ,∠AOD ,,求 的度数.考点: 角的运算;角的平分线;2020年七下数学:图形的性质_图形认识初步_角的运算练习题答案
1.答案:
2.答案:
3.答案:
4.答案:
5.答案:。
角的计算专项练习60题(有答案)ok
![角的计算专项练习60题(有答案)ok](https://img.taocdn.com/s3/m/e6c3a4511eb91a37f1115cbb.png)
角的计算练习60题(附参考答案)1.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.2.已知∠1=35°,∠2= _________ .3.计算出下列各角的度数.4.算一算,下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .5.三角形ABC的一条高将∠BAC分成角度为42°和36°的两个角(如图).∠2和∠3分别是多少度?6.求下图中各角的度数.∠1= _________∠2= _________∠3= _________ .7.如图中,已知∠1=30°,∠2= _________ ,∠3= _________ .8.如图,∠1= _________ ,∠2= _________ ,∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中,已知∠1=43°,∠2= _________ ,∠3= _________ .11.计算三角形中角的度数.∠1= _________ ,∠2= _________ ,∠3= _________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .13.算一算,这些角各是多少度.已知∠2=40°求得:∠1= _________ °,∠3= _________ °,∠4= _________ °.14.求出如图所示各角的度数.15.如图,已知∠l=20°,∠2=46°,求∠3的度数.16.如图所示,∠BOC=110°,∠AOB=∠DOC,∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1,∠1= _________ ∠2= _________图2,∠1= _________ .20.求下面各角的度数.已知∠1=30°,∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜,∠2=36゜,∠3= _________ .22.如图已知∠1=35°,∠2= _________ ,∠3= _________ ,∠4= _________ .23.如图所示,已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°,∠2= _________ °,∠3= _________ °,∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .26.角的计算(1)如图1所示,已知:∠1=72°,∠2=45°,求:∠AOB= _________ ?(2)如图2所示,已知:∠1=35°,求∠2= _________ ?27.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.28.如图,已知∠1=130°,求∠2、∠3的度数.29.如图中,∠AOB=14°,∠COB=∠COD,求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°,求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C= _________ ∠C= _________ .32.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图,已知∠1=70°,∠2=25°,∠3=50°,求∠5=?34.如图是一张长方形纸折起来以后的图形,已知么∠2是 65°,∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4= _________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠5= _________ .39.如图所示,∠1=55.,请分别求出∠2、∠3、∠4的度数.40.图中,已知∠1=37°∠2= _________ ;∠3= _________ ;∠4= _________ .41.如图,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠3+∠4= _________42.图中∠1= _________ ,∠2= _________ ,∠3= _________ ,∠1+∠2= _________ .43.已知∠1=50°,求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中,∠1=55°,∠2是直角,你能求∠3、∠4、∠5各是多少度吗?46.先量一量,再填空.①∠1= _________ ,是_________ 角;∠2= _________ ,是_________ 角;∠3= _________ ,是_________ 角.②画出∠1,使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ .如图2,已知∠1=30°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数,再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3= _________ .52.∠1= _________ ;∠2= _________ ;∠3= _________ .53.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.54.如图,求∠1和∠2的度数.55.已知:∠1=∠3,∠2=40°求:∠ADE=?56.在下面三角形中,∠1=38°,∠2+∠3=90°,求∠3和∠4各是多少度?57.在三角形ABC中,∠l=60°,∠3=50°,求∠2、∠4的度数.58.如图,已知:∠2=30°,∠3是直角,则∠2+∠3= _________ ,∠1+∠2+∠4= _________ ,∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一,已知∠1=75°,那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二,∠1= _________ ∠2= _________ ∠3= _________ .学习资料角的计算参考答案:1.设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1,∠2=180°﹣35°,∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中,因为∠ADB=90°,所以∠2=180°﹣90°﹣42°,∠2=48°;在直角三角形ADC中,∠ADC=90°,所以∠3=180°﹣90°﹣36°,∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°,45°,115°7.∠1与∠2组成了一个平角,所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角,所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°9.∠ABC=90°,∠ACB=60°.所以,∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°,133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2,=180°﹣20°﹣46°,=114°,∠3=180°﹣∠4,=180°﹣114°,=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2,=70÷2,=35(度),答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°,故答案为:42°18.∠1与∠3是对顶角,所以∠3也是65°;学习资料因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°,∠3=180°﹣∠2=180°﹣55°=125°,∠4=180°﹣∠3=180°﹣125°=55°,故答案为:55°,125°,55°.23.∠2=90°﹣30°=60°,∠3=180°﹣60°=120°,∠4=180°﹣120°=60°.答:∠2的度数是60°,∠3的度数是120°,∠4的度数是60°24.∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.29.(90°﹣14°)÷2,=76°÷2,=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB,=60°+60°﹣90°,=30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°,∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°,∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°,∠4=180°﹣105°=75°,∠5=180°﹣∠1﹣∠4,=180°﹣70°﹣75°,=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°,∠5=90°﹣∠1=90°﹣28°=62°,∠2=180°﹣∠1=180°﹣28°=152°,∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°,∠3=28°,∠4=90°,∠5=62°.36.(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°,∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°,=180°﹣30°×2﹣90°,=30°.故答案为:(1)30°,60°;学习资料(2)30°,30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1,=90°﹣55°,=35°,∠3=180°﹣∠4﹣∠5,=180°﹣35°﹣90°,=55°,∠2=180°﹣∠3,=180°﹣55°,=125°,答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°,∠3=180°﹣∠2=180°﹣53°=127°,∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°,127°,53°41.∠2=∠4=180°﹣40°=140°,∠3=180°﹣∠2=40°,∠3+∠4=180°.故答案为:140°,40°,140°,180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.44.根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°,∠5=180°﹣55°=125°,∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°,是锐角,∠2=40°,是锐角,∠3=120°,是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°,∠3=180°﹣∠2=180°﹣145°=35°,∠4=90°,∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°,90°,145°,215°48.图一:因为,∠1=40°.所以,∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为,∠1=30°.所以,∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°,40°,140°,60°,90°,30°,150°49.(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°50.测量可得图中∠1=90°,∠2=45°,∠3=90°,∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°,45°,90°,135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角,所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直,所以∠2=∠3=90°.故答案为:45°;90°;90°学习资料53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°,=140°÷2+40°,=70°+40°,=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3),∠4=180°﹣38°﹣90°,∠4=52°;∠3=180°﹣90°﹣∠4,∠3=180°﹣90°﹣52°,∠3=38°.答:∠3是38°,∠4是52°57.因为∠1+∠3+∠4=180°,∠l=60°,∠3=50°,所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°,所以∠2=90°﹣∠3,=90°﹣50°,=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°,270°,360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°),=180°﹣105°,=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°,∠1=75°,所以75°+∠2=180°,75°﹣75°+∠2=180°﹣75°,∠2=105°;因为∠1与∠3,∠2与∠4,分别是对顶角,所以∠1=∠3=75°,∠2=∠4=105°;(2)因为∠1+35°=180°,∠1+35°﹣35°=180°﹣35°,∠1=145°;因为∠2+30°=90°,∠2+30°﹣30°=90°﹣30°,∠2=60°;因为∠3是一个直角,所以∠3=90°;故答案为:(1)105°,75°,105°.(2)145°,60°,90°.学习资料。
七下数学每日一练:角的运算练习题及答案_2020年填空题版
![七下数学每日一练:角的运算练习题及答案_2020年填空题版](https://img.taocdn.com/s3/m/672b295679563c1ec5da71e8.png)
七下数学每日一练:角的运算练习题及答案_2020年填空题版答案答案答案答案答案2020年七下数学:图形的性质_图形认识初步_角的运算练习题~~第1题~~(2019端州.七下期中) 如图,直线AB 和CD 相交于点O ,OE ⊥AB ,∠AOD=125°,则∠COE 的度数是________度.考点: 角的运算;~~第2题~~(2019东海.七下期末) 如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC= ∠AOD ,则∠AOD=________.考点: 角的运算;~~第3题~~(2019江门.七下期末) 如图,直线与相交于点 ,,垂足为 , ,则 的度是________.考点: 角的运算;相交线;垂线;~~第4题~~(2019甘井子.七下期中) 如图,AO ⊥CO ,BO ⊥DO ,∠AOD=150°,则∠BOC 的度数是________.考点: 角的运算;垂线;~~第5题~~(2019邗江.七下期中) 如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为________°.考点: 角的运算;三角形内角和定理;答案答案答案答案答案(2019中山.七下期中) 如图直线 相交于点 , , , ________考点: 角的运算;~~第7题~~(2019安康.七下期中) 如图,三条直线交于同一点,∠1∶∠2∶∠3=2∶3∶1,则∠4=________.考点: 角的运算;~~第8题~~(2018桂平.七下期末) 如图,将直角三角形AOB 绕点0旋转得到直角三角形COD ,若∠AOB=90°,∠BOC=130°,则∠AOD 的度数为________.考点: 角的运算;旋转的性质;~~第9题~~(2017门头沟.七下期末) 如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 =________度.考点: 角的运算;~~第10题~~(2017泰兴.七下期末) 如果∠A 与∠B 的两边分别平行,∠A 比∠B 的3倍少36°,则∠A 的度数是________.考点: 角的运算;平行公理及推论;2020年七下数学:图形的性质_图形认识初步_角的运算练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:7.答案:8.答案:9.答案:10.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下数学每日一练:角的运算练习题及答案_2020年单选题版
答案答案答案答案答案
2020年七下数学:图形的性质_图形认识初步_角的运算练习题
~~第1题~~(2019
莘.七下期中) 如图,∠AOC=∠BOD=90°,∠A0D=140°,则∠BOC 的度数为( )
A . 30°
B . 45°
C . 50°
D . 40°
考点: 角的运算;~~第
2题~~
(2019中山
.七下期中) 如图,直线
,
相交于点
,
,垂直为点
, ,则
( )A . 40° B . 130° C . 50° D . 140°
考点: 角的运算;对顶角、邻补角;垂线;~~第3题~~
(2019乌鲁木齐.七下期中) 如图,已知∠MOQ 是直角,∠
QON 是锐角,OR 平分∠QON ,OP 平分∠MON ,则∠POR 的度数为( )
A . 45°+ ∠QON
B . 60°
C . 45°
D . ∠QON
考点: 角的运算;角的平分线;~~第4题~~
(2018.七下期中) 已知OA ⊥OC ,如果∠AOC :∠AOB=3:2,那么∠BOC 的大小为( )
A . 30°
B . 150°
C . 30°或150°
D . 90°
考点: 角的运算;~~第
5题~~
(2017门头沟.七下期末) 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为( )
A . 10°
B . 15°
C . 20°
D . 25°
考点: 角的运算;余角、补角及其性质;对顶角、邻补角;平行线的性质;
答案答案答案答案~~第6题~~
(2017石景山.七下期末) 如图所示,用量角器度量几个角的度数,下列结论中正确的是(
)
A . ∠BOC =60°
B . ∠COA 是∠EOD 的余角
C . ∠AOC =∠BO
D D . ∠AOD 与∠CO
E 互补
考点: 角的运算;余角、补角及其性质;~~第7题~~
(2017矿.七下期末) 如图,AB ∥CD , 若∠2是∠1的3倍,则∠1的度数是( )
.
A . 30°
B . 45°
C . 55°
D . 60°
考点: 角的运算;平行线的性质;~~第8题~~
(2017肇源.七下期末) 如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的
度数是( )
A . 125°
B . 160°
C . 85°
D . 105°
考点: 钟面角、方位角;角的运算;~~第9题~~
(2017罗山.七下期中) 如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方
形内部点E 处,若FH 平分∠BFE ,则∠GFH 的度数α是( )
A . 90°<α<180°
B . 0°<α<90°
C . α=90°
D . α随折痕GF 位置的变化而变化
考点: 角的运算;~~第10题~~
(2017简阳.七下期中) 如图,直线AB 、CD 、EF 交与点O ,AB ⊥CD ,OG 平分∠AOE,∠FOD=28°,则∠AOG=( )
A . 56°
B . 59°
C . 60°
D . 62°
考点:角的运算;角的平分线;余角、补角及其性质;
答案2020年七下数学:图形的性质_图形认识初步_角的运算练习题答案
1.答案:D
2.答案:D
3.答案:C
4.答案:C
5.答案:D
6.答案:D
7.答案:B
8.答案:A
9.答案:C
10.答案:B。