液压调速回路

合集下载

液压基本回路速控制回路节流调速回路

液压基本回路速控制回路节流调速回路

旁路节流调速只有节流损失,
无溢流损失,功率损失较小。
Pp p1qp P1 F p1 A1 p1q1
P Pp P1 p1qp p1q1 p1q
回路效率
P1 p1q1 q1
Pp
pq 1p
qp
用于功率较大且对速度稳定性要 求不高的场合
注意:节流调速回路速度负载特性比较软,变载荷下的运动平稳性比较差。为了克服
变量泵与液压缸组成的调速回路,其最大速度是由 泵的最大流量所决定的。
如果忽略泵的泄漏量,最低速度可以调到零。
因此,该调速回路的速度调节范围很大,可以实现 无级调速。
第28页/共48页
(3) 负载特性
执行元件输出转矩(力)和输出功率与变量泵调节参数 (排量)之间的关系。
当不考虑回路的损失时,液压马达的输出转矩(或缸的输出 推力)为
第9页/共48页
回路效率

p1q1 ppqp
p1q1 p(p q1+q)
( pp p)q1 ppqp
(c)调速范围
即最Байду номын сангаас工作速度与最小稳定工作速度之比:
vmax A节max vmin A节min
其中,
A节 m a x
Q泵 cp泵
可知,最大节流面积是由泵的流量和额定压力所决定的。
(d)最大承载能力 当泵的出口压力和油缸面积确定之后,液压缸的最大承载能力不变,为
Tv
F v
v 如果忽略系统泄漏,可认为 速度不受负载影响,其速度-负 载特性曲线。
A节3 A节2
A节1<A节2<A节3
A节1 v
Fmax
F 在不同节流面积下,速度-负载特性曲线。 F
第22页/共48页

液压传动实验(三)节流调速回路实验指导书

液压传动实验(三)节流调速回路实验指导书

节流阀调速阀控制回路实验指导书
一、实验目的:
1、加深对节流调速回路的理解。

2、了解节流调速回路速度负载特性。

二、实验内容:
1、液压缸负载不变,改变节流阀开口面积,测定进入油缸流量
2、测定进油节流调速回路速度负载特性。

三、实验装置:
实验系统自行设计
四、实验原理:
节流调速回路工作原理:调节节流阀开口面积大小来控制流入执行元件的流量,以调节执行元件的运动速度。

当负载变化时,即使节流阀开口不变,由于节流阀前后压差改变,导致通过节流阀的流量改变,进而影响执行元件运动速度,测定进油节流调速回路速度负载特性。

五、实验步骤:
设计原理图(参考课本p148 图6-8,p153 图6-11)
1、启动泵,节流阀开到最大,调节溢流阀,使压力为P=2MPa。

2、扳动换向开关,使工作缸往复工作数次以排出缸内空气。

3、设定负载,F=200N,调节节流阀开度,测定进入油缸流量。

4、节流阀开口开度不变,改变负载(130N~260N),记录节流阀
前后压差和进入油缸流量。

5、将节流阀换为调速阀,改变负载,测量压差和流量。

实验数据记录
节流阀
调速阀
六、实验报告要求:
根据数据画出使用节流阀和调速阀的速度(流量)负载特性曲线。

七、思考题:
分析使用节流阀负载变化时为什么引起油缸速度变化?。

液压与气压传动8第八章调速回路

液压与气压传动8第八章调速回路

特点:液压泵输出的流量直接进入执行元件,没
有溢流损失和节流损失,且泵的出口压力
随工作负载变化而变化,因此效率高,发
热少。
开式回路
分类:按油液循环方式分
闭式回路
泵-缸回路 按执行元件的不同分
泵-马达回路
一、泵-缸式容积调速回路 1、开式回路
回路见图8-13 液压缸活塞运行的速度为:
速度刚度为:
2、闭式回路 回路见图8-15

v
qP
CAT pP

qt
kl

F A1


CAT

F A1

A1
A1
速度刚度:
由右图也可以看出: (1)当节流阀开口调定时,负
载越大,速度要刚性越好。 (2)当负载一定时,节流阀开
口面积越小,速度刚性越 好。
2、功率特性:
ηc

pP q1 pPqP
1 CAT pP qt kl pP
液压泵出口处的压力由溢流阀调定,负载的速度由节 流阀调定,多余的油液由溢流阀溢流。
1、机械特性
以(a)图为例,可得:
整理后可得:
根据不同的 阀开口量, 可得该回路 的机械特性 曲线F-v曲线 如图8-2所示
特性: 节流阀开口 一定的情况 下,负载的 速度随负载 变大而减小
速度刚度——负载运动速度受负载大小变化的影响程度
上式说明:(1)阀口一定时,负载越小,速度刚度越高 (2)负载一定时,阀口越小,速度刚度越高
因此:采用节流阀调速的定压式节流调速 回路只适用于小负载,小功率场合
2、功率特性:功率损失、功率损失分配情况、效率
以图(a)定压式进口节流调速回路为例,其输入功率、输 出功率、何功率损失分别为:输入功率: PP pPqP

液压基本回路旁路节流调速回路

液压基本回路旁路节流调速回路

液压基本回路旁路节流调速回路这种回路由定量泵、安全阀、液压缸和节流阀组成,节流阀安装在与液压缸并联的旁油路上,其调速原理如图7-3所示。

图7—3旁路节流调速回路定油泵输出的流量q B,一部分(q1)?? 进入液压缸,一部分(q2)通过节流阀流回油箱。

溢流阀在这里起安全作用,回路正常工作时,溢流阀不打开,当供油压力超过正常工作压力时,溢流阀才打开,以防过载。

溢流阀的调节压力应大于回路正常工作压力,在这种回路中,缸的进油压力p1等于泵的供油压力p B,溢流阀的调节压力一般为缸克服最大负载所需的工作压力的p1max1.1~1.3倍.4)采用调速阀的节流调速回路前面介绍的三种基本回路其速度的稳定性均随负载的变化而变化,对于一些负载变化较大,对速度稳定性要求较高的液压系统,可采用调速阀来改善起速度-负载特性。

图7—4调速阀进油节流调速回路采用调速阀也可按其安装位置不同,分为进油节流、回油节流、旁路节流三种基本调速回路。

图7-4为调速阀进油调速回路。

图7-4(a)为回路简图,图7-4(b)为其速度—负载特性曲线图。

其工作原理与采用节流的进油节流阀调速回路相似。

在这里当负载F变化而使p 1变化时,由于调速阀中的定差输出减压阀的调节作用,使调速阀中的节流阀的前后压差Δp保持不变,从而使流经调速阀的流量q 1不变,所以活塞的运动速度v也不变。

其速度—负载特性曲线如图7-4(b)所示。

由于泄漏的影响,实际上随负载F的增加,速度v有所减小。

在此回路中,调速阀上的压差Δp包括两部分:节流口的压差和定差输出减压口上的压差。

所以调速阀的调节压差比采用节流阀时要大,一般Δp≥5×105Pa,高压调速阀则达10×105Pa。

这样泵的供油压力pB相应地比采用节流阀时也要调得高些,故其功率损失也要大些。

这种回路其他调速性能的分析方法与采用节流阀时基本相同。

综上所述,采用调速阀的节流调速回路的低速稳定性、回路刚度、调速范围等,要比采用节流阀的节流调速回路都好,所以它在机床液压系统中获得广泛的应用。

(液压与气压传动)第8章调速回路

(液压与气压传动)第8章调速回路
定压式节流调速回路的承载能力 是不受节流阀通流截面积变化影 响的—图中的各条曲线在速度位 零时都汇交到同一负载点上。
定压式进口节流调速回路 的机械特性
8
第八章 调速回路
速度刚性
活塞运动速度受负载影响的程度,可以用回路速度刚性这个指标来评定, 速度刚性kv是回路对负载变化抗衡能力的一种说明,它是机械特性曲线 上某点处斜率的倒数。
有溢流是这种调速回路能够正 常工作的必要条件。
6
a)
b)
定压式节流调速回路 a)进口节流式 b)出口节流式
第八章 调速回路
机械特性
液压缸速度与外负载的关系:
v q1 A1
p1A1 F
q1 CAT1pT1 CAT1 pp p1
式中:
v——活塞运动速度; q1——流入液压缸的流量; A1——液压缸工作腔有效工作面积;
3)实现压力控制的方便性。进油节流调速回路中,进油腔的压力将随负载而变化, 当工作部件碰到死挡块而停止后,其压力将升到溢流阀的调定压力,利用这一压力 变化来实现压力控制是很方便的。但在回油节流调速回路中,只有回油腔的压力才 会随负载变化,当工作部件碰到死挡块后,其压力将降至零,利用这一压力变化来 实现压力控制比较麻烦,故一般较少采用。
功率特性
调速回路的功率特性是以其自身的功率损失(不包括液压泵、液压缸和管 路中的功率损失)、功率损失分配情况和效率来表达的。
定压式进口节流调速回路的输入功率(即定量泵的输出功率)、输出功率
和功率损失分别为
Ppppqp
式中,Pp为回路的输入功率;P1为 回路的输出功率;ΔP为回路的功率
P1p1q1
损失;qp为液压泵在供油压力pp下
前两种调速回路由于在工作中回路的供油压力不随负载变化而变化,故 又称为定压式节流调速回路;而旁路节流调速回路中,由于回路的供油 压力随负载的变化而变化,故又称为变压式节流调速回路。

液压三种调速回路特性比较分析报告

液压三种调速回路特性比较分析报告

液压三种调速回路特性分析报告学院:机械工程学院班级:机师1111姓名:***学号:***********液压三种调速回路特性分析报告下面分析三种调速回路为什么在速度稳定性、承载能力、调速范围、功率特性、适用范围等特性方面不同。

三种调速回路特性比较1、首先分析比较进出油回路与旁油回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)进油节流调速回路:液压缸动作后,活塞杆缓慢动作,逐渐调大通流面积可以观察到活塞杆运动速度增大;在运行过程中,可以看到活塞杆动作时快时慢,这个是由于进油口有节流阀限制流量,而在回油口又没有背压阀的原因,所以运动平稳性差;通常在刚启动时由于有节流阀串联在进油口,所以启动冲击小;另外多余的油液被溢出,所以工作效率低。

在本回路中,工作部件的运动速度随外负载的增减而忽快忽慢,难以得到准确的速度,故适用于轻负载或负载变化不大,以及速度不高的场合。

(2)回油节流调速回路:节流阀在回油路中,所以这种回路多用在功率不大,但载荷变化较大,运动平稳性要求较高的液压系统中,如磨削和精镗的组合机床等。

(3)旁路节流调速回路:与前两种回路的调速方法不同,它的节流阀和执行元件是并联关系,节流阀开的越大,活塞杆运行越慢。

这种回路适用于负载变化小,对运动平稳性要求不高的高速大功率的场合,例如牛头刨床的主传动系统,有时候也可用在随着负载增大,要求进给速度自动减小的场合。

2、分析比较用节流阀和用调速阀在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:由于调速阀本身能在负载变化的变件下保证节流阀进、出油口间压差基本不变,通过的流量也基本不变,因而回路的速度-负载性将得到改善,旁路节流调速回路的承载能力也不会因活塞速度降低而减小。

调速阀节流调速回路的速度-负载特性曲线如图7-6所示3、分析比较限压式和稳流式容积节流调速回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)限压式容积节流调速回路变量泵输出的流量P q 和进入液压缸的流量1q 相适应。

7.3液压速度控制回路——【液压传动与气动技术】

7.3液压速度控制回路——【液压传动与气动技术】
(变量泵+定量执行元件)
液压缸
变量泵
安全阀 定量液压马达
安全阀
背压阀
变量泵
开式回路
辅助泵
溢流阀
闭式回路
容积调速回路
(定量泵+变量液压马达)
变量液压马达
安全阀
定量泵
容积调速回路
(变量泵+变量液压马达)
变量泵
变量马达
溢流阀
安全阀 辅助泵
容积调速回路的特点及应用
特点:无节流损失和溢流损失,效率高,发热少,成本高,平稳性差。 应用:大功率,对速度稳定性要求不高的液压系统。
容积节流调速回路
流量阀 变量泵
q泵=q阀
特点:无溢流损失,效率高,发热少,用调速阀速度稳定性好。 应用:较大功率,对速度稳定性要求较高的液压系统。
调速回路选用
回油路加背压阀




采用调速阀


①小功率,速度稳定性高 ②大功率,速度稳定性要求不高 ③大功率,速度稳定性高
2. 快速运动回路
目的:采用快速回路,可以在尽量减少液压泵流量损 失的情况下使执行元件获得快速,以提高生产率。
节流调速回路
• 核心元件:定量泵+流量阀(节流阀或调速阀)。
进油路节流调速回路 回油路节流调速回路 旁油路节流调速回路
进油路节流调速回路 节流开口
p2≈0 v
p 1 q1
q2
A
F负

背压阀
A0
p2≠0
改为调速阀 p泵,q泵
v q1 KA0 Δp AA
结构简单,使用方便
可获得较大推力和较低速度
v
v q
A
A

第八章调速回路(液压传动与控制)

第八章调速回路(液压传动与控制)

q1 A1
活塞受力方程:
F p1 A1

缸的流量方程:
F q1 CAT 1 ( p p p1 ) CAT 1 ( p p ) A1
南昌大学
第二节 节流调速回路
1、进油节流调速回路
(1)速度负载特性:调速回路的速度-负载特性也称为机械 特性。它是在回路中调速元件的调定值不变的情况下,负载变 化所引起速度变化的程度。 于是有:
第二节 节流调速回路
二、变压式节流调速回路
变压式节流调速回路有称为旁路节流 调速回路。这种回路使用定量泵,并且 必须并联一个安全阀,并把节流阀安装 在与主油路并联的分支油路上。 旁路节流调速回路泵的出口压力由负 载决定,溢流阀作为安全阀,节流阀调 节排回油箱的流量。
当不考虑泄漏和压缩时,活塞速度:
q2 CAT1 ( p2 p3 ) CAT p2


南昌大学
第二节 节流调速回路
2、回油节流调速回路
(1)速度负载特性:在不计管路压力损失和泄漏的情况 下,回路中液压缸的速度表达式为:
q2 A2
回路速度刚性kv为
CAT1 ( pp A1 F )
(1 ) A2
1 pp A1 F A2 k 1 CAT1 ( pp A1 F )
南昌大学
第二节 节流调速回路
一、定压式节流调速回路
定压式节流调速回路根据节流阀在回路中的位臵分为进口 节流调速回路、出口节流调速回路、进出口节流调速回路。这 种回路都使用定量泵,并且必须并联一个溢流阀。液压系统常 常需要调节液压缸和液压马达的运动速度,以适应主机的工作 循环需要。液压缸和液压马达的速度决定于排量及输入流量。
1、进油节流调速回路

液压调速回路原理

液压调速回路原理

液压调速回路原理
液压调速回路的原理是基于液压功分配器的工作原理,通过控制液压系统中的流量和压力来实现调速控制。

液压调速回路通常由流量调速阀、压力调速阀、液压功分配器和液压执行元件等组成。

在工作时,流量调速阀通过控制液压系统中的流量来实现调速。

当调速阀开启时,液压系统中的流量增大,液压执行元件的运动速度也随之增加;当调速阀关闭时,液压系统中的流量减小,液压执行元件的运动速度也随之减小。

通过调整调速阀的开启程度,可以实现不同的调速效果。

压力调速阀则通过控制液压系统中的压力来实现调速。

当压力调速阀开启时,液压系统中的压力增大,液压执行元件的运动速度也随之增加;当压力调速阀关闭时,液压系统中的压力减小,液压执行元件的运动速度也随之减小。

通过调整压力调速阀的开启程度,可以实现不同的调速效果。

液压功分配器则负责将液压系统中的功率按需分配给不同的液压执行元件。

当系统中的液压执行元件负载增加时,液压功分配器会自动调整流量分配,确保每个液压执行元件获得适当的功率。

这样,在实际工作中,即使负载发生变化,液压调速回路也可以保持稳定的调速性能。

综上所述,液压调速回路通过控制液压系统中的流量和压力,以及通过液压功分配器的工作原理,实现了对液压执行元件的
调速控制。

这种调速回路具有调速精度高、负载适应能力强等优点,在许多工业领域中得到广泛应用。

液压传动系统第四章 容积调速回路分析

液压传动系统第四章 容积调速回路分析

Tm Vmpmmm Vm max xmpmmm
V p maxn p x p pv mv Vm max xm
第四章 容积调速回路分析
第二节 容积调速回路的速度刚性分析
一.容积调速回路的速度刚性分析
Vm nm V p n p ( p m l ) p qtm Vm nm qtp (q p qm ql ) p V p n p ( p m l ) p V p n 容积调速回路速 度刚性分析
二.速度稳定方法
1.流量补偿法
利用回路压力随负载的 增减来控制泵流量做相 应的增减 当马达负载增加时,p 升高,作用在柱塞1上 的力增大,推动泵的钉 子向加大偏心距e的方 向移动,使泵的流量增 大。反之,流量减少
第四章 容积调速回路分析 第二节 容积调速回路速 度刚性分析
nm min Vp min
定量泵-变量马达回路:马达转速nm与马达排量成反 比,即: D nm max Vm max 3 4
nm min Vm min
变量泵-变量马达回路:该回路由上述两种回路组合 V n V 而成,即: D D D 100
m max p max m max
p1q1 p1 ppqp pp
第四章 容积调速回路分析 第四节 容积节流调速回路
二.差压式变量泵和节流阀的调速回路
1.回路工作原理 该回路采用了带有先导式 滑阀控制的差压式变量叶 片泵,在液压缸的进油路 上串联一节流阀。 当节流阀开口增大时滑阀 5左移,节流口b开大,c 关小,泵的定子左移,e 增大,泵流量增大,液压 缸的速度增大,反之亦然 在某一稳定工况下,当节 流阀3处在某一开口时, 变量泵有一稳定流量

速度控制回路(调速回路)

速度控制回路(调速回路)


速 回
容积调速回路
采用变量泵或变量马达,改 变它们的排量

容积节流调速回路
同时采用变量泵和流量阀来 达到调速的目的
1.1节流调速回路
节流调速回路主要是由定量泵、溢流阀、流量控制阀和液压 执行元件等组成。其调速原理为,节流调速回路是通过调节流量 控制阀的通流截面面积大小来改变进入液压执行元件的流量,从 而实现运动速度的调节。
回路结构简单,油液冷却充分;但油箱体积较大,空气和赃 物易进入回路。
闭式回路:液压泵将油输入执行机构的进油腔,又从执行机
构的回油腔吸油。 结构紧凑,只需很小的补油箱,杂物不易进入回路,但冷
却条件差。为了补偿工作中油液的泄漏,一般设辅助泵补油。
定量泵-变量马达容积调速回路
液压泵转速np和排量Vp都是 常值,改变液压马达排量Vm时, 马达输出转矩的变化与Vm成正比, 输出转速nm则与Vm成反比。
回油口节流调速回路
节流阀串联在液压缸的回 油路上,控制缸的排油量来实 现速度调节。
由于进入缸的流量q1受到回油 路上q2的限制,调节q2,也就调 节了进油量q1。
定量泵输出的多余油液经 溢流阀流回油箱,溢流阀调整 压力pp基本保持稳定。
速度-负载特性
可以推导出该类回路的速度 负载特性方程为:
回油节流调速和进油节流 调速的速度负载特性和速度刚 性基本相同。
马达的输出功率Pm和回路的 工作压力p都由负载功率决定, 不因调速而发生变化,所以这种 回路常被称为恒功率调速回路。
➢当AT一定时,负载越大,速度 刚度越大;当负载一定时,AT越 小,速度刚度越大;
速度-负载特性 速度负载特性曲线
回路的最大承载能力随节流 阀通流面积AT的增加而减小。

液压传动系统中速度控制回路包括调节液压执行元件速度调速回路

液压传动系统中速度控制回路包括调节液压执行元件速度调速回路

液压传动系统中速度控制回路包括调节液压执行元件的速度的调速回路、使之获得快速运动的快速回路、快速运动和工作进给速度以及工作进给速度之间的速度换接回路。

一、调速回路调速是为了满足液压执行元件对工作速度的要求,在不考虑液压油的压缩性和泄漏的情况下,液压缸的运动速度为液压马达的转速:由以上两式可知,改变输入液压执行元件的流量q或改变液压缸的有效面积A<或液压马达的排量VM)均可以达到改变速度的目的。

但改变液压缸工作面积的方法在实际中是不现实的,因此,只能用改变进入液压执行元件的流量或用改变变量液压马达排量的方法来调速。

为了改变进入液压执行元件的流量,可采用变量液压泵来供油,也可采用定量泵和流量控制阀,以改变通过流量阀流量的方法。

用定量泵和流量问阀来调速时,称为节流拥速;用改变变量泵或变量液压马达的排量调速时,称为容积调速;用变量泵和流量阀来达到调速目的时,则称为容积节流调速。

<-)节流调速回路节流调速回路的工作原理是通过改变回路中流量控制元件<节流阀和调速阀)通流截面积的大小来控制流入执行元件或自执行元件流出的流量,以调节其运动速度。

根根流量阀在回路中的位置不同,分为进油节流调速、回油节流调速和旁路节流调速三种回路。

前两种回路称为定压式节流调速回路,后一种因为回路的供油压力随负载的变化而变化又称为变压式节流调速回路。

1、进油节流调速回路<1)速度负载特性缸稳定工作时有式中,P1为进油腔压力;P2为出油腔压力,P2=0;F为液压缸的负载;A1为液压缸无杆腔面积;A2为液压缸有杆腔面积,AT为节流阀通流面积。

故节流阀两端的压差为节流阀进入液压缸的流量为液压缸的运动速度为这种回路的调速范围较大,当AT调定后,速度随负载的增大而减小,故负载特性软。

适用于低速轻载场合。

<2)最大承载能力<3)功率和效率在节流阀进油节流调速回路中,液压泵的输出功率为=常量,而液压缸的输出功率为,所以该回路的功率损失为式中,qy为通过溢流阀的溢流量,qy=qp-q1由上式可以看出,功率损失由两部分组成,即溢流损失功率和节流损失功率。

液压调速回路

液压调速回路

压力继电器
调速阀 背压阀 变量泵
▲二位二通电磁阀通电时,压力油经调 速阀进入油缸,实现工进。
▲工进结束后,压力继电器发讯,使方 向控制动作,实现油缸快退。
调速原理:
▲油缸的速度由节流阀的流通面积
AT来控制。 ▲当qB > qL时,泵出口压力上升,通 过压力反馈作,使泵的流量自动减
压力继电器 换向阀
qB nM nB qM
容积调速回路时改变液压泵或液压马达的排量来实现调速的。
三种调速方案: 变量泵-定量马达调速回路 定量泵-变量马达调速回路
变量泵-变量马达调速回路
容积调速系统的主要目的是调节液压马达的转速。 本节讨论它的工作原理和静态特性。静态特性是指液压 马达在稳态时的输出转速、输出转矩和输出功率。
PL P泵
max
2 3
P节
pB p
特点: 效率低,因为有溢流损失和节流阻力损失 速度不稳定(负载特性较软,速度稳定性差) 调速范围较大
二、回油节流调速回路 在执行元件的回油路上串接一个流量阀,用来调节回油流 量,即构成回油节流调速回路 ▲通过改变节流阀开口大小来调节回油流量: 开口大油缸回油多进油增多溢流阀回油少;
载荷 F=Fmax时,速度 u=0; 载荷 F=0时,速度 u=max。
Fmax ps A 1
特性曲线汇交于横轴上的同一点,这说明Fmax与调速无关。
(2)速度刚度分析 速度刚度:评定液压缸运动速度受负载影响的程度。
dFL T 1 du tan Cd a( x) 2 K a( x) p FL u u ( FL ) ( ps p1 ) s A1 A1 A1
小到qB≈qL 。
▲反之,当qB <qL 时,泵出口压力下 降 ,又会使泵的流量自动增大到 qB≈qL 。 ▲调速阀的作用使泵的输出流量与油 缸所需流量自动匹配。

液压基本回路的安装与调试—速度控制回路的设计、安装与调试

液压基本回路的安装与调试—速度控制回路的设计、安装与调试

(二)容积调速回路
变量泵+定量执行元件 定量泵+变量马达
变量泵+变量马达
(二)容积调速回路
(二)容积调速回路
定 量 泵 + 变 量 马 补油泵 达
过载 保护
控制补 油压力
回路的速度刚性受负载变化影响:
随着负载增加,因泵和马达的泄漏增加, 致使马达输出转速下降
(二)容积调速回路
变 量 泵 + 变 量 马 达
2.应用Fluidsim软件进行对所设计的 液压回路进行仿真;
3.在FESTO液压实训台上对液压回路 进行安装和调试,分别测量液压缸前 进及返回行程时间、工作压力和背压 ,填写表;
平面磨床液压回路数据测量
方向
p
p1
p2
t
前进行程
返回行程
活塞无杆腔面积: APN=2.0cm2 活塞有杆腔面积: APR=1.2cm2 油缸的行程: s=0.2m
任务6.2 速度控制回路的设计、安装与调试
教学目标
1.熟知速度控制回路的类型及应用; 2.能够根据控制要求进行速度控制回路的设计与
仿真; 3.能够根据原理图进行速度控制回路的安装、调
试与故障排除。
知识点 速度控制回路
一. 调速回路
缸的速度:v=q/A 液压缸A确定,改变输 入缸q来调速
马达转速:n=q/VM 改变q 来调速
低速段,马达排量调至最大,从小到大调节变量泵排量
高速段,泵为最大排量,从大到小调节变量马达的排量
(三)容积节流调速回路
(三) 容积节流调速回路
二. 快速运动回路
差动连接快速回路



蓄能器快速回路

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

qp?o
Py
速度负载特性方程
最大承载能力 Fmax=ppA1。
2、回油节流调速回路
p1 A 1 ?o
p2
?F
? V =q2/A2 =KA T(ppA1/A2-F/A2)1/2/A2
q1
?q??o 2
Pp
T
qp?o
Py
最大承载能力 Fmax=ppA1。
2、回油节流调速回路
p1 A 1 ?o
p2
?F
pL
C d ? 0.62
q p ? 10 L / min

AT1 ? 0.02cm 2
Δp
A
pp
F
v
? ? 900 kg / m3

?应用:
? 自动换向
例题2
? 快进— ? 工进— ? 快退 ? 压力继电器
作用:工进 转换为快退?
例题2
? 快进— ? 工进— ? 快退 ? 压力继电器
A 1 ?o
p1
q1
?q??o 2
负载增加
速度减小
最大负载
p1=pp
Pp
T
q p?o
Py
流量为零
压差为零
速度为零
例题1
在进口节流调速回路中,溢流阀正常溢流,不考虑溢流阀的调压偏差,溢流
阀的调定压力 p y ? 2 MPa 试分析:
1)液压缸大腔最高工作压力
2)求活塞运动速度
A缸
3)负载增加时,节流阀进出口压力如何变化
? V =q2/A2 =KA T(ppA1/A2-F/A2)1/2/A2
q1
?q??o 2
调节AT:无级调速 v与AT 成正比。
Pp
T
负载不变
AT增加
qp?o
Py
速度增加
流量增加
2、回油节流调速回路
p1 A 1 ?o
p2
?F
? V =q2/A2 =KA T(ppA1/A2-F/A2)1/2/A2
q1
2)最大承载能力
应用
1、进油节流调速回路
p1
q1
A 1 ?o
?q??o 2
Pp
q p?o
Py
?F
q =KA △p m
已知:溢流阀调整压力 节流阀面积 液压缸有效作用面积 负载、液压泵的流量
T 设:有杆腔压力为P1 无杆腔压力为P2
泵的出口压力Pp,流量qp
进入无杆腔的流量q1
1、进油节流调速回路


所以速度增加了107.48/cm/min
思考题
下图所示的液压回路,已知液压缸两腔面积为 A1=100 cm2,A2=50 cm2, 调速阀最小压差? p=0.5 MPa,当负载F从0变化到30000 N时,活塞向右运
动的速度稳定不变。试求: 1)溢流阀最小调整压力pY;
2)负载 时,泵的工作压力pp及液压缸回油腔压力p2。
最大承载能力F= A1pp
与节流阀面积有无关系?
Pp
T
q p?o
Py
1、进油节流调速回路 最大承载能力
?F
Fmax=ppA1。
A 1 ?o
p1
q1
?q??o 2
调节AT:无级调速
v与AT 成正比。
Pp
T
负载不变
AT增加
q p?o
Py
速度增加
流量增加
1、进油节流调速回路 最大承载能力
?F
Fmax=ppA1。
3〉 当节流阀的最小稳定流量为50mL/min ,缸的最低稳定速度是多少?
例2: 在图示的回路中,已知:

;溢流阀
调定压力
;当负载F=20KN 时,用节流阀调定的速度
v=30cm/min 。问负载F=0时, 比 高多少?液压缸速度增加
多少(cm/min )?
解: 当F=0时,
所以 比 高
;
当F=20KN 时
本节主要内容
1 调速回路分类 2 进油节流调速回路
重点
速度 负载特性
3 回油节流调速回路 4 旁路节流调速回路
最大 承载能力
调速原理
液压缸
调节进入液压缸的流量 q ?v =q /A
液压马达
调节q或者V
赖祖亮@小木虫
?n = q /vm
调速方法
?F
?F
增加支路
调速方法
1
增加支路
节流调速
2
改变马达或者泵的排量
溢流阀作用?
压力补偿 恒压溢流
一、定量泵节流调速回路
进油节流调速回路 将流量控制阀串联在液压泵与液压缸之间。 回油节流调速回路 将流量控制阀串联在液压缸与油箱之间。 旁路节流调速回路 将流量控制阀安装在液压缸并联的支路上。
一、定量泵节流调速回路
? 节流阀进口节流调速回路工作特性分析 1)速度负载特性
?q??o 2
负载增加速度减小最大载p2=0Pp
T
qp?o
Py
流量为零
压差为零
速度为零
例题1.
已知: 缸径D=100mm ; 活塞杆直径d=70mm ; 负载F=25KN 。试问:
1〉 欲使节流阀前、后压差为
,溢流阀的压力 应调到多少?
2〉上述调节压力不变,当负载F降为15KN 时,节流阀前后的压差为何值
作用:工进
转换为快退。
思考:
? 是否可以实现顺序动作?
2、回油节流调速回路
p1
p2
?F
A 1 ?o
活塞受力平衡方程 ppA1=p2A2+F
q1
?q??o 2
节流阀压力流量方程
q2=KA Tp21/2
=KA T(ppA1/A2-F/A2)1/2
? V =q2/A2
Pp
T
=KA T(ppA1/A2-F/A2)1/2/A2
第六章液 压基本回路
第二节 速度控制回路一 调速回路
前节回顾
压力控制回路:任何液压回路必须需要的是 :
? 调压回路:限制最高工作压力 ? 卸载回路:
平衡回路使用条件
? 立式油缸 ? 匀速下降
液压基本控制回路
1 压力控制回路 2 速度控制回路
调速回路 快速回路
3 方向控制回路
速度换接回路
4 多执行元件控制回路
容积调速
3
两者兼之
容积节流
分类
调速回路
定量泵节流调速
容积调速
容积节流调速
进 回 旁 定变变
油 油 路 量量量
节 流
节节 流流
泵泵泵
——— 变定变
调 调 调 量量量
速 速 速 马马马
达达达
限差 压压 式式 泵泵 与与 调节 速流 阀阀
一、定量泵节流调速回路
?F
?Q??o 1
?Q??o 2
如图所示是否可以调速? 增加支路 ---溢流阀
p1
q1
A 1 ?o
?q??o 2
?F
q =KA △p m
活塞受力平衡方程 节流阀压力流量方程
? p1A1=F
? q1=KA TΔp1/2
Pp
T
=KA T(pp- F/A1)1/2
q p?o
Py
速度负载特性方程
? V =q1/A1 =KA T(pp- F/A1)1/2/A1
最大承载能力F= A1pp
1、进油节流调速回路
p1 q1
A 1 ?o
?q??o 2
Pp
q p?o
Py
?F
q =KA △p m
速度负载特性方程
? V =q1/A1 =KA T(pp- F/A1)1/2/A1
T
最大承载能力F= A1pp
p1=pp
△p=0
q1=0
1、进油节流调速回路
p1 q1
A 1 ?o
?q??o 2
?F ? V =q1/A1 =KA T(pp- F/A1)1/2/A1
相关文档
最新文档