卫星的大小分类

合集下载

卫星影像常见的米数

卫星影像常见的米数

卫星影像常见的米数
卫星影像常见的米数是指卫星图像的分辨率,也就是一张图片中每个像素所代表的实际地面面积大小。

根据不同的卫星影像数据来源和用途,常见的米数有:
1. 30米分辨率:一般用于大面积的地形分析和基础地图制作。

2. 15米分辨率:适用于城市规划、道路和建筑物的识别和监测等应用。

3. 5米分辨率:能够清晰地显示城市中的小区、公园等细节,也适合于森林资源的监测和调查。

4. 1米分辨率:非常适合于高精度地图制作、道路和建筑物的检测,以及资源调查和监测等应用。

5. 0.5米分辨率及以下:一般只有特殊需求才会使用,例如军事侦察、边境监测等。

选择不同的米数取决于具体应用的需求和使用场景,只有选择合适的米数,才能获得更高的数据精度和更多的应用价值。

- 1 -。

卫星的大小分类

卫星的大小分类

神舟太空集团信息,重量在1000Kg以下的人造卫星统称为“微小型卫星”,进一步可细分为:“小卫星”(smallsat),重100~1000Kg;“微卫星” (microsat),重10~100Kg;“纳卫星” (nanosat),重1~10Kg;“皮卫星” (picosat),重0.1~1Kg;“飞卫星” (femtosat),重0.1Kg以下。

英文词中的micro (微)、nano (纳)、pico (皮)和femto (飞)等,是国际单位制中用以表示十进制倍数的词头,其数值分别为10-6、10-9、10-12和10-15,这里只是借用来对微小型卫星按重量进行分类,并不具有其数值的实际含义。

微小型卫星体积小、重量轻、研制周期短、成本低、发射方式灵活,在军事上有较大的应用潜力,20世纪80年代中期以来受到越来越多国家的重视。

美国已发射重量在几百千克以下的多种小卫星和重量不足10千克的试验型纳卫星和皮卫星;英国、瑞典也在2000年发射了纳卫星;法国、印度、阿根廷、智利、巴西、韩国、泰国、巴基斯坦等国已经有了自己的小卫星。

此外,印度尼西亚、马来西亚、菲律宾等国及中国台湾地区正在与航天大国合作研制小卫星或微卫星。

微小型卫星目前主要用于通信、对地遥感、行星际探测、科学研究和技术试验,它的发展依然是受需求牵引和技术推动的制约。

更广泛的应用需要在关键技术上有革命性的突破与创新。

这些新技术主要包括电推进技术、多功能结构、微机电系统、一体化设计、先进的存储器与计算机软件技术以及轨道控制技术等。

随着这些技术不断被攻克,微小型卫星必将成为一大类航天器,并作为大型航天器的补充,在军事、国民经济各部门得到广泛应用。

根据太空垃圾尺寸的大小,国际上把太空垃圾分为3类:尺寸>10厘米的为大碎片,现在大概有2万多块,可被监测到;尺寸介于1~10厘米之间的为小碎片,现在大概有11万块;尺寸介于1毫米~1厘米之间的为微小碎片,现在大概有37万块。

必修二 第六章第二讲 人造卫星 宇宙航行(原卷版)

必修二 第六章第二讲  人造卫星  宇宙航行(原卷版)

第二讲 人造卫星 宇宙航行基础知识一、天体问题的处理方法1.建立一种模型:天体的运动可抽象为一个质点绕另一个质点做匀速圆周运动的模型2.抓住两条思路天体问题实际上是万有引力定律、牛顿第二定律、匀速圆周运动规律的综合应用,解决问题的基本思路有两条:(1)利用在天体中心体表面或附近,万有引力近似等于重力,即2R Mm Gmg =(g 为天体表面的重力加速度);(2)利用万有引力提供向心力。

由此得到一个基本的方程G 22222π4T m r m r v m r Mm ===ωr =ma 二、人造卫星1.人造卫星将物体以水平速度从某一高度抛出,当速度增加时,水平射程增大,速度增大到某一值时,物体就会绕地球做圆周运动,则此物体就成为地球的卫星,人造地球卫星的向心力是由地球对卫星的万有引力来充当的.(1)人造卫星的分类:卫星主要有侦察卫星、通讯卫星、导航卫星、气象卫星、地球资源勘测卫星、科学研究卫星、预警卫星和测地卫星等种类.(2)人造卫星的两个速度:①发射速度:将人造卫星送入预定轨道运行所必须具有的速度.②环绕速度:卫星在轨道上绕地球做匀速圆周运动所具有的速度.由于发射过程中要克服地球的引力做功,所以发射速度越大,卫星离地面越高,实际绕地球运行的速度越小.向高轨道发射卫星比向低轨道发射卫星要困难得多.2.卫星的轨道卫星绕地球运动的轨道可以是椭圆轨道,也可以是圆轨道.卫星绕地球沿椭圆轨道运动时,地心是椭圆的一个焦点,其周期和半长轴的关系遵循开普勒第三定律.卫星绕地球沿圆轨道运动时,由于地球对卫星的万有引力提供了卫星绕地球运动的向心力,而万有引力指向地心,所以,地心必须是卫星圆轨道的圆心.卫星的轨道平面可以在赤道平面内(如同步卫星),也可以和赤道平面垂直,还可以和赤道平面成任一角度,如图所示.3.三种特殊卫星(1)近地卫星:沿半径约为地球半径的轨道运行的地球卫星,其发射速度与环绕速度相等,均等于第一宇宙速度.(2)同步卫星:运行时相对地面静止,T=24 h.同步卫星只有一条运行轨道,它一定位于赤道正上方,且距离地面高度h≈3.6×104 km,运行时的速率v≈3.1 km/s.(3)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.4.卫星系统中的超重和失重(1)卫星进入轨道前的加速过程,卫星内的物体处于超重状态.(2)卫星进入圆形轨道正常运行时,卫星内的物体处于完全失重状态.(3)在回收卫星的过程中,卫星内的物体处于失重状态.三、卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM rGM v ωπω2332 四、三种宇宙速度1.第一宇宙速度(环绕速度)v 1= 7.9 km/s ,人造卫星的最小发射速度,人造卫星的 最大 环绕速度;2.第二宇宙速度(脱离速度)v 2=11.2 km/s ,使物体挣脱地球引力束缚的 最小 发射速度;3.第三宇宙速度(逃逸速度)v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.五、能量问题及变轨道问题只在万有引力作用下卫星绕中心天体转动,机械能守恒.这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.离中心星体近时速度大,离中心星体远时速度小.如果存在阻力或开动发动机等情况,机械能将发生变化,引起卫星变轨问题.发射人造卫星时,先将人造卫星发射至近地的圆周轨道上运动,然后经再次启动发动机使卫星改在椭圆轨道上运动,最后定点在一定高度的圆周轨道上运动.典型例题【例1】已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响.(1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面的高度为h ,求卫星的运行周期T .【练习1】如图所示,A是地球同步卫星,另一个卫星B的圆轨道位于赤道平面内,距离地面高度为h。

航天器空间微小型卫星技术考核试卷

航天器空间微小型卫星技术考核试卷
A.成本低
B.发射周期短
C.技术复杂度低
D.轨道寿命长
8.微小型卫星在空间探测中的主要应用是?()
A.通信
B.导航
C.地球观测
D.深空探测
9.以下哪种传感器不适合安装在微小型卫星上?()
A.摄像头
B.红外线传感器
C.雷达
D.重力梯度仪
10.微小型卫星的发射方式一般是什么?()
A.独立发射
B.搭载发射
7.微小型卫星在空间环境中可能遭受的辐射类型包括____、____和____。()
8.通信是微小型卫星的一项重要应用,其中____通信是一种常用的方式。()
9.微小型卫星的长期在轨运行需要解决的主要问题是____和____。()
10.微小型卫星的发展促进了____和____技术的进步。()
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
20. ABCD
三、填空题
1. 500千克
2. 10
3. 90
4.三结砷化镓太阳电池
5.姿态传感器、执行机构、控制算法
6. Falcon 9
7.宇宙射线、太阳粒子、地球辐射带
8. S频段
9.电源管理、热控制
10.微电子技术、通信技术
四、判断题
1. √
2. ×
3. √
4. ×
5. ×
6. ×
7. √
8. ×
C.火箭发射
D.航天飞机发射
11.下列哪项不是微小型卫星面临的挑战?()
A.资金不足
B.技术限制
C.法规限制
D.市场竞争
12.微小型卫星的寿命一般有多长?()
A.几个月
B.一年

常用遥感卫星数据介绍

常用遥感卫星数据介绍



Thursday, July 31, 2014
Landsat
Thursday, July 31, 2014
13
数据及适用年仹
• • • Landsat 7 ETM SLC-off (2003-) Landsat 7 ETM SLC-on (1999-2003) 敀障后 敀障前
Thursday, July 31, 2014
微米全色 0.52-0.90
LANDSAT 7 ETM SLC
标准参数 产品类型 单元格大小 Level 1T 标准地形校正 15m – 全色波段8;30m – 反射波段1-5和7;60m – 热波段6H和6L
输出格式 取样方法
地图投影 分发 传递
GeoTIFF 三次卷积 (CC)
中等空间分辨率: 4 – 30m » ASTER » LANDSAT » CBERS-2 » IRS • 低空间分辨率: 30 - > 1000 m
• » 气象方面:AVHRR、MODIS、
GMS、FY-1/2、SPOT-VGT • » 海洋方面:HY-1、SeaWiFS (美)
Thursday, July 31, 2014
Landsat 4-5 TM Landsat 4-5 MSS (1982-1992)

Landsat 1,2,3 MSS (1972-1983)
Thursday, July 31, 2014
LANDSAT 7
• 美国陆地卫星7 号(Landsat-7 ) 于1999 年4 月15 日由美国航空航天局(NASA) 发射升空,其携带的主要传感器为增强型主题成像仪 ( ETM+ ) 。 • Landsat-7 除了在空间分辨率和光谱特性等方面保持了与 Landsat-5 的基本 一致。Landsat-7每16 天扫瞄同一地区,即其16天覆盖全球一次。 • 2003 年5 月31 日(21:42:35 GMT) ,Landsat-7ETM+ 机载扫描行校正器 (ScanLinesCorrector, 简称SLC) 突然发生敀障,导致获取的图像出现数据 重叠和大约25% 的数据丢失,因此2003/5/31日之后Landsat 7的所有数据 都是异常的,需要采用SLC-off模型校正。另外,2003/5/31-2003/7/14以及 2003/7/3-2003/9/17之间的数据是没有获得。

卫星轨道参数详解

卫星轨道参数详解

卫星轨道参数详解⽬录⼀.卫星根数1.1 六根数1.2 卫星星历两⾏根数(TLE(two line element))tle1:tle2:1.3 航天器的运⾏轨道分类1.4轨道速度的计算⼀.卫星根数1.1 六根数⼈造卫星轨道六要素(也称为轨道六根数)是⽤于表征卫星轨道形状、位置及运动等属性的参数,可⽤来确定任意时刻卫星的轨道和位置。

通常的轨道六根数指的是:半长轴a、离⼼率e、轨道倾⾓i、近⼼点辐⾓ω、升交点经度Ω和真近点⾓φ。

六根数中,前2项确定了轨道形状,第3、4、5项确定了轨道平⾯所处的位置,第6项确定了卫星在轨道中当前所处位置(注意:第6项除了⽤真近点⾓来表征外,还常常⽤平近点⾓、过升交点时刻、过近地点时刻等参量表征,其效果是等价的。

六根数⽰意图半长轴a:这个根数决定了卫星轨道形成的椭圆长半轴的长度,及轨道的⼤⼩。

同时,这个根数也决定了发射卫星到这个轨道需要多少能量,因为根据活⼒公式,⼀个确定轨道的机械能是固定的。

不同任务类型的卫星,或者运载约束,⼯作在不同的轨道⾼度上。

发射到不同轨道所需要的能量都需要依靠半长轴来计算。

如下图所⽰,飞得越⾼的卫星速度越慢,也是依据半长轴计算⽽来的。

偏⼼率e:跟椭圆的扁率是⼀个意思,代表轨道偏⼼的程度。

偏⼼率近似等于0的轨道⼀般称为近圆轨道,此时地球的质⼼⼏乎与轨道⼏何中⼼重合。

偏⼼⼤于0⼩于1,轨道就呈椭圆状,偏⼼率越⼤轨道越扁。

轨道倾⾓i:即轨道平⾯与⾚道平⾯之间的夹⾓,⽤于描述轨道的倾斜程度,简单地说就是轨道平⾯相对于地球⾚道平⾯是躺着的还是⽴着的或者是斜着的。

卫星轨道的倾⾓决定了卫星星下点所能覆盖的地理⾼度,并对发射场和运载⽕箭的运⼒形成硬性约束。

具体⽽⾔,若想卫星⾏下点轨迹覆盖⾼纬度地区,则卫星轨道倾⾓不能⼩于该纬度;发射场的纬度不能⾼于卫星轨道倾⾓;在半长轴和发射场相同的情况下,运载⽕箭发射倾⾓更⾼的卫星需要提供更多的能量。

升交点⾚经Ω:理解这个轨道根数需要在称为惯性系的三维空间中进⾏。

高中物理:万有引力与航天基础知识点

高中物理:万有引力与航天基础知识点

高中物理:万有引力与航天基础知识点【知识网络构建】【知识清单】一、两种对立学说(了解)1. 地心说:(1)代表人物:托勒密;(2)主要观点:地球是静止不动的,地球是宇宙的中心。

2. 日心说:(1)代表人物:哥白尼;(2)主要观点:太阳静止不动,地球和其他行星都绕太阳运动。

二、开普勒定律开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。

三、万有引力定律1. 月—地检验:①检验人:牛顿;②结果:地面物体所受地球的引力,与月球所受地球的引力都是同一种力。

2. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比。

3.表达式:式中r表示两质点间的距离,M、m表示两质点的质量,G为引力常量:G=6.67×10-11 N·m2/kg2。

4.适用条件:两质点间的引力;质量分布均匀的球体。

5. 四大性质:①普遍性:任何客观存在的有质量的物体之间都存在万有引力。

②相互性:两个物体间的万有引力是一对作用力与反作用力,满足牛顿第三定律。

③宏观性:一般万有引力很小,只有在质量巨大的星球间或天体与天体附近的物体间,其存在才有意义。

④特殊性:两物体间的万有引力只取决于它们本身的质量及两者间的距离,而与它们所处环境以及周围是否有其他物体无关。

四、引力常量五、万有引力与重力(一)静止在地面上的物体由于地球的自转,物体随地球绕地轴在纬度圆平面内做圆周运动,万有引力F引的一个分力提供向心力F向,另一个分力即物体的重力mg与地面的支持力FN相平衡,即地面上物体所受万有引力可分解为重力和使物体随地球转动的向心力,重力只是万有引力的一个分力。

当物体位于赤道上时,r=R,各力处于同一直线上,向心力达到最大,重力最小:;当物体位于两极上时,r=0,重力等于万有引力而达到最大:从赤道到两极,物体所需向心力减小、重力增大,只在两极点处重力才等于万有引力,其他位置都不能说重力就是万有引力。

万有引力与航天——原卷版高一物理同步讲义(人教版2019必修第二册)

万有引力与航天——原卷版高一物理同步讲义(人教版2019必修第二册)

第7讲 万有引力与航天模块一:天体运动的一般规律1. 分析天体运动的主要思路(1)一个模型无论是自然天体(行星,月球等),还是人造航天器(人造卫星,空间站等),只要研究对象的轨迹是圆形,就可将其简化为质点的匀速圆周运动. (2)两条规律①中心天体表面附近重力近似等于万有引力,即2GMmmg R=,则2gR GM =(g 表示中心天体表面附近的重力加速度.②绕中心天体的行星或卫星的运动近似看作匀速圆周运动,所受的万有引力等于其向心力,即:22222π=====Mm v G ma m mr mv m r r r T ωω⎛⎫ ⎪⎝⎭向 2.人造卫星(1)人造卫星的分类在地球上水平抛出的物体,当它的速度足够大时,物体就永远不会落到地面上,它将围绕地球旋转,变为一颗人造地球卫星,简称人造卫星. ①人造卫星按运行轨道可分为低轨道卫星、中轨道卫星、高轨道卫星,以及地球同步轨道卫星、极地轨道卫星等.②人造卫星按用途可分为科学卫星、技术试验卫星和应用卫星. (2)人造卫星的运动规律卫星运行的轨道一般为椭圆形,中学阶段我们只考虑卫星的轨道为圆形的情况,这样卫星受到的万有引力提供了卫星做圆周运动的向心力.设卫星的轨道半径为r ,线速度大小为v ,角速度大小为ω,周期为T ,向心加速度为a .知识点碎片难度天体运动的一般规律★★★☆☆ 宇宙速度 ★★★☆☆ 同步卫星与近地卫星 ★★★☆☆ 计算中心天体的质量和密度★★★☆☆线速度22Mm v Gm r r= GM v r =或1v r ∝ 轨道半径越大,环绕天体的线速度、角速度和向心加速度越小,周期越大角速度22MmG m r rω= 3GMr ω=或31r ω∝ 环绕周期 2224Mm Gm r r Tπ= 234rT GMπ=或3T r ∝ 向心加速度 2MmGma r =向 2GM a r =向或.21a r∝向. 轨道平面规律环绕天体的运行轨道中心必定是中心天体的球心例1.★★★★★如图所示,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则12v v 等于( ) A .21r rB .12r rC .21r rD .221()r r练1-1.★★★★★两颗人造地球卫星,它们质量的比m 1★m 2=1★2,它们运行的线速度的比是v 1★v 2=1★2,那么( )A .它们运行的周期比为1★1B .它们运行的轨道半径之比为4★1C .它们所受向心力的比为1★2D .它们运动的向心加速度的比为1★8练1-2.★★★★★a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图示.下列说法中正确的是( )A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞危险模块二:宇宙速度1.宇宙速度及其意义(1)第一宇宙速度人造卫星的环绕速度随着卫星轨道半径r 的增大而减小,当轨道半径取最小值R 时,人造卫星的最大环绕速度即为第一宇宙速度.第一宇宙速度是人造卫星的最大环绕速度. ①第一宇宙速度的两种求解方法方法一:由于地球对卫星的万有引力是卫星环绕运动的向心力,即22Mm v G m R R =,则有GMv R =.式中R 取地球半径6400R =km ,地球质量34610M =⨯kg ,则有第一宇宙速度17.9v =km/s .方法二:由于地球对卫星的万有引力约等于卫星所在处的重力,这个重力就是卫星环绕地球运动的向心力.所以2v m mg R=,则v gR .式中R 取地球半径6400R =km ,g 为地球重力加速度9.8g =m/s 2,则有第一宇宙速度17.9v =km/s .由第一宇宙速度的两种表达式可以看出,第一宇宙速度的值由中心星体决定,可以说任何一颗恒星都有自己的第一宇宙速度,都应以GMv R=或v gR 表示,式中G 为万有引力常量,M 为中心星体的质量,g 为中心星体表面的重力加速度,R 为中心星体的半径. ②第一宇宙速度的意义第一宇宙速度是物体围绕地球做匀速圆周运动所需要的最小发射速度,又称最小发射速度、最大环绕速度、近地环绕速度,其值为:317.910v =⨯m/s .第一宇宙速度是人造卫星的最小地面发射速度.一个质量为m 的卫星在地面被发射入轨,设发射速度为v 0.若01v v =,则22Mm v G m R R=,即卫星入轨后恰好环绕地球做匀速圆周运动.若v 0 > v 1,则202Mm v G m R R<,即卫星所受万有引力不足以提供足够的向心力,卫星入轨后将先做离心运动,其轨迹可能是椭圆,抛物线或双曲线.若v 0 < v 1,则202Mm v G m R R>,即卫星所受万有引力大于卫星所需向心力.卫星将做靠近圆心的运动而落回地面.可见要在地面上将卫星送入轨道,需要017.9v v ≥=km/s ,即人造卫星的最小地面发射速度为17.9v =km/s .(2)第二宇宙速度当卫星的发射速度等于或大于11.2 km/s 的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,我们把v2=11.2 km/s叫做第二宇宙速度,也称为脱离速度.第二宇宙速度是挣脱地球引力束缚的最小发射速度.如果卫星的发射速度大于7.9 km/s而小于11.2 km/s,卫星将做椭圆运动.(3)第三宇宙速度当卫星的发射速度等于或大于16.7 km/s时,物体就可以摆脱太阳引力的束缚,飞到太阳系以外的宇宙空间中去,我们把v3=16.7 km/s叫做第三宇宙速度,也称为逃逸速度.第三宇宙速度是挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度.2.卫星发射速度对运动状态的影响当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同.(1)当v<v1时,被发射物体最终仍将落回地面;(2)当v1≤v<v2时,被发射物体将环绕地球运动,成为地球卫星;(3)当v2≤v<v3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;(4)当v≥v3时,被发射物体将从太阳系中逃逸.例2.★★★★★关于地球的第一宇宙速度,下列表述正确的是( )A.第一宇宙速度的大小为7.9 km/sB.若火箭发射卫星的速度大于第一宇宙速度,卫星将脱离地球的吸引C.人造地球卫星的环绕速度都大于第一宇宙速度D.第一宇宙速度跟地球的半径无关练2-1.★★★★★某探测卫星的轨道是圆形的,且贴近星球表面.已知月球的质量约为地球质量的181,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9 km/s,则该探月卫星绕月运行的速率约为( )A.0.4 km/s B.1.8 km/s C.11 km/s D.36 km/s练2-2.★★★★★2013年12月15日4时35分,嫦娥三号着陆器与巡视器(“玉兔号”月球车)成功分离,登陆月球后玉兔号月球车将开展3个月巡视勘察.一同学设计实验来测定月球的第一宇宙速度:设想通过月球车上的装置在距离月球表面h高处平抛一个物体,抛出的初速度为v,测量出水平射程L,已知月球的半径为R,月球的第一宇宙速度为( )A0v hRL B02vhRLC02v hRLD022vhRL模块三:近地卫星和同步卫星1.近地卫星近地卫星的轨道半径近似等于地球的R ,其运行的速度1=7.9km/s v ,是所有卫星的最大绕行速度,运行周期T =85 min ,是所有卫星的最小周期;向心加速度9.8==a g m/s 2,是所有卫星的最大加速度. 2.同步卫星相对地面静止,跟地球自转同步的卫星叫做地球同步卫星,也称为静止轨道卫星. ★周期一定:T =24h★角速度一定:其绕地运行的角速度等于地球自转的角速度. ★轨道一定a .所有同步卫星的轨道必在赤道平面内b .所有同步卫星的轨道半径都相同,即在同一轨道运动,据2224πMm G m r r T =,得24324.24104πGMT r ==⨯ km ,卫星离地面高度 5.6h r R R =-≈=43.5910⨯ km ,确定的高度为43.5910⨯ km★环绕线速度一定:在轨道半径一定的条件下,同步卫星的环绕速率也一定,且为:2 3.08GM R g v R R h===+ km/s 且环绕方向为地球自转方向★向心加速度大小一定:在轨道半径一定的条件下,同步卫星的向心加速度a ⊥的大小一定,由牛顿第二定律和万有引力定律得:()()222GMR ha R h R h ⊥==++,其向心加速度大小都约为0.23m/s 23.同步卫星、近地卫星和赤道上物体的比较如图所示,用A 代表同步卫星,B 代表近地卫星,C 代表赤道上的物体.同步卫星A 和近地卫星B 都是卫星,绕地球运行的向心力由地球对它们的万有引力提供,所以卫星的运动规律都适用;赤道上的物体C 随地球自转的向心力由万有引力的一个分力提供,所以卫星的运动规律对赤道上的物体不适用比较内容 赤道表面的物体 近地卫星同步卫星向心力来源 万有引力的分力万有引力向心力方向指向地心线速度11v r ω=2GMv R=()33GMv R h R hω=+=+ 132v v v <<(2v 为第一宇宙速度)角速度 1=ωω自 23=GMR ω ()33==GMR h ωω+自例3.★★★☆☆北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS),建成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星.对于其中的5颗同步卫星,下列说法中正确的是( )A .它们运行的线速度一定不小于7.9 km/sB .地球对它们的吸引力一定相同C .一定位于赤道上空同一轨道上D .它们运行的加速度一定相同 练3-1.★★★★★关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合练3-2.★★★★★研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( ) A .角速度变大B .线速度变大C .向心加速度变大D .距地面的高度变大例4.★★★☆☆均匀分布在地球赤道平面上空的三颗同步通信卫星能够实现除地球南北极等少数地区外的“全球通信”.已知地球半径为R ,地球表面的重力加速度为g ,地球自转周期为T ,则三颗卫星中任意两颗卫星间的距离为( ) A .3RB .23RC .232243πgR TD .223234πgR T练4-1.★★★★★(多选)假设月亮和同步卫星都绕地心做匀速圆周运动,下列说法正确的是( ) A .同步卫星的线速度大于月亮的线速度 B .同步卫星的角速度大于月亮的角速度 C .同步卫星的向心加速度大于月亮的向心加速度 D .同步卫星的轨道半径大于月亮的轨道半径练4-2.★★★★★地球的同步卫星距地面高H 约为地球半径R 的6倍,同步卫星正下方有一静止在地面上的物体A ,则同步卫星与物体A 的向心加速度之比是多少?若给物体A 以适当的绕行速度,使A 成为近地卫星,则同步卫星与近地卫星的向心加速度之比是多少?模块四:计算中心天体的质量和密度1.中心天体的质量求解(1)利用重力加速度g 求解若已知地球的半径R 和地球表面的重力加速度g ,根据物体的重力近似等于地球对物体的引力,则有:2mMmg GR =,可以求得地球质量2gR M G =.(2)利用圆周运动求解若已知月球绕地球做匀速圆周运动的周期为T ,半径为R ,根据万有引力提供向心力,即:222πMm G mR R T ⎛⎫= ⎪⎝⎭,可求得地球质量2324πR M GT =.若已知月球绕地球匀速圆周运动的半径R 和月球运动的线速度v ,由于地球对月球的万有引力提供月球做匀速圆周运动的向心力,根据牛顿第二定律得22Mm v Gm R R =,解得地球的质量为2Rv M G=. 若已知月球运行的线速度v 和运行周期T ,由于地球对月球的万有引力提供月球做匀速圆周运动的向心力,根据牛顿第二定律得222πMm G mR R T ⎛⎫= ⎪⎝⎭,22Mm v G m R R =,将以上两式消去R ,解得32πTv M G =.2.中心天体的密度求解通过观察绕天体做匀速圆周运动的卫星的周期T 、半径r ,由万有引力等于向心力,即21222π=m m G m r r T ⎛⎫ ⎪⎝⎭,得天体质量2324πr M GT =(1)若已知天体的半径R ,则天体的密度3233πr GT R ρ=(2)若天体的卫星环绕天体表面运动,其轨迹半径r 等于天体的半径R ,其周期为T ,则天体的密度23πGT ρ=. 例5.★★★☆☆利用万有引力定律可以测量中心天体的质量,通常有两种方法,例如:测地球质量. (1)测地球的质量的第一种方法英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转影响,求地球的质量. (2)测地球的质量的第二种方法月球在地球引力作用下做匀速圆周运动,月球绕地球的运行周期为T ,地球与月球两球心的距离为r ,已知引力常量为G .求地球质量.练5-1.★★★★★利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离练5-2.★★★★★为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R ,地球质量为m ,太阳中心与地球中心间距为r ,地球表面的重力加速度为g ,地球绕太阳公转的周期为T .则太阳的质量为( )A .23224πr T R gB .23224πmr T R gC .22234πT R g mrD .22234πR mg T r 练5-3.★★★★★ 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51peg b”的发现拉开了研究太阳系外行星的序幕.“51peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( ) A .110 B .1C .5D .10练5-4.★★★★★(多选)为了对火星及其周围的空间环境进行探测,我国发射了一颗火星探测器——“萤火一号”.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出( )A .火星的质量B .“萤火一号”的质量C .火星对“萤火一号”的引力D .火星表面的重力加速度练5-5.★★★★★假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为0g ,在赤道的大小为g ,地球自转的周期为T ,引力常量为G .地球的密度为( )A .0203πg g GT g (-)B .()0203πg GT g g -3πGT D.023πgGT gC.2第7讲作业万有引力与航天 1. 有两颗人造地球卫星A 、B ,它们的轨道半径的关系是r A =2r B ,则它们做匀速圆周运动的线速度之比A B v v 等于( ) A .12 B .21 C 2 D 22. 我国自主研发的“北斗”卫星导航系统中含有同步卫星,关于同步卫星下列说法中正确 的是( )A .同步卫星处于平衡状态B .同步卫星的线速度是不变的C .同步卫星的高度是一定的D .线速度应大于第一宇宙速度3. 海王星的质量是地球的17倍,它的半径是地球的4倍,则绕海王星表面做圆周运动的宇宙飞船,其运行速度是地球上第一宇宙速度的( )A .17倍B .4倍C .174倍D 17倍4. 己知地球半径为R ,静置于赤道上的物体随地球自转的向心加速度为a ;地球同步卫星作匀速圆周运动的轨道半径为r ,向心加速度大小为a 0,引力常量为G ,以下结论正确的是( )A .地球质量M =20a r GB .地球质量2aR M G= C .向心加速度之比220a r a R= D .向心加速度之比0a r a R=5. 2016年1月11日,中国正式批复首次火星探测任务并立项,将在2020年左右发射一颗火星探测卫星.已知引力常量为G ,火星半径为R ,在距火星表面为R 处的重力加速度为g 0.求:(1)火星的质量;(2)火星的第一宇宙速度.。

遥感复习题及答案

遥感复习题及答案

1、遥感?遥感与GIS的关系?高光谱遥感?遥感的概念:遥感就是从远处探测和感知物体或事物的技术。

遥感(RS)与遥测计算技术系统获取数据,通讯、互联网(Internet)传输数据,地理信息系统则承担处理、存贮及分析数据的任务,同时形成万维网地理信息系统(Web GIS)。

高光谱遥感是高光谱分辨率遥感(Hyperspectral Remote Sensing的简称。

它是在电磁波谱的可见光,近红外,中红外和热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。

一般光谱分辨率在λ/100 。

2、遥感分类?1、按遥感平台来分:地面遥感\航空遥感\航天遥感(太空遥感)【n 遥感平台:安装或装载传感器的飞行器。

n 传感器:记录地物发射或反射电磁波的装置】2、按传感器的探测波段来分:紫外遥感\可见光--(反射)近红外遥感\热红外线遥感\微波遥感3、按工作方式分:主动遥感\被动遥感\成像遥感\非成像遥感【n 主动遥感:遥感系统本身带有辐射源的遥感。

n 被动遥感:由传感器接收来自地物反射自然辐射源的电磁辐射来探测的遥感。

】4、按遥感的应用领域分:外层空间遥感\大气层遥感\陆地遥感\海洋遥感OR 从具体的应用来分:资源遥感\环境遥感\农业遥感\林业遥感\渔业遥感\地质遥感\气象遥感\水文遥感\城市遥感\工程遥感\灾害遥感\军事遥感3、遥感的主要特点是什么?1.宏观性 2获取信息快 3信息量大,技术先进 4应用领域广5 数据的综合性和可比性,多波段性,多时相性(城市变迁)4、遥感技术组成包括哪些部分?遥感过程包括哪几部分?一、技术组成:遥感平台、传感器、地面控制系统.1、遥感平台:装载传感器的工具近地面平台、航空平台、航天平台2、传感器(遥感器):是记录地物反射和发射电磁波能量的装置是遥感技术系统的核心。

一般由信息收集、探测系统、信息处理和信息输出4部分组成。

3、地面控制系统:指指挥和控制传感器与平台并接受其信息的系统二、遥感过程遥感试验,遥感获取,遥感信息接收,遥感信息处理,遥感信息分析应用5、遥感的发展趋势?(此题答案仅供参考,没找到和题目一致的答案)三、当前遥感技术发展的主要特点与展望1、新的传感器的研制,以获得分辨率更高,质量更好的遥感图像和数据2、大、中、小卫星相互协同,高、中、低轨道卫星相结合,时间分辨率从几小时到几十天不等,形成多级分辨率影像,以提供从粗到精的对地观测数据源。

北斗卫星物理知识点

北斗卫星物理知识点

北斗卫星物理知识点一、知识概述《北斗卫星中的物理知识点》①基本定义:北斗卫星就是我国自行研制的全球卫星导航系统里的卫星呀。

从物理角度来说呢,这里面涉及到很多物理概念。

比如说卫星围绕地球做圆周运动这个事儿,就和万有引力相关。

万有引力就是地球对卫星产生的一种吸引力,这个力的大小跟地球的质量、卫星的质量以及它们之间距离有关。

②重要程度:在物理学科中,关于卫星的物理知识那是相当重要的。

它把万有引力、圆周运动等好多知识点结合起来了。

它就像是知识点的大融合,你要是搞懂了北斗卫星里的物理知识,对理解天体运动、力学等内容帮助超级大。

而且这在航天研究等高大上领域也起着基础性的作用。

③前置知识:得先把基本的力学知识掌握了,像什么牛顿第二定律(简单说就是力作用在物体上会使物体加速或者减速之类的)、圆周运动的基本概念(物体沿着圆周做运动),还有万有引力的基本公式啥的。

要是这些都不清楚,那北斗卫星相关的物理知识就像天书了。

④应用价值:实际应用可太多了。

就拿咱们平常开车来说,车载导航就是靠北斗卫星系统。

从物理角度看,卫星通过发射信号然后我们的接收器接收这个信号,这里面就运用到电波传播等物理知识。

还有船舶在海上航行,靠北斗来定位,避免迷航。

在野外探险的时候,北斗卫星导航能精确告知你的位置,这个背后都有物理原理的支撑。

二、知识体系①知识图谱:在物理学科里,北斗卫星的知识点那是跟万有引力、天体力学、圆周运动这些是一家子的。

就像一棵大树的树枝,它和其他几个树枝相互联系交织。

比如说万有引力这根树枝,就直接影响着北斗卫星的运行轨道等很多核心方面。

②关联知识:和圆周运动联系紧密啊。

卫星绕着地球做近似圆周运动这个情况,圆周运动的那些参数又和万有引力有关系。

比如根据圆周运动的速度公式、角速度公式,再结合万有引力来确定卫星适合的轨道高度等。

还和电磁学有点联系呢,卫星发射和接收信号用到了电磁波。

③重难点分析:掌握难度有点大。

要说难点和关键点吧,万有引力和圆周运动结合去计算卫星的运行速度、轨道半径这些比较难。

遥感常用卫星参数整理

遥感常用卫星参数整理

常见遥感卫星参数一、美国陆地卫星(Landsat系列)(按传感器分类)1.RBVRBV是陆地卫星1~3号上携带的一套传感器,其全称是反束光导管摄像仪,简称RBV.在Lansat-1,Lansat-2上有三个波段:RBV1波段:蓝绿波段,波长范围是0.475μm~0.575μm;RBV2波段:红黄波段,波长范围是0.580μm~0.680μm;RBV3波段:红外波段,波长范围是0.690μm~0.830μm;在Lansat-3上RBV改成两台并列式,只有一个全色工作波段0.505μm~0.705μm,Lansat-1,Lansat-2的RBV的空间分辨率为80m,而Lansat-3上的RBV全色图像分辨率为40m。

犹豫RBV的图像质量不如MSS,故从Landsat-4开始取消了这种传感器。

2.MSS多光谱扫描仪MSS,是Lansat-1,Lansat-2,Lansat-3,Lansat-4,Lansat-5上都携带的传感器,其数字产品是MSS磁带,地面分辨率是80m。

一景MSS影像数据大约有2340个扫描行,每一个扫描行有3240个像元(像素)点,而一景MSS影像对应的实际地面面积是185km*185km,所以像元点的实际大小对应地面为79m*57m。

MSS传感器所采用的波段为:MSS4波段:蓝绿波段,波长范围是0.5μm~0.6μm;MSS5波段:红蓝波段,波长范围是0.6μm~0.7μm;MSS6波段:红外波段,波长范围是0.7μm~0.8μm;MSS7波段:红外波段,波长范围是0.8μm~1.1μm。

3.TMTM称为专题绘图仪,是Lansat-4,Landsat-5上携带的传感器,其数字产品是TM磁带。

TM的波普范围比MSS大,工作波段多,共有7个,分别是:TM1波段:蓝光波段,波长范围是0.45μm~0.50μm;TM2波段:绿光波段,波长范围是0.52μm~0.60μm;TM3波段:红光波段,波长范围是0.63μm~0.69μm;TM4波段:近红外波段,波长范围是0.76μm~0.94μm;TM5波段:中红外波段,波长范围是1.55μm~1.75μm;TM6波段:热红外波段,波长范围是10.4μm~12.5μm;TM7波段:中红外波段,波长范围是2.08μm~2.35μm;Lansat的地面分辨率为30M(TM6的地面分辨率只有120m),其亮度数字化级数为256(MSS只有65级)。

同步卫星、近地卫星与赤道物体的异同

同步卫星、近地卫星与赤道物体的异同

同步卫星、近地卫星与赤道物体的异同一、同步卫星1.轨道同步卫星是运行周期和地球自转周期相同的人造地球卫星,它与地球保持相对静止,总是位于赤道的正上方。

因此任何一个同步卫星的轨道平面都通过底薪,同步卫星的轨道也称为同步轨道。

2.周期同步卫星公转周期与地球自转周期相同,计T=24h。

3.高度与轨道半径:设同步卫星离地面高度为h2Mm4,47G,m(R,h) 得h=3.6x10km,则轨道半径=R+h=4.2x10m 22(R,h)T4.发射三颗同步卫星,即可覆盖全球的每个角落。

二、近地卫星1.轨道近地是指轨道在地球表面附近的卫星,计算时轨道半径可近似取地球半径。

2,周期2Mm4,G,mR 解得T=84min 22RT3.运行速率2MmVG,m 解得V=7.9km/s (第一宇宙速度) 2RR4.是绕地球做匀速圆周运动的人造卫星最大线速度和最小周期。

三、赤道物体1.轨道赤道物体是静止在地球赤道的表面上,随地球自转而绕地轴做匀速圆周运动,与地球相对静止。

四、同步卫星、近地卫星与赤道物体的相同点1.三者都在绕地轴做匀速圆周运动,向心力都与地球的万有引力有关。

2.同步卫星与赤道上物体的运行周期相同:T=24h。

3.近地卫星与赤道上物体的运行轨道半径相同:r=R(R为地球半径)。

00五、同步卫星、近地卫星与赤道物体的不同点r1、轨道半径不同:如图所示,同步卫星的轨道半径=R+h,h为同步卫星离 0同地面的高度,大约为36000千米,近地卫星与赤道物体的轨道r,r,r 半径近似相同,都是R,半径大小关系为:。

0同近赤2、向心力不同:同步卫星和近地卫星绕地球运行的向心力完全由地球对它们的万有引力来提供,赤道物体的向心力由万有引力的一个分力来提供,万有引力的另一个分力提供赤道物体的重力。

R0RR同近hMmGMr,rG,maa,3、向心加速度不同:由得:,又,所以: 同近22rr224,4,a,ra,amr,ma ;由得:,又同近22TTr,ra,a ,所以:;向心加速度的大小关系为: 同赤同赤a,a,a 。

雷达与卫星气象学

雷达与卫星气象学

雷达与卫星气象学第一部分第一章一、我国天气雷达的频率范围1.S波段天气雷达的频率范围在2700MHz-2900MHz;C波段天气雷达的频率范围在5300MHz-5500MHz;X波段天气雷达的频率范围在8000MHz-12500MHz;2.CINRAD-SA\CINRAD-SB\CINRAD-CB分别属于哪个波段。

二、天气雷达原理及组成:1.常规天气雷达:天气雷达间歇性地向空中发射电磁波(称为脉冲式电磁波),它以近于直线的路径和接近光波的速度在大气中传播,在传播的路径上,若遇到了气象目标物,脉冲电磁波被气象目标物散射,其中散射返回雷达的电磁波(称为回波信号,也称为后向散射),在荧光屏上显示出气象目标的空间位置等的特征。

2.多普勒天气雷达:当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。

根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。

同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。

所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。

3.天气雷达组成:主要由天线、馈线、伺服、发射机、接收机、信号处理、产品生成、显示终端等组成。

天线:发射/接收电磁波;馈线:传导电磁波;伺服:天线等的运转;发射机:产生电磁波;接收机:接收处理电磁波信号处理:处理回波信息;产品生成:根据算法,生成应用产品/控制雷达;显示终端:显示产品、控制雷达4.新一代天气雷达的基本结构:主要由三大系统组成:RDA—雷达数据采集子系统;RPG—雷达产品生成子系统;PUP—主用户终端子系统。

5.RDA主要结构:天伺系统、发射机、接收机、信号处理;主要功能是产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据——反射率因子、平均径向速度和径向速度谱宽。

CubeSat立方星介绍

CubeSat立方星介绍

CubeSat立方星介绍1CubeSat概述CubeSat即立方星,是一个结构形状呈立方体的微小卫星。

这种卫星虽然重量轻体积小,但是能够搭载一定的空间实验载荷开展科学实验,并且价格低廉,目前已经成为一种国际化的微小卫星标准。

CubeSat标准最初是由加州理工大学和斯坦福大学的一个团队于1998年发起的,而第一次CubeSat发射是在2003年。

标准化大大方便了卫星的测试与发射,确保了技术延续性和成熟度,并极大并降低了成本,这对于大学这样的研究机构开展相关空间方面的研究是十分有利的,同时也能调动广大学生的创新意识,因此获得了高校和研究机构的广泛关注。

之后CubeSat如同雨后春笋般出现,至今已有几十颗成功发射。

CubeSat标准定义了卫星的标准尺寸,必要的机械结构以及通用的用于卫星释放的运载适配器装置(即星箭接口,每个装置中可以容纳3颗CubeSat卫星)等(/images/developers/cds_rev12.pdf)。

立方星以“U”进行划分,所谓1U即指一个标准单元(体积10×10×10cm3的立方体,重量约1kg)。

1kg重量中按如下方式分配:●结构500g●平台系统200g●电池100g●任务载荷<200g立方星是模块化的架构,可以“U”为单位在一个轴或多个轴上扩展,形成2U、3U甚至更大的立方星。

目前发射最多的是3U构型的立方星。

常见的规格如下:表格1-1 1U和3U立方星常见规格及技术水平表格1-2 微小卫星规格划分根据微小卫星的分类,立方星属于纳星范畴。

我国首次参加的CubeSat项目是欧洲的QB50-CubeSat工程。

QB50工程由比利时冯卡门流体动力学研究所(VKI)联合欧空局(ESA)、陕西省微小卫星工程实验室(SELM)、荷兰代尔夫特理工大学等世界多个研究机构共同提出:采用50颗CubeSat组网,实现对目前人类尚未深入涉足的低层大气进行多点在轨测量,同时在星座中开展卫星再入大气层过程的一些相关研究。

太阳系的行星与卫星

太阳系的行星与卫星

1.太阳系的行星太阳系是我们所在的宇宙家园,它包含了八个行星,分别是水星、金星、地球、火星、木星、土星、天王星和海王星。

每个行星都有其独特的特征、大小、轨道和组成,让我们来一探究竟。

1.1水星•特征:水星是太阳系中最靠近太阳的行星,它是一个岩石类行星。

它的表面充满了撞击坑,没有大气层,因此无法保持大部分的大气气体。

•大小:水星是太阳系中最小的行星,其直径约为4879千米。

•轨道:水星的轨道非常接近太阳,它的公转周期约为88地球日。

•组成:水星主要由金属铁和岩石组成,其核心占据了大部分体积,比例高达70%。

1.2金星•特征:金星是太阳系中最接近地球的行星,它是一个类地行星。

它的大气层主要由二氧化碳组成,形成了强烈的温室效应,导致金星是太阳系中温度最高的行星。

•大小:金星与地球大小相近,直径约为12104千米。

•轨道:金星的公转周期约为225地球日,它的自转周期非常慢,约为243地球日。

•组成:金星的内部由金属核心、岩石层和厚厚的大气层组成。

1.3地球•特征:地球是我们居住的家园,它是一个类地行星。

地球的表面被大部分水覆盖,同时拥有适宜生命存在的大气层和气候系统。

•大小:地球的直径约为12742千米。

•轨道:地球的公转周期为365.24地球日,是我们定义一年的基准。

•组成:地球的内部由岩石地壳、地幔和金属核心组成。

1.4火星•特征:火星是太阳系中的红色行星,也被称为“红色星球”。

它的表面有许多火山、峡谷和撞击坑,表现出类似地球的地质特征。

•大小:火星的直径约为6779千米,约为地球的一半。

•轨道:火星的公转周期约为687地球日,它的轨道比地球椭圆。

•组成:火星的内部由岩石和金属组成,它的大气层主要由二氧化碳组成。

1.5木星•特征:木星是太阳系中最大的行星,它是一个巨大的气体行星。

它的大气层中含有丰富的氢和氦,同时也有大量的气旋和云层。

•大小:木星的直径约为139820千米,是地球直径的11倍。

•轨道:木星的公转周期约为12地球年,它离太阳最远。

关于星球的科学知识

关于星球的科学知识

关于星球的科学知识星球是指宇宙中的天体,通常包括行星、卫星、小行星和彗星等。

星球是研究宇宙的一个重要领域,也是人类能够进行探索和了解宇宙的一种方式。

下面我们就来了解一下关于星球的一些科学知识。

一、星球的分类星球可以按照大小分为行星和小行星。

行星是指大小足以保持几近球体形状的天体,如地球、火星等;而小行星是指规模相对较小的天体,一般为石头或冰块。

此外,星球还可以按照距离分为内行星和外行星。

内行星包括水星、金星、地球和火星,它们都存在于太阳系的内部区域。

而外行星包括木星、土星、天王星、海王星等,它们则存在于太阳系的外部区域。

二、行星的结构和特点行星的结构通常包括行星核、地幔和表层三个部分。

行星核是行星的中心部分,由金属铁和镍组成。

地幔则覆盖在行星核上,由硅、氧、铁等元素构成。

表层则是行星的外表面,最外层通常是大气层和地壳。

不同行星之间有着不同的特点和特征,如地球具有生命和水质特点,火星则处于类地行星中具有地球表面的地貌和矿物特征,而木星则是巨行星中最大的一颗,具有多颗卫星和环。

三、小行星的特点小行星是太阳系中大小规模介于几百米到数千千米之间的天体。

它们主要存在于太阳系的行星带内(从火星轨道到木星轨道)。

小行星是太阳系中最古老的天体之一,它们保存了太阳系形成时代的一些重要信息。

小行星的特点主要有自转周期短且不规则,自身运动速度和行星相对速度相比较慢,有冰和石头两种成分等。

四、星球的探索和研究星球的探索和研究是人类认识宇宙的一个重要途径。

目前,人类已经对地球、火星、月球等行星进行了深入的探测研究,取得了一些重大的科学成果。

行星探测可以通过多种方式实现,如航天器、探测器、卫星等。

其中,航天器是开展行星探测最常用的方式,它们可以实现对行星的近距离观察、拍摄和采集样本等操作。

总之,星球研究是一个博大精深的领域。

探索和了解星球的特点和特征,对于人类认识宇宙、探索人类未来的科学发展具有重要的意义。

卫星云图的识别

卫星云图的识别

卫星云图的识别 Jenny was compiled in January 2021卫星云图的识别一、卫星云图的分类卫星云图可以根据卫星所接受的波长范围分为三类:1.红外图像(IR):波长区间10.5至12.5um2.可见光图像(VIS):波长区间0.4—1.1um3.水汽图像(WV):波长区间5.7至7.1um红外云图红外云图的色调决定于物体的温度,反映了地面和云面的红外辐射或温度的分布。

浅色调表示红外辐射小,温度低;暗色调表示红外辐射大,温度高。

所以云顶高度越高,其温度越低,云的色调越白。

红外云图的优点是可区分不同层次的云。

缺点是因为温度相近的关系,不能区分地面和低云。

可见光云图可见光云图中亮度与星下底物表面的反照率相关很好。

图像较黑的色调代表低的亮度(低的反射辐射强度);较亮的色调代表高亮度。

高反照率的云,云厚度大,云中水含量高,云滴的平均尺度小;低反照率的云,云厚度小,云中水含量低,云滴的平均尺度大。

可见光云图的优点是分辨率高,可区分地面和低云,云的纹理清晰。

缺点很明显,因为仅靠目标物反射,所以夜间资料不可用。

水汽云图波长6-7um附近是以水汽为吸收体的一个谱区。

在强吸收带中,到达卫星的辐射主要来自对流层上部。

水汽图像和红外图像一样,把接收到的辐射转换为温度来显示。

对流层上部高湿区显的亮(冷),低湿区显得暗(暖)。

即使对流层上部很干燥,近地层大气仍然可能很湿。

水汽云图优点是,可提供大气水平运动信息。

缺点是其主要反映了400hPa-600hPa的水汽,对于其他吸收谱区无法显示。

二、云图识别判据:在卫星云图上,云的识别可以根据以下六个判据:结构型式、范围大小、边界形状、色调、暗影和纹理。

1结构形式在云图上,所谓结构型式是指目标物对光的不同强弱的反射或其辐射的发射所形成的不同明暗程度物象点的分布式样,这些物象点的分布可以是有组织的,也可以是散乱的,即表现为一定的结构型式。

卫星云图上云的结构型式有带状、涡旋状、团状(块)、细胞状和波状等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神舟太空集团信息,重量在1000Kg以下的人造卫星统称为“微小型卫星”,进一步可细分为:“小卫星”(smallsat),重100~1000Kg;“微卫星” (microsat),重10~100Kg;“纳卫星” (nanosat),重1~10Kg;“皮卫星” (picosat),重0.1~1Kg;“飞卫星” (femtosat),重0.1Kg以下。

英文词中的micro (微)、nano (纳)、pico (皮)和femto (飞)等,是国际单位制中用以表示十进制倍数的词头,其数值分别为10-6、10-9、10-12和10-15,这里只是借用来对微小型卫星按重量进行分类,并不具有其数值的实际含义。

微小型卫星体积小、重量轻、研制周期短、成本低、发射方式灵活,在军事上有较大的应用潜力,20世纪80年代中期以来受到越来越多国家的重视。

美国已发射重量在几百千克以下的多种小卫星和重量不足10千克的试验型纳卫星和皮卫星;英国、瑞典也在2000年发射了纳卫星;法国、印度、阿根廷、智利、巴西、韩国、泰国、巴基斯坦等国已经有了自己的小卫星。

此外,印度尼西亚、马来西亚、菲律宾等国及中国台湾地区正在与航天大国合作研制小卫星或微卫星。

微小型卫星目前主要用于通信、对地遥感、行星际探测、科学研究和技术试验,它的发展依然是受需求牵引和技术推动的制约。

更广泛的应用需要在关键技术上有革命性的突破与创新。

这些新技术主要包括电推进技术、多功能结构、微机电系统、一体化设计、先进的存储器与计算机软件技术以及轨道控制技术等。

随着这些技术不断被攻克,微小型卫星必将成为一大类航天器,并作为大型航天器的补充,在军事、国民经济各部门得到广泛应用。

根据太空垃圾尺寸的大小,国际上把太空垃圾分为3类:尺寸>10厘米的为大碎片,现在大概有2万多块,可被监测到;尺寸介于1~10厘米之间的为小碎片,现在大概有11万块;尺寸介于1毫米~1厘米之间的为微小碎片,现在大概有37万块。

而尺寸不大于1毫米的碎片现在大概有几千万块。

多年来,科学家一直担心卫星有可能会撞上这些太空垃圾。

一次撞击就有可能产生数千个垃圾,这些碎片存在摧毁其他卫星的潜在风险。

轨道里大约有2.2万个尺寸足以让地面上的人进行追踪的物体,以及无数更小的垃圾,它们会对载人飞船和非常重要的人造卫星造成严重破坏。

电视信号、天气预报、全球定位导航和国际电话连接均是存在撞击风险的一些服务项目。

最近美国宇航局在一份报告中称,围绕在地球周围的太空垃圾的数量已经达到一个“临界点”。

相关文档
最新文档