阵列声波处理流程共101页文档
电成像及阵列声波资料处理流程
WAVEXDAN( 四 分 量 交 叉 偶 极 各 向 异性处理,包括滤波、开窗、 异性处理,包括滤波、开窗、道平衡 等预处理, 估算慢度,、各向异性参数,、 等预处理 估算慢度 、各向异性参数 、 快慢横波时差) 快慢横波时差
Fracman( 利用弹性参数参数 ( 计算岩石应力预测裂缝发育带.) 计算岩石应力预测裂缝发育带 )
Sonic Fracture(利用斯通 利用斯通 利波透射和反射系数计算 开启裂缝分布) 开启裂缝分布
纵波、快慢横波、斯通利波时差, 纵波、快慢横波、斯通利波时差,快慢横波方 斯通利波能量及差值, 位,纵、横、斯通利波能量及差值,斯通利波 渗透率、裂缝发育程度、各向异性参数。 渗透率、裂缝发育程度、各向异性参数。
Four-component Rotation(计 计 算快慢横波方位) 算快慢横波方位 Sonic Waveform Energy ( 计 算 纵 波 、 BestDT:快慢横波慢度 : 横波、斯通利波波形、 横波、斯通利波波形、 能量及其能量差, 能量及其能量差,可根 Anisotropy PostProcess:利用 据裂缝对声波能量的吸 : 收情况来判定裂缝位置) 快慢横波慢度信息计算各向异性 收情况来判定裂缝位置) 参数(基于慢度、基于时间) 参数(基于慢度、基于时间)
China University of Petroleum
成像及阵列声波资料处理、 预处理 : 加速度校正、 深
度对齐 、 坏电极剔除 、 电 极增益校正 、 电极响应均 衡化、 衡化 、 确定显示颜色阈值 、 纽扣电流刻度等 图像显示 差 图 像 生 产 质量 裂缝交互 拾取 裂缝参数 定量计算
时差结果
纵横时差、反射波形、衰减、快慢横波时差、 纵横时差、反射波形、衰减、快慢横波时差、各向异 性参数, 性参数,裂缝渗透率
偶极子 交叉偶极子阵列声波测井
MAC、XMAC仪器是目前国际上非常先进的 声波测井仪,由于声波换能器的响应频带较 宽,低频响应更好,在井下实现数字化,信 号动态范围更大,因此记录的波形更完整, 更有利于获得准确的纵波、横波、斯通利波 的时差、幅度等参数,特别是 XMAC仪器在分 析地层速度各向异性方面具有独特的优势。
一、声波基础理论概述 二、偶极子及交叉偶极子阵列声波测量原理 三、所提供的基本成果及图件 四、偶极子及交叉偶极子阵列声波地质应用
裂缝、溶孔发育段声波幅度及衰减情况
高角度裂缝发育段声波幅度衰减情况
5、地层速度各向异性
在构造应力不均衡或 裂缝性地层中,横波 在传播过程中通常分 离成快横波、慢横波, 且快、慢横波速度通 常显示出方位各向异 性,质点平行于裂缝 走向振动、方向沿井 轴向上传播速度比质 点垂直于裂缝走向振 动、方向沿井轴向上 传播的横波速度要快, 以上就称之为地层横 波速度的各向异性。
Vs=(μ/ρ)0.5
对于大多数岩石, Vs比Vp小1.6至2.4倍
2019/11/16
8
软地层中声波的传播
由于软的固结松散的岩石 具有较小的弹性硬度,使 得软地层中声速相对较慢。 因此在硬地层中可以获得 横波和纵波时差,然而在 慢速的固结较差的地层中, 由于横波速度小于井内流 体声速,横波首波与井中 钻井液一起传播,不能产 生临界折射的滑行横波, 使得单极声波测井无法测 出横波的首波。
页岩
58.8-143
液体及气体:
材料
时 差 (us/ft )
水(淡水): 水(含NaCl 100,000mg/L ) 水(含NaCl 200,000mg/L ) 石 油: 泥 浆: 氢: 甲 烷:
208 192.3 181.8
238.1 189 235.3 666.6
阵列声波测井技术基础和应用
四、阵列声波测井基础
P-波:也就是纵波,它取“Primary”的字首,表示初至波的 意思。(也叫 Compressional Wave) S-波:就是横波,它取“Secondary”的字首,表示次到波的 意思。(也叫 Shear Wave)
四、阵列声波测井基础
斯通利波(Stoneley Wave):是一种沿井壁传播的、在井 壁和声波探头之间环状空间中的流体(一般是井内泥浆)中 产生的导波,即当声波脉冲与井壁和井内流体的界面相遇时 就会产生斯通利波。斯通利波在全波列上具有波幅相对较 大、频率较低、速度低于井内的流体纵波声速等突出的特 点。斯通利波的相速度一般为纵波速度的0.89-0.96倍,其频 率小于5000Hz,斯通利波在流体和固体交界面处波幅最大, 在流体介质中斯通利波的衰减最快。 应用:利用它的衰减可以进行地层渗透率的评价。
(MIRL 3206)
PA
小探头 ———
——— ———
9.0″ 5.5″
24″
550
井眼居中测量
五、阵列声波测井仪
三大测井公司 1、斯仑贝谢公司:DSI 2、阿特拉斯公司:MAC、XMAC 3、哈里伯顿公司:WaveSonic
六、声波慢度的提取
波形区分方法:
(1)、在声波全波列图上,横波幅度大于纵波幅度; (2)在声波全波列图上,纵波和横波首波相位是相反的,即相位相差180°; (3)从到达时间上区分速度较快的纵波和速度较慢的横波及其它速度更慢的 斯通利波。
增加井内液柱压力,将减小井眼周围的应力集中,当有 效切向应力变为拉伸并达到岩石的抗拉强度时,地层容易 张性破裂,在井壁上产生裂缝。当岩石受最大切向应力 时,θ应为90°,得到地层破裂时
3σ x − σ y − Pm − α Pp = −St
阵列声波学习.pptx
四 . 阵列声波信息提取
第28页/共91页
阵 列 声 波 测 井 资 料 的 处 理 流 程 图
数据输入 波列回放 质量检查 频谱分析 滤波处理 相关分析
时差拾取
到时计算
幅度分析
衰减分析
岩石力学参数计算
渗透率计算
水压裂缝高度预测
第29页/共91页
出砂分析
井眼稳定性分析
相关分析程序的图形用户界面
DTS (us/ft)
第42页/共91页
孔隙度和岩石类型的纵波与纵横比交会图
第43页/共91页
利用流体压缩系数可判别流体性质
第44页/共91页
BZ25-1-9井
力学参数在气层中的响应特征
第45页/共91页
BZ25-1-9井
声波幅度在气、水层段的响应特征
气 水
第46页/共91页
文昌9-1-1井纵波幅度在含气层段明显衰减
最小源距( f t )
最大源距( f t )
垂向分辨率 (ft)
适用井径范围 ( i n)
仪器外径( i n) 最大承温 ( ° F)
最大承压( psi ) 仪器重量( l b) 仪器长度( f t )
长源距声波测 井仪
2( 单极) 20
16 2( 单极)
2. 0 7. 0
9
2
4. 5-21 3. 88 400 20000 418. 5 25. 33
第47页/共91页
文昌9-1-2井在水层段纵波幅度的响应特征
第48页/共91页
KL2井声波法识别油气
第49页/共91页
丽水3-6-12井气层上的声波测井效果
第50页/共91页
5.3 缝洞性储层评价
EXCELL2000-阵列声波
• 为了能获得优质的测井曲线,该仪器要求测井时
居中良好,所以至少加装了3个橡胶扶正器。橡 胶扶正器应该安装在接收探头的底部和发射探头 的顶部。不要在发射探头和接收探头之间安装任 何扶正器。除非有特殊情况如大 度的小井眼井 (绝 体弯曲可能碰到井壁),否则会影响波形的 特性。与SDDT组合测井时,不要在2只仪器之间 连接柔性短节,也不要在SDDT上加装铁质扶正 器,否则会影响磁力计的读值。如果与中子密度 组合测井,应该考虑加一支柔性短节,以解决居 中与偏心的冲突。
第二章 仪器技术指标
• 仪器总长:10.51米,重470磅,213公斤。 • 仪器外径:3.625 in • 适宜井眼范围: 4.5 in~16 in • 承受压力:20000 psi • 耐温指标:300F/149c • 最大弯曲度和抗拉强度:20度/30米,45
吨。
仪器连接图
第三章 仪器组合
典型阵列声波测井滤波配置在下表中列出:
•硬
中 软
地层 类型
单极时差窗口 30-160µsec/ft 60-190µsec/ft 30-210µsec/ft
DX/DY时差窗口 70-250µsec/ft 10-400µsec/ft 15-550µsec/ft
单极滤波 器
偶极滤波器
5-15kHz 1.2- 4.5kHz 5-15kHz 1.பைடு நூலகம்- 3.2kHz 5-15kHz 0.8- 2.5kHz
• 测井仪由 4 部分组成 : 发射控制部分、发射
器/绝缘体、接收探头部分、主电子线路部 分。它有 3个发射器(单极子, X 偶极子和 Y偶极子),以及按8共面“环”排列的32 个接收器,每个共面“环”上有与仪器轴 线垂直安装的 4 个相差 90 度的接收器。发 射器每发射一次, 8 组接收阵列的 32 个接 收器将记录 32 条波形曲线。也就是说,对 于每1个发射序列或每 1个深度点可获得 96 条波形,其中包括32条单极波形,32条XX偶极波形和32条Y-Y偶极波形。
阵列声波处理流程-eXpress
快速地层中的单极波传播
快速地层:
接收器
纵波
Vs > Vf
横波
发射器
地层
快速地层中的单极波列
Receiver Array
Monopole Transmitter
慢速地层中的单极波传播
纵 首波 波
慢速地层: Vs < Vf
斯通利波 横波
慢速地层中的单极波列
纵波 3.35 斯通利波波
4.42 1000
体积模量(BMOD) 2 2 3t s 4tc 10 K 1.3410 b 3t 2 t 2 s c 剪切模量(SMOD)
1.3410
10
b
t s2
泊松比(POIS)
1 t s2 2tc2 2 2 2 t s tc
DEPTH (feet)
波分离
56
反射系数的计算
DWVTR
DEPTH
REFL
RWVRT
REFL0
RLAG TIME
57
波分离 成果图
包括直达波的中 心频率、斯通利 波慢度、原始反 射系数、处理过 的反射系数、伽 马曲线、下行波 相对直达波的时 间延迟、以及分 离开的直达波、 下行波、上行波
2、求渗
快横波 = XX cos2q + (XY + YX) sinq cosq + YYsin2q 慢横波 = XX sin2q - (XY + YX) sinq cosq + YYcos2q
处理前的质量控制
波形偏移的线性度 波形和和波谱相关性 X&Y波形的匹配程度
波 形
波 谱
阵列声波测井介绍
苏xx井第7号层MPAL资料纵波幅度衰减明显,有效地指示出气层的特征。
利
用
理 论
纵
理
图横
论
版波
进速
行 气
比
图 版
层
识
别
纵波时差
利
用
理 论
纵
图横
版波
进速
行 气
比
层
识
别
气层 差气层 油层 水层 干层
纵波时差
利用泊松比、压缩系数参数进行储层识别的方法标准
泊松比 干层 0.22左右 泥岩 0.22-0.35 气层 < 0.23
处理成果质量控制
• 预处理
——在波列里提取时差 ——波形和频谱的一致
• 后台处理
——时差和相似度重合 ——首波到时和波形重合
预处理质量控制
交互的时差编辑
未编辑 Comp. Shear
Draw
编辑后
Shear
Correlogram
后台处理质量控制
时差/相似度 & 首波到时/波形
偶极横波提取
从偶极 波形中 提取横 波时差
仪器总装图
接收电路
接收声系
隔声体
发射声系
发射线路
仪器由发射电路短节、发射换能器短节、隔声体 短节、接收换能器短节和接收控制采集电子线路短 节五部分组成 ,仪器总长8.53米,重约300公斤。
测量方式
单极方式:
采用传统的单极声源发射器,可向井周围发射声波,使 井壁周围产生轻微的膨胀作用,因此在地层中产生了纵 波和横波,由此得出纵波和横波时差 。在疏软地层中, 由于地层横波首波与井中泥浆波一起传播,因此单极声 波测井无法获取横波首波 。
MPALmechprop岩石物理参数提取模块
主被动声波阵列信号探测及定位
主被动声波阵列信号探测及定位声波阵列信号探测及定位是一种利用声波信号进行目标探测和定位的技术方法。
它主要通过声波在空气或水中传播的特性,通过主动发射或被动接收声波信号,实现对目标位置和特征的探测。
声波阵列系统由多个声源和接收器组成,其中声源可以主动发射声波信号,而接收器可以接收来自目标或其他源的声波信号。
通过将多个声源和接收器分布在空间中的不同位置,声波信号在传递过程中的延迟和强度变化可以提供目标位置和特征的信息。
在主动声波阵列信号探测中,系统通过控制声源发射声波信号,并通过接收器接收回波信号,从而分析回波信号的时延和幅度变化,以确定目标位置。
通过计算声波信号的传播速度和控制声源的发射时刻,可以精确计算目标距离。
此外,目标在声波传播过程中的散射情况也可以提供目标的特征信息,如形状、表面特性等。
被动声波阵列信号探测则是基于接收来自目标或其他源的声波信号进行目标定位。
由于目标本身会散射声波信号,通过分析接收到的声波信号的到达时间差和幅度变化,可以确定目标的位置和特征。
被动声波阵列信号探测通常不需要发射声波信号,因此对目标的隐蔽性较好。
在实际应用中,主被动声波阵列信号探测及定位技术有着广泛的应用,尤其在海洋探测、水声通信和目标定位等领域。
在海洋探测中,声波阵列技术可以用于定位和追踪潜艇、水雷等水下目标;在水声通信中,声波阵列技术可以提高通信质量和距离;在目标定位中,声波阵列技术可以用于定位飞机、船只等目标。
然而,声波在传播过程中存在一些限制和挑战。
首先,声波信号的传播速度与介质有关,而介质的性质又会影响声波信号的衰减和散射。
其次,噪声和干扰对声波信号的传输和接收可能产生影响,降低探测和定位的准确性。
此外,多径效应和多目标问题也是声波阵列探测和定位中需要克服的技术难题。
为了解决以上问题,声波阵列技术可以与其他传感器技术相结合,如雷达、红外、电磁等,实现多模态的目标探测和定位。
不同传感器的组合可以提供更全面和准确的目标信息,并具有互补优势。
6-阵列声波
多极阵列声波测井图
单极全波列 偶极全波列
玻璃纤维 套管波
纵波 扰曲横波
斯通利波
多极阵列声波测井的地质应用
» 可提取准确的纵、横波信息,提供杨氏模量、 弹性模量、泊松比等岩石物理参数,预测岩石 强度,岩石破裂压力。 » 利用斯通波幅度衰减导出渗透率,评价有效天 然裂缝及渗透性。 » 利用岩石机械特征参数做井壁稳定性分析。 » 为钻井工程、压裂施工、油气层开采等方面提 供某些有用参数,如岩石强度、地应力、岩石 破裂压力、安全生产压差等所需参数。 » 识别含气层。
斯通利波的变 密度显示
有泥饼时,用 斯通利波传播 特征不能判断 裂缝的有效性
蒲西1井斯通利波衰减特征
DSI的应用
判别地层各向异性(如裂缝走向)、识
别井壁附近的垂直裂缝(可能不与井 眼相交,但压裂后对提高产能有利)
– 在各向异性介质中,不同方向的声速是 不一样的 – DSI有两个正交偶极发射器,向地层沿两 个相垂直的方向定向发射压力脉冲。
地层的非均质性
井眼中的横波分裂
用DSI方位各向 异性来评价高角 度有效裂缝
识别井眼 外的裂缝
上图A层的FMI图像
由快横波与FMI 获得的裂缝走向 的对比
DSI的应用
估算地层渗透率
– 渗透性地 层,切变模量下降,斯通利波 时差增大。因此用斯通利波可计算渗透 率。
DSI的应用
分析岩石机械特征
四、偶极横波测井基本原理
偶极子发射器能产生沿井壁传播的挠曲波
挠曲波是一种频散界面波,在低频时,它
以横波速度传播,在高频时,它以低于横 波的速度传播 DSI是通过对挠曲波的测量来计算地层横 波速度的 为确保横波速度的测量精度,偶极发射器 应尽量降低发射频率 通过交叉偶极子的定向性对地层进行各向 异性分析.
阵列声波测井仪器研制及应用
阵列声波资料的应用
文23-24裸 眼井阵列声 波时差(黑 线) 、套管 井阵列声波 时差(红线) 与普通声波 时差(绿线) 的对比
阵列声波资料的应用
2、 岩性识别
利用纵横波速度比可以大致确定地层的 岩性,一般情况下,纵横波速度比(VP/VS或 DTS/DTC):砂岩为1.58-1.8;灰岩为1.9; 白云岩为1.8;泥岩为1.936。
声系的源距
阵列声波测井仪器设计
声系所用换能器的选择:
用换能器检测系 统所挑选的接收 换能器的频谱图
阵列声波测井仪器设计
制作完成的井下仪器:
阵列声波测井仪器设计
仪器的特点 :
•在裸眼井中可测量地层的纵波时差和横波时差以及斯通利波时差。 通过二维谱频散处理,生成时差分布图像。 •在套管井中可测量声幅、声波变密度 。
阵列声波资料处理技术
声波的二维谱处理方法:
原始测井波形
阵列声波资料处理技术
声波的二维谱处理方法:
将原始测井 的8个不同源 距的波形做 FFT得到频 谱和相位谱
计算的频谱
阵列声波资料处理技术
声波的二维谱处理方法:
用相位谱建 模得到二维 谱分布
阵列声波资料处理技术
声波的二维谱处理方法:
二维谱分布 转化为相速 度随频率的 变化得到的 时差(相速 度)分布
阵列声波资料的应用
普通声波
•识别岩性 •孔隙度计算 •定量解释Ⅰ界面固井 质量 •定性解释Ⅱ界面固井 质量
阵列声波
•识别岩性 •孔隙度计算 •定量解释Ⅰ界面固井 质量 •解释Ⅱ界面固井质量 •识别气层 •套后声速测量
阵列声波资料的应用
1、套管井声波孔隙度资料补测
由于套管的声速大于地层的声速, 采用传统的补偿声波在套管井中测量 不到地层的纵、横波时差。而采用阵 列声波技术在胶结好的情况下可以得 到地层的时差。
阵列声波的纵横波时差提取方法研究
( 1西南石油大学石油工程测井实验 室 四川 成都 6 0 0 2塔里木油 田通信事务部 新疆 塔里木 8 10 15 0 4 00)
摘 要 : 多极子阵列声波测井是继长源距声波测井之后的新一代全波列测井 , 其资料 蕴含着丰 富 的地 层 ( ) 信 息 , 地质 和 工程 应 用 中发 挥 着越 来越 大的作 用 。本 文探 讨 了基 于 S C 法的 岩石 物理 在 T
0 引 言
多 极 子 阵列 声 波 测 井 ( S/ DI XMA / vSn CWaeoi c) 是 目前 应用 较广 的全 波列测 井 ,其优 点是 可利 用 多
则 , 幅度 比纵波幅度要小得多 , 其 并且在噪音信号 内部或者纵波信号 内部 , 它们振幅变化 不大 , 而在
纵波 波 至点 前 后 的振 幅 , 即噪音 与 纵波 之 问振 幅变
短窗能量与长窗能量 比值 R 为
热 :
穗
等 ,9 6 如下 : 18 )
在 波至 点前 , S 与 E 近 乎相 等 , 一 条 近 R为 于 水平 的直 线 ; 至 点 处 ,m 突然 增 大 , E 滞 波 S会 而 后 于 S 缓慢增 大 ,因而在 波 至点 处 R 表现 为一 明
油学院学报 19 ,1 ) 992f 4
[ 胡文祥 , 5 ] 声波测井资料弱初 至波检 测新方 法 , 江汉石 油学
院学报 ,9 4 1 ( ቤተ መጻሕፍቲ ባይዱ 19 ,61 2
f i a n r t . 9 6 S mb nepo e ig 6 mblC V adMa etT L 18 . e l c rcsn 6 K 】 l r a a s
卜 匿[m rnt 一 — J-- so s1 g[ ) f k △ 4 ( + z
基于DSP的阵列声波信号采集与处理系统的设计
基于DSP的阵列声波信号采集与处理系统的设计随着由过去的单个变为阵列结构,仪器要处理的信号也由过去单一的参数信号变为复杂的图像信号,同时,对信号的采集与处理也变得越来越复杂,研制一种阵列声波信号采集与处理系统,并进而开发出一种阵列声波测井仪,成为目前我国石油测井仪器进展的迫切需要。
为此本文设计了一套基于的阵列声波信号采集与处理系统,此系统将作为正在研制的阵列声波测井仪中的一部分,应用于油田勘探中。
系统总体计划设计阵列声波测井仪由声系、线路和钢外壳组成。
声系在最下端,由发出声波的放射晶体和接收声波并把其转换成电信号的传感器阵列组成。
电子线路分为供电模块、主CPU模块和采集模块。
其中,主CPU模块是阵列声波测井仪的控制部分,它一方面把地面部分传给采集模块和声系的参数传给采集模块和声系,另一方面把采集模块传上来的数据传给地面部分。
采集模块即为阵列声波采集与处理系统,它的一端接声系的传感器阵列,另一端接主CPU,主要功能为在主CPU的控制下把前端传感器阵列传过来的信号采样、数字化并举行一系列的处理,然后把处理结果上传给主CPU。
按照阵列声波采集与处理系统的性能要求和牢靠性与低功耗设计原则,本设计打算采纳以DSP芯片为核心的八通道实现计划,1所示。
因为前端传感器阵列送来的数据信号比较微弱,要先由对信号举行放大,同时此放大器也可以有效地削弱或消退后端对前端模拟声波输入信号的影响。
放大器之后是ADC,从放大器到DSP形成一个采集与处理的通道,系统中这样的通道共八个。
而图1中的是系统的控制规律部分。
此外,考虑到系统牢靠性和实时性的要求,本系统设计成每个通道都有一个DSP处理器而不是八个通道共用一个DSP处理器。
图1 阵列声波信号采集与处理系统总体结构暗示图第1页共6页。
超声波操作流程归纳总结
超声波操作流程归纳总结下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超声波操作流程。
一、准备阶段。
1. 确认检查部位和范围,与患者沟通,明确具体检查部位和范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阵列声波处理流程
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学ห้องสมุดไป่ตู้没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克