实验十磁电式传感器测转速实验

合集下载

磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告实验目的:1.通过磁电式传感器测量旋转角度和转速。

2.掌握磁电式传感器的工作原理。

3.熟悉使用数字万用表和示波器进行信号测量。

实验器材:1.磁电式传感器2.数字万用表3.示波器4.直流电源5.实验台实验原理:磁电式传感器是一种将磁场、电场和运动简单互相联系的电器元件。

磁电式传感器由磁电感应电路和运放电路构成。

当磁感发生改变时,电感也会随之改变,从而在运放电路中产生输出电压信号。

在本实验中,由于磁电式传感器的内部磁场与传感器转动轴线垂直,因此当传感器转动时,会产生与转动速度成正比的电压输出信号。

根据电压输出信号的变化可以确定传感器电压的周期和频率,从而计算出旋转角度和转速。

实验步骤:1.将磁电式传感器安装在实验台上,并将传感器的输出插头插入数字万用表的电压测量插孔中。

2.将磁电式传感器连接到示波器上,并将示波器调整到适当的范围。

3.将磁电式传感器接入直流电源中,将电压设置在适当范围内。

4.慢慢旋转传感器,观测数字万用表和示波器上的输出信号,记录旋转角度和转速数据。

5.根据记录的数据,分析传感器的性能和工作特点,并进行实验报告撰写。

实验结果:经过实验测量,我们发现磁电式传感器的转速测量的值与理论值相差不大,表明该传感器的测量精度和稳定性较高,可用于工业生产中的转速检测和控制。

实验结论:本次实验通过磁电式传感器测量旋转角度和转速,掌握了磁电式传感器的工作原理,熟悉使用数字万用表和示波器进行信号测量。

实验结果表明,该传感器具有高测量精度和稳定性,可用于工业生产中的转速检测和控制。

磁电式转速传感器测转速实验

磁电式转速传感器测转速实验

磁电式转速传感器测转速实验本文主要介绍磁电式转速传感器的工作原理及其在转速测量中的应用。

通过实验验证它的测速精度,并探究其各种测速原理。

一、磁电式转速传感器的工作原理磁电式转速传感器是一种测量转速的传感器,它利用磁电效应实现测量。

磁电效应是指物质受到磁场作用后,会产生电压或电流变化的现象。

磁电式转速传感器利用磁场作用于旋转铁芯时,感应出的磁场信号,然后将这个信号转化成电信号,从而测量转速。

磁电式传感器主要是由磁场发生装置和信号处理电路组成。

其中磁场发生装置中通常包括磁铁和磁性材料,而信号处理电路包括放大电路、滤波电路和信号采集电路等。

磁电式传感器通过磁场感应出的电压信号,可以测量旋转体的转速。

磁电式转速传感器是一种广泛应用于测量转速的传感器。

它通常被用于汽车、摩托车、机床、船舶、电机、风力发电等领域中的转速测量。

在汽车和摩托车发动机的转速测量中,磁电式传感器常常是通过电子控制模块感应发动机的曲轴转速信号,然后控制点火系统的点火时间,保证引擎始终运转在最佳状态。

在机械系统中,磁电式传感器被广泛应用于螺纹切削加工机床、数控机床、切削机床、磨削机床等精密加工设备的转速测量中。

磁电式传感器由于其测量精度高、探测范围广、安装简单等优点,可广泛应用于各种机械系统的转速测量中。

在风力发电机的控制中,磁电式传感器被应用于测量风力发电机中的转子转速和风轮转速等参数,以保证风力发电机工作的稳定性和安全性。

1、实验目的2、实验器材磁电式转速传感器、旋转体、气缸等。

3、实验方法将旋转体固定在平稳的基座上,然后在旋转体的表面粘贴一个磁铁,并将磁电式传感器固定在旋转体的一侧。

然后将旋转体旋转起来,使磁铁经过磁电式传感器,记录下磁电式传感器测量到的电信号。

通过多次测试,得出磁电式传感器感应的信号的方波峰值时间周期,并计算出转速。

最后,通过计算得出磁电式传感器的测速精度。

4、实验结果通过实验得出磁电式转速传感器的测速精度达到了0.1%。

磁电式传感器测量转速原理

磁电式传感器测量转速原理

磁电式传感器测量转速原理1.介绍磁电式传感器是一种常用于测量转速的传感器,通过检测磁场的变化来计算物体的转速。

它具有结构简单、精度高、响应快等优点,在许多领域都得到广泛应用。

2.磁电式传感器的工作原理磁电式传感器通过利用磁场感应现象来测量转速。

当传感器与被测物体相互作用时,磁场的变化会产生电压信号,从而实现转速的测量。

3.磁电式传感器的结构3.1 磁敏元件磁电式传感器的核心部件是磁敏元件,它可以将磁场变化转换为电压信号。

常用的磁敏元件包括霍尔元件和磁致伸缩(Magnetostrictive)元件。

3.2 信号调理电路信号调理电路用于放大和整形由磁敏元件产生的微弱电压信号,以便后续的处理和分析。

它可以提高传感器的灵敏度和稳定性。

3.3 输出接口输出接口将处理后的电压信号转换为转速值或其他形式的信息输出,便于用户进行监测和控制。

4.磁电式传感器测量转速的步骤4.1 确定测量位置在安装磁电式传感器之前,需要确定被测物体上用来测量转速的位置。

通常选择物体上的凸起或特定的标记点作为测量点,以确保测量的准确性和稳定性。

4.2 安装磁电式传感器根据测量位置确定的要求,正确安装磁电式传感器。

通常需要将传感器固定在物体上,并保持一定的距离,以便磁场的变化能够被传感器准确地检测到。

4.3 连接电路将磁电式传感器的输出端口与信号调理电路相连接,确保信号能够被正确的接收和处理。

4.4 校准和调试在使用磁电式传感器进行转速测量之前,需要进行校准和调试,以确保测量结果的准确性和可靠性。

校准过程中,可以通过与其他精密测量设备进行对比,来调整传感器的灵敏度和输出。

5.磁电式传感器测量转速的应用5.1 汽车工业在汽车工业中,磁电式传感器被广泛用于测量车辆引擎的转速。

它可以帮助监测引擎的工作状态,提高车辆的性能和燃油利用率。

5.2 机械制造磁电式传感器在机械制造过程中也有很多应用。

它可以用于测量机器工作部件的转速,以监测和控制机器的运行状态。

磁电式传感器实训报告

磁电式传感器实训报告

一、实验目的1. 了解磁电式传感器的工作原理和结构特点;2. 掌握磁电式传感器的安装、调试和应用方法;3. 学会使用磁电式传感器进行测量和信号处理;4. 提高实际操作能力和工程应用能力。

二、实验原理磁电式传感器是一种能将非电量的变化转换为感应电动势的传感器,它利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号。

磁电式传感器主要由永久磁钢、感应线圈、电路等部分组成。

当被测物体运动时,磁钢与线圈产生相对运动,线圈中的磁通量发生变化,从而在线圈中产生感应电动势。

三、实验器材1. 磁电式传感器:型号为LM393;2. Arduino Uno控制板;3. USB数据线;4. 振动平台;5. 示波器;6. 直流稳压电源;7. 电桥;8. 霍尔传感器;9. 差动放大器;10. 电压表;11. 测微头。

四、实验步骤1. 磁电式传感器安装:将磁电式传感器安装在振动平台上,确保传感器与振动平台固定牢固。

2. 传感器调试:调整传感器与振动平台的相对位置,使传感器能够正常工作。

3. 磁电式传感器信号采集:使用Arduino Uno控制板采集磁电式传感器的信号。

4. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

5. 霍尔传感器安装:将霍尔传感器安装在振动平台旁的支架上,确保传感器与振动平台固定牢固。

6. 霍尔传感器信号采集:使用Arduino Uno控制板采集霍尔传感器的信号。

7. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

8. 比较两种传感器特性:比较磁电式传感器和霍尔传感器的信号波形和频率,分析两种传感器的优缺点。

9. 实验结果分析:根据实验结果,分析磁电式传感器的测量精度、响应速度和抗干扰能力。

五、实验结果与分析1. 磁电式传感器信号波形和频率:通过示波器观察,磁电式传感器信号波形稳定,频率与振动频率一致。

2. 霍尔传感器信号波形和频率:通过示波器观察,霍尔传感器信号波形稳定,频率与振动频率一致。

(精选)磁电式传感器转速测量实验报告

(精选)磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告一.磁电式转速传感器的工作原理与特点磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器,属于非接触式转速测量仪表。

它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。

可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。

磁电式转速传感器的工作原理根据法拉第电磁感应定律磁通量变化可以产生感应电动势,磁通量的变化可由磁铁与线圈之间的相对变化和磁路中的磁阻变化引起,因此磁电式转速传感器分为变磁通式和恒磁通式两种结构型式。

变磁通式结构中,永久磁铁与线圈均固定,动铁心的运动使气隙和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构,又分为开磁路与闭磁路两种结构,如图1(a)、(b)。

其中:1-永久磁铁 2-软磁铁 3-感应线圈 4-测量齿轮 5-内齿轮 6-外齿轮 7-转轴本实验传感器属于开磁路变磁通式,其工作原理是:线圈、磁铁静止不动, 测量齿轮安装在被测旋转体上,随之一起转动,每转动一个齿,齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中产生感应电势,其变化频率等于被测转速与测量齿轮齿数的乘积。

4321N S闭磁路变磁通式:它由装在转轴上的内齿轮和外齿轮、永久磁铁和感应线圈组成, 内外齿轮齿数相同。

当转轴连接到被测转轴上时, 外齿轮不动, 内齿轮随被测轴而转动, 内、外齿轮的相对转动使气隙磁阻产生周期性变化, 从而引起磁路中磁通的变化,使线圈内产生周期性变化的感生电动势。

在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。

分为两种形式,如图NS 外壳线圈永久磁铁框架弹簧 N S永久磁铁线圈运动部分图2 (a) 线圈不动,磁铁运动 (b) 线圈运动,磁铁不动式中:B - 气隙磁感应强度(Wb/m 2)l - 线圈导线总长度(m)S - 线圈所包围的面积(m 2)v - 线圈和磁铁间相对运动的速度 (m/s)ω- 线圈和磁铁间相对旋转运动的角速(rad/s)α -运动方向与磁感应强度方向的夹角恒磁通式感应电动势与线圈相对磁铁运动线速度或角速度正比。

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告磁电式电感器电速电量电电电告一,磁电式电速电感器的工作原理特点与磁电式电感器是利用电磁感电原理~电入电速度电电成感电电电电出的电感器~将运属于非接式电速电量电表触。

不需要电助电源~就能把被电电象的机械能电电成易于电量的电它信。

号可用于表面有电隙的物电速电量~有好的抗干电性能~多用于电电机等电电的体很电速电控~在工电生电中有电多电用。

磁电式电速电感器的工作原理根据法拉第电磁感电定律磁通量电化可以电生感电电电电~磁通量的电化可由磁电电圈之电的相电电化和磁路中的与磁阻电化引起~因此磁电式电速电感器分电电磁通式和恒磁通式电电电型式。

两构电磁通式电中~永久磁电电圈均固定~电电心的电使隙和磁路磁阻电化~构与运气引起磁通电化而在电圈中电生感电电电~因此又电磁阻式电~又分电电磁路电磁路称构与两电电~如电构;,、。

1a(b)1234N S电;,电磁路式电磁路式1a(b)其中,永久磁电电磁电感电电圈电量电电内电电外电电电电1-2-3-4-5-6-7-本电电电感器于电磁路电磁通式~其工作原理是,电圈、磁电止不电属静, 电量电电安装在被电旋电上体,之一起电电~每电电一电随个,电的凹凸引起磁路磁阻电化一次,磁通也就电化一次,电圈中电生感电电电,其电化电率等于被电电速电量电电电的乘电。

与数电磁路电磁通式,由在电电上的电电和外电电、永久磁电和感电电圈电成它装内, 外电电电内数当相同。

电电电接到被电电电上电, 外电电不电, 电电电被电电而电电内随, 、外电电的相电电电使内气隙磁阻电生周期性电化, 而引起磁路中磁通的电化从,使电圈电生周期性电化的感生电内电电。

在恒磁通式电中~工作隙中的磁通恒定~感电电电是由于永久磁电电圈之电构气与有相电电电圈切割磁力电而电生。

分电电电形式~如电运——两外壳永久磁电电圈N电圈N框架运电部分永久磁电SS电簧电电圈不电~磁电电运电圈电~磁电不电运2 (a) (b)式中,2 , 隙磁感电强度气B(Wb/m), 电圈电电电电度l (m)2, 电圈所包电的面电S(m), 电圈和磁电电相电电的速度运v(m/s), 电圈和磁电电相电旋电电的角速运ω(rad/s),电方向磁感电强度方向的电角运与α恒磁通式感电电电电电圈相电磁电电电速度或角速度正比。

光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。

光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。

能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。

3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。

2) 用ROBOLAB编写上述程序。

3) 将小车与电脑用USB数据线连接,并打开NXT的电源。

点击ROBOLAB 的RUN按钮,传送程序。

4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。

5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。

从直尺上读取小车的位移。

6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。

共进行四次数据采集。

7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。

8) 利用数据处理结果及图表,得出时间同光强的对应关系。

再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。

5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。

采得数据如下所示。

b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。

汽车传感器与测试技术实验指导书(2个实验)

汽车传感器与测试技术实验指导书(2个实验)

实验一位移传感器性能实验一、实验目的:1、、了解电涡流传感器原理;2、掌握电涡流传感器的应用方法;二、基本原理:电涡流传感器的基本原理通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

三、需用器件与单元:电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。

四、实验步骤:测微头的组成与使用测微头组成和读数如图8-2测微头读数图图8-2 测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。

微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。

一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。

当转动测微头的微分筒时,被测体就会随测杆而位移。

电涡流传感器测位移1)电涡流传感器和测微头的安装、使用参阅图8-5。

传感器与检测技术综合实验 有数据及答案

传感器与检测技术综合实验 有数据及答案

实验报告本课程名称:传感器与检测技术综合实验指导教师:班级:姓名:学号:2013~2014学年第一学期广东石油化工学院计算机与电子信息学院实验目录实验一金属箔式应变片――单臂电桥性能实验实验二金属箔式应变片――半桥性能实验实验三金属箔式应变片――全桥性能实验实验四金属箔式应变片单臂、半桥、全桥性能比较实验实验五直流激励时线性霍尔传感器的位移特性实验实验六霍尔转速传感器测电机转速实验实验七磁电式转速传感器的测电机转速实验实验八电涡流传感器的位移特性实验实验九光纤传感器的位移特性实验实验十光电转速传感器的转速测量实验实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、1位数显万用表(自备)。

托盘、砝码、42图1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

磁电式传感器测量转速原理

磁电式传感器测量转速原理

磁电式传感器测量转速原理磁电式传感器是一种常用于测量转速的传感器,它利用磁场和电信号的相互作用原理,可以精确地测量各种旋转设备的转速。

在工业生产和科学研究中,磁电式传感器的应用非常广泛,本文将介绍磁电式传感器测量转速的原理及其工作过程。

磁电式传感器的工作原理是利用磁场的变化来感应电信号,从而实现对转速的测量。

在磁电式传感器中,通常会使用磁铁和线圈两个主要部件。

当被测物体旋转时,磁铁会随之旋转,从而改变线圈中的磁场强度,进而诱导出电信号。

通过测量这些电信号的变化,就可以准确地得到被测物体的转速数据。

磁电式传感器的工作过程可以分为三个主要步骤,磁场产生、磁场感应和信号处理。

首先,磁电式传感器通过内部的磁铁产生一个稳定的磁场,这个磁场的强度和方向是固定的。

当被测物体旋转时,磁铁随之旋转,导致磁场的强度和方向发生变化。

接着,线圈中的感应电流会随着磁场的变化而产生变化,最终输出一个与转速相关的电信号。

最后,通过信号处理电路对这个电信号进行放大、滤波和数字化处理,最终得到被测物体的准确转速数据。

磁电式传感器测量转速的原理非常简单,但却非常有效。

它具有测量精度高、稳定性好、响应速度快等优点,因此在工业控制和汽车领域得到了广泛的应用。

磁电式传感器可以通过不同的安装方式,适用于各种不同的转速测量场景,如轴承转速测量、发动机转速测量等。

总的来说,磁电式传感器是一种非常重要的传感器设备,它通过磁场和电信号的相互作用,实现了对转速的精确测量。

在工业生产和科学研究中,磁电式传感器的应用前景非常广阔,相信随着技术的不断进步,它将会发挥出更大的作用。

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告摘要:本文用磁电式传感器进行转速测量实验,以了解磁电式传感器的原理和特性,主要进行实验设计、转速测量实验和结果分析。

实验设计包括电参数测试和信号调试,转速测量部分包括摩擦轮模拟转速测量、实时转速测量和转速示波器记录转速波形等。

根据实验结果,磁电式传感器可以正确测量机械转速,连接传感器电源后,可以正确地输出信号,信号的频率随转速的增加而增加,满足形式的趋势;摩擦轮拟测量遵循转速与信号频率的关系,且准确性在实时相关的测量中比较可靠。

关键词:磁电式传感器;转速测量;实验设计;摩擦轮;实时测量1 引言转速测量是工业应用中常用的测量方法,是加工、机械和控制等各个领域的重要内容。

由于转速测量技术与传感器技术紧密相关,因此高精度、高可靠性的传感器被用于对转速的测量、检测和控制,以满足高效、精确的检测要求。

磁电式传感器是一种常用的信号检测传感器,可以直接输出和信号,能够有效地满足转速测量、振动测量、气流测量等领域的需求。

2 实验设计(1)电参数测试首先,确定电源电压,确定磁电式传感器的电参数,用多功能数字仪表测试磁电式传感器的输出电压。

(2)转速测量实验实验中使用摩擦轮模拟汽车转速,将磁电式传感器装在摩擦轮上。

实验中采用两种方式进行转速测量:一是模拟转速测量,即将摩擦轮的转速从慢到快进行按照恒定速度改变,然后用多功能数字仪表测量磁电式传感器的输出频率,并记录摩擦轮转速和传感器输出信号频率之间的关系;二是实时转速测量,即将摩擦轮不断加速,用转速示波器记录摩擦轮和传感器输出信号的波形。

3 结果分析(1)磁电式传感器检测电参数连接传感器电源后,磁电式传感器可以正确地输出信号,且输出的信号频率随转速的增加而增加,满足形式的趋势。

(2)摩擦轮拟测量实验中,摩擦轮拟测量遵循转速与信号频率的关系,我们发现转速和对应频率存在一定的相关性,且准确性在实时相关的测量中比较可靠,在转速范围0-3000 rpm时,精度达到足够的水平。

实验 磁电传感器转速测量实验

实验  磁电传感器转速测量实验

实验磁电传感器转速测量实验一. 实验目的1.通过本实验了解和掌握采用磁电传感器测量的原理和方法。

2.通过本实验了解和掌握转速测量的基本方法。

二. 实验原理1.磁电转速传感器的结构和工作原理磁电传感器的内部结构请参考图1,它的核心部件有衔铁、磁钢、线圈几个部分,衔铁的后部与磁性很强的磁钢相接,衔铁的前端有固定片,其材料是黄铜,不导磁。

线圈缠绕在骨架上并固定在传感器内部。

为了传感器的可靠性,在传感器的后部填入了环氧树脂以固定引线和内部结构。

图1 磁电传感器的内部结构使用时,磁电转速传感器是和测速(发讯)齿轮配合使用的,如图2。

测速齿轮的材料是导磁的软磁材料,如钢、铁、镍等金属或者合金。

测速齿轮的齿顶与传感器的距离d比较小,通常按照传感器的安装要求,d约为1mm。

齿轮的齿数为定值(通常为60齿)。

这样,当测速齿轮随被测旋转轴同步旋转的时候,齿轮的齿顶和齿根会均匀的经过传感器的表面,引起磁隙变化。

在探头线圈中产生感生电动势,在一定的转速范围内,其幅度与转速成正比,转速越高输出的电压越高,输出频率与转速成正比。

图2直射式光电转速传感器的工作方式那么,在已知发讯齿轮齿数的情况下,测得脉冲的频率就可以计算出测速齿轮的转速。

如设齿轮齿数为N,转速为n,脉冲频率为f,则有:n=f/N通常,转速的单位是转/分钟(rpm),所以要在上述公式的得数再乘以60,才能得到以rpm为单位的转速数据,即n=60×f/N。

在使用60齿的发讯齿轮时,就可以得到一个简单的转速公式n=f。

所以,就可以使用频率计测量转速。

这就是在工业中转速测量中发讯齿轮多为60齿的原因。

2.DRCD-12-A型磁电转速传感器简介DRCD-12-A型磁电转速传感器采用了RS9001-1型无源磁电转速传感器作为敏感探头,为了适应采集卡对信号幅度的要求,在探头的处理电路中使用了限幅放大电路、比较器等电路,最后将幅值与转速成正比的类正弦(与发讯齿轮的齿形有关系)脉冲信号,处理成幅值在0~+5V的方波信号。

各类传感器测速性能比较实验

各类传感器测速性能比较实验

各类传感器测速性能比较实验一、实验目的比较各类传感器对测速实验的性能差异。

二、实验要求通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。

三、基本原理(一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)。

(二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。

(三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。

本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。

(四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。

(五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。

四、主要器件及单元霍尔式传感器、磁电式传感器、电涡流传感器、光纤传感器、光电转速传感器、直流源±15V、转速调节2~24V,转动源模块、光纤传感器实验模块、+5V直流电源、转动源单元及转速调节2-24V、数显转速/频率表。

(第6章)磁电式传感器

(第6章)磁电式传感器

6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd

IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。

实验四磁电式传感器测量转速

实验四磁电式传感器测量转速

实验四磁电式传感器测 转速/压电传感器测 振动实验一 实验目的1 了解磁电式传感器测 转速的原理;2 了解压电传感器的原理和测 振动的方法;二 实验仪器CSY传感器检测技术实验 磁电式传感器 转动源 压电传感器 压电传感器实验模板 移相器/相敏检波器/滤波器模板 振动源实验原理1 动磁式磁电传感器 作原理磁电传感器是一种将被测物理 转换成 感 电势的有源传感器,也称 电动式传感器或感 式传感器 磁电式传感器 成两大类型 动磁式及 动衔铁式(即 变磁阻式) 本实验 用动磁式磁电传感器,实验原理框图如图4—1所示 当转动盘 嵌入6个磁钢时,转动盘 转一周磁电传感器感 电势e产生6次的变化,感 电势e通过放大 整形由频率表显示f,转速n台10f图4—1磁电传感器测转速实验原理框图工 压电加速度传感器实验原理图压电加速度传感器实验原理 电荷放大器由图4—工所示图4—工(a) 压电加速度传感器实验原理框图图4—工(b) 电荷放大器原理图四 实验步骤I磁电式转速传感器测速1 根据图4—左将磁电式转速传感器安装于磁电支架 ,传感器的端面对准转盘 的磁钢并调节升降杆使传感器端面 磁钢之间的间隙大约 工~左工 将 机箱中的转速调节电源0~工4三旋钮调到最小(逆时针方向转到 )后接入电压表(电压表 程 换开关打到工0三档) 将频率\转速表的开关按到转速档 左 检查接线无误后合 机箱电源开关,在小于1工三范围内(电压表监测)调节 机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况 图左—工 霍尔传感器(直流激励) 移实验接线示意图4 从工三开始记录 增加1三 超过1工三 相 电机转速的数据(待电机转速 较稳定后读取数据) 画 电机的三- (电机电枢电压 电机转速的关系)特性曲线 实验完 ,关闭电源三II压电传感器测 振动实验1 按图4—4所示将压电传感器安装在振动 面 ( 振动 面中心的磁钢吸合),振动源的 频输入接 机箱中的 频振荡器,其它连线按图示意接线图4—4 压电传感器振动实验安装 接线示意图工 将 机箱 的 频振荡器幅度旋钮逆时针转到 ( 频输 幅度 零), 调节 频振荡器的频率在6~8击z 右 检查接线无误后合 机箱电源开关 再调节 频振荡器的幅度使振动 明显振动(如振动 明显 调频率)左 用示波器的两个通道同时观察 通滤波器输入端和输 端波形 在振动 正常振动时用手指敲 振动 同时观察输 波形变化4 改变 频振荡器的频率(调节 机箱 频振荡器的频率),,观察输 波形变化 实验完 ,关闭电源。

转速传感器测速实验报告

转速传感器测速实验报告

转速传感器测速实验报告转速传感器测速实验报告引言:转速传感器是一种用于测量机械设备转速的重要工具。

在工业生产中,准确地测量转速对于设备的正常运行和维护至关重要。

本实验旨在通过对转速传感器的测速实验,验证其测量转速的准确性和可靠性。

一、实验目的本实验的主要目的是验证转速传感器的测速准确性和可靠性。

通过对不同转速下的测量数据进行分析,评估转速传感器的性能,并对实验结果进行解释和讨论。

二、实验装置和方法1. 实验装置:本实验使用的转速传感器为型号为XXX的磁电式转速传感器,测速范围为0-10000转/分钟。

实验中还使用了一台转速可调的电机和一台数字示波器。

2. 实验方法:(1)将转速传感器安装在电机的转轴上,并固定好。

(2)将数字示波器连接到转速传感器的输出端口。

(3)调节电机的转速,分别设置为500、1000、2000、5000和8000转/分钟。

(4)记录示波器上显示的转速传感器输出信号,并记录下来。

(5)重复实验3次,取平均值作为最终的测量结果。

三、实验结果和分析在实验过程中,我们按照上述方法进行了多次测量,得到了如下的实验结果:转速(转/分钟) | 传感器输出信号(V)500 | 0.51000 | 1.02000 | 2.15000 | 5.28000 | 8.3通过对实验数据的分析,我们可以得出以下结论:1. 转速传感器的输出信号与转速之间存在线性关系。

随着转速的增加,传感器输出信号也相应增加。

2. 实验数据与理论值相符合,说明转速传感器的测量准确性较高。

3. 由于实验条件的限制,我们无法测试更高转速下的测量结果。

在实际应用中,需要根据设备的转速范围选择合适的转速传感器。

四、实验误差和改进措施在本实验中,可能存在一些误差和改进的空间。

主要包括以下几个方面:1. 由于实验设备的限制,我们无法测试更高转速下的测量结果。

在未来的实验中,可以尝试使用更高转速的电机进行测试。

2. 实验过程中,传感器的安装位置和固定方式可能会对测量结果产生一定的影响。

磁电式传感器转速测量

磁电式传感器转速测量

实验五 磁电式传感器转速测量
一、实验目的:
掌握磁电式传感器测量转速的方法。

二、实验仪器:
实验台、转动源、磁电感应传感器
三、相关原理:
磁电感应式传感器是以电磁感应原理为基础,根据电磁感应定律,线圈两端的感应电动势正比于线圈所包围的磁通对时间的变化率,即dt
d W dt d
e φϕ-=-= 其中W 是线圈匝数,Φ线圈所包围的磁通量。

若线圈相对磁场运动速度为v 或角速度ω,则上式可改为e=-WBl v 或者e=-WBS ω,l 为每匝线圈的平均长度;B 线圈所在磁场的磁感应强度;S 每匝线圈的平均截面积。

四、实验内容与操作步骤
1.按下图安装磁电感应式传感器。

传感器底部距离转动源4~5mm (目测),“转动电源”接到2~24V 直流电源输出(注意正负极,否则烧坏电机)。

磁电式传感器的两根输出线接到频率/转速表。

2.调节2~24V 电压调节旋钮,每间隔0.5V ,记录转动源的转速值,并可通过示波器观测其输出波形。

图5-1
五、实验报告
1.分析磁电式传感器测量转速原理。

2.根据记录的驱动电压和转速,作V-RPM 曲线。

实验十 磁电式传感器测转速实验

实验十  磁电式传感器测转速实验

姓名____________班级____________学号____________实验十 磁电式传感器测转速实验一、实验目的:了解磁电式测量转速的原理。

掌握测量方法。

二、基本原理:磁电传感器是一种将被测物理量转换成为感应电势的有源传感器,也称为电动式传感器或感应式传感器。

根据电磁感应定律,一个匝数为N的线圈在磁场中切割磁力线时,穿过线圈的磁通量发生变化,线圈两端就会产生出感应电势,线圈中感应电势: 。

线圈感应电势的大小在线圈匝数一定的情况下与穿过该线圈的磁通变化率成正比。

当传感器的线圈匝数和永久磁钢选定(即磁场强度已定)后,使穿过线圈的磁通发生变化的方法通常有两种:一种是让线圈和磁力线作相对运动,即利用线圈切割磁力线而使线圈产生感应电势;另一种则是把线圈和磁钢部固定,靠衔铁运动来改变磁路中的磁阻,从而改变通过线圈的磁通。

因此,磁电式传感器可分成两大类型:动磁式及可动衔铁式(即可变磁阻式)。

本实验应用动磁式磁电传感器,实验原理框图如图10—1所示。

当转动盘上嵌入6个磁钢时,转动盘每转一周磁电传感器感应电势e 产生6次的变化,感应电势e 通过放大、整形由频率表显示f,转速n =10f 。

图10—1磁电传感器测转速实验原理框图三、需用器件与单元:主机箱中的转速调节0~24V 直流稳压电源、电压表、频频\转速表;磁电式传感器、转动源。

四、实验步骤:磁电式转速传感器测速实验除了传感器不用接电源外(传感器探头中心与转盘磁钢对准),其它完全与实验九相同;请按图10—2示意安装、接线并按照实验九中的实验步骤做实验。

实验完毕,关闭电源。

dt d Ne Φ-=图10—2 磁电转速传感器测速实验安装、接线示意图2.003.004.005.006.007.008.009.00 10.0 11.0 12.0 V(V)720 850 990 1150 1280 1520 1740 1950 2150 2320 2460 N(rpm)五、思考题:磁电式转速传感器测很低的转速时会降低精度,甚至不能测量。

磁电式发动机转速传感器原理与测量

磁电式发动机转速传感器原理与测量

磁电式发动机转速传感器原理与测量一、目的和要求1、了解磁电式发动机转速传感器的结构与原理2、掌握发动机转速传感器的测量方法二、实训课时实训共安排2.0课时,其中辅导老师讲解0.5课时。

三、实训器材1、工具:汽车数字万用表2、设备:电控燃油喷射发动机教学实训台3、教具:磁电式发动机转速传感器四、原理与应用磁电式发动机转速传感器,在利用永久磁铁作用产生的一定强度的磁场中,当转子转动时利用与转速成正比的磁头与转子外齿的间隙发生变化,从而使磁头与转子构成的磁路中磁阻发生相应的变化。

其结果是流经该磁路的磁通量发生周期性增减,与磁通量的增减速度成正比的感应电压在线圈两端产生,经过其内部电路转换成电脑可以识别的电压信号,电脑根据这个电压信号来计算发动机的转速。

发动机转速传感器的测量方法1、电阻测量法(1)拔下发动机转速传感器插头。

(2)用数字万用表测量发动机转速传感器的两条信号线之间的阻值(800欧左右)。

(3)用数字万用表分别测发动机速度传感器两条信号线与屏蔽线之间的电阻应为无穷大。

(4)测量完插好发动机转速传感器插头。

2、电压测量法(1)打开点火开关,不起动发动机。

(2)将万用表档位调至交流电压(一般调至20V)档测量发动机转速传感器两条信号线之间的电压此时电压为0V。

(3)起动发动机,怠速时万用表上的电压应显示1V左右,开启节气门提供发动机的转速,万用表上的电压应会随之发动机转速升高而增加。

五、实训步骤1、拔下发动机转速传感器插头。

2、用数字万用表测量发动机转速传感器的两条信号线之间的阻值(800欧左右)。

3、用数字万用表分别测发动机速度传感器两条信号线与屏蔽线之间的电阻应为无穷大。

4、测量完插好发动机转速传感器插头。

5、打开点火开关,不起动发动机将万用表档位调至交流电压(一般调至20V)档测量发动机转速传感器两条信号线之间的电压此时电压为0V。

6、起动发动机,怠速时万用表上的电压显示1V左右,开启节气门提供发动机的转速,万用表上的电压应会随之发动机转速升高而增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名____________班级____________学号____________
实验十 磁电式传感器测转速实验
一、实验目的:了解磁电式测量转速的原理。

掌握测量方法。

二、基本原理:磁电传感器是一种将被测物理量转换成为感应电势的有源传感器,也称为电动式传感器或感应式传感器。

根据电磁感应定律,一个匝数为N的线圈在磁场中切割磁力线
时,穿过线圈的磁通量发生变化,线圈两端就会产生出感应电势,线圈中感应电
势: 。

线圈感应电势的大小在线圈匝数一定的情况下与穿过该线圈的磁通变化率成正比。

当传感器的线圈匝数和永久磁钢选定(即磁场强度已定)后,使穿过线圈的磁通发生变化的方法通常有两种:一种是让线圈和磁力线作相对运动,即利用线圈切割磁力线而使线圈产生感应电势;另一种则是把线圈和磁钢部固定,靠衔铁运动来改变磁路中的磁阻,从而改变通过线圈的磁通。

因此,磁电式传感器可分成两大类型:动磁式及可动衔铁式(即可变磁阻式)。

本实验应用动磁式磁电传感器,实验原理框图如图10—1所示。

当转动盘上嵌入6个磁钢时,转动盘每转一周磁电传感器感应电势e 产生6次的变化,感应电势e 通过放大、整形由频率表显示f,转速n =10f 。

图10—1磁电传感器测转速实验原理框图
三、需用器件与单元:主机箱中的转速调节0~24V 直流稳压电源、电压表、频频\转速
表;磁电式传感器、转动源。

四、实验步骤:
磁电式转速传感器测速实验除了传感器不用接电源外(传感器探头中心与转盘磁钢对
dt
d N
e Φ
-=
准),其它完全与实验九相同;请按图10—2示意安装、接线并按照实验九中的实验步骤做实验。

实验完毕,关闭电源。

图10—2 磁电转速传感器测速实验安装、接线示意图
V
(V)
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00 10.0 11.0 12.0
N
(rpm
)
720 850 990 115
128
152
174
195
215
232
246
0 五、思考题:
磁电式转速传感器测很低的转速时会降低精度,甚至不能测量。

如何创造条件保证磁电式转速传感器正常测转速?能说明理由吗?
答:磁电式转速传感器是利用旋转体改变磁路,使磁通量发生变化,从而使其线圈产生感应电压,如果转速很慢,旋转体改变磁路也很慢,磁通量的变化也很慢,感应电压就会很小,就无发正确地测定转速。

相关文档
最新文档